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Digital Filters Using Identical Blocks 
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Abstract. Improved response of non-recursive digital filters is achieved using Amplitude 
Change Functions (ACFs) on a prototype filter. A generalized ACF with interesting 
properties issuggested. Methods for achieving variable cut-off frequency and frequency 
transformation are explained. A modular hardware implementation is also 
presented. 

1. Introduction 

Several methods viz. windowing, frequency sampling and optimization, for the design 
of Finite Impulse Response (FIR) digital filters are available in the literature'-3. In 
these methods, in general, as the order of the filter increases, the computational 
complexity also increases. Moreover, if the specifications are to be changed, the 
filter is to be completely redesigned. An alternative approach to design a higher 
order filter could be to design a filter of lower order by using single-precision FIR 
filter design programmes, and then, to improve the response by repeated use of the 
same filter. The hardware implementation of the overall filter also becomes simpler 
than that of a single filter designed by conventional methods. This is particularly 
true when the prototype filter can be fabricated on an integrated circuit chip. The 
simplest example of the multiple use of the ssme filter is the cascading of two iden- 
tical filter sections; the out-of-band rejection (stopband loss) is increased thereby, 
but the passband error is doybled by this interconnection. The 'twicing' method 
suggested by.Tukey4 squares the s,ipple in the passband, but doubles the stopband 
ripple. ,A procedure, called, 'filter sharpening', for improving the response of a 
symmetrical nonrecursive filter was introduced by Kaiser and Hamming5. The 
method is based on an 'Amplitude Change Function' (ACF) of the form Ho = f (H), 
where f is a polynomial relationship between the amplitudes H a n d  H,, of the pro- 
totype and transformed filters respectively. The ACF curve passes through the 
points (0, 0) and (1, I )  in the (H,, H) plane. The improvement in the passband (dear 
H - 1) or in the stopband (near H = 0) response depends on the order of tangency 
of the ACF at H = 1 or at H - 0 respectively. An expression5 for an ACF giving 
i ~ t h  and mth order tangencies at H = 0 and 1, respectively, is given by 
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where C(n + k, k) = (n + k)/(n.k.) is the binomial coefficient and an additional 
subscript has been used for distinguishing between various transformed filters to be 
used. 

In this paper, some new applications of the Amplitude Change Function are pro- 
posed. In section 2, a method for improving the response of the transformed filter 
by using shifting and scaling of the ACF is given. An expression for an ACF which 
has a similar characteristic as that of the Kaiser-Hamming Chebyshev ACF is derived 
in Section 3. This new ACF does not require additional correction filters and is a 
generalized expression for any order oi* tangencies at H = 0 and 1. In section 4, a 
method is suggested for continuously varying the cut-off frequency of the transformed 
filter. An efficient method for hardware implementation for different order of tan- 
gencies at H = 0 and I ,  keeping the order of transformation constant, is also suggest- 
ed in this Section. A method for frequency transformation of FIR digital filters 
using the concept of ACF is discussed in Section 5, where methods for obtaining 
variable centre frequency and variable cut-off frequencies in the case of lowpass to 
bandpass transformed filters are also suggested. 

2. Selective In~provement in the Passband, Stopband or Both 

In has been shown6 that selective improvement in the passband, stopband or both 
can be achieved by shifting andlor scaling the ACF. By shifting the point (0, 0) to 
(a, 0) and scaling the ACF by a factor p, where 0 < a, p < I ,  Eqn. (1) changes to 

Equation (2) is similar to Eqn. (1) with H replaced by ( H  -- a)/(@ - a) and its 
derivatives vanish at the points (a, 0) and (p, 1). For the simple case of third order 
transformation with first order tangencies at H - a and p = ( 1  - u) i.e. equal 
deviation from the points (0, 0) and (1, I), Eqn. (2) reduces to 

HO1 = [(H -- &)'/(I -- 2 ~ ) ~ ]  [(3 - 4u) - 2H] (3) 

The ACF of Eqn. (3) is shown in Curve A in Fig. ](a), lor cr = 0.05. It may be 
noted that shifting and/or scaling reduces the effective transition width of the trans- 
formed filter; however the error in the passbandlslopband is increased depending 
on the extent of deviations from the points (0, 0) and (1, 1). The limit on the 
deviation cr is set by the desire to keep inband errors in H,,, equal to those in H in 
the worst case. To explain ihis, it may, be first pointed out that shifting and scaling 
effectively shlinks (expands) the H axis around the point H = 0.5 for cc > 0 (< 0). 
Now refer to Fig. l(b) drawn for H,,, and H,, with a > 0 around H = 0. At the 
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Figure 1. (a) Comparison of third order amplitude change functions. 
Curve A : Ho, for u = 0.05 
Curve B : H,, for 6 = 0.05 
Curve C : H,, for 6 = 0.05 

1. (b) Comparison of third order ACFs H,, and H,, around H = 0 (scales 
expanded). 

two points intersected by the same horizontal line, the slope of H,, is larger (smaller 
for a < 0) than that of H,,. Also, the error in H,, is larger than that in H,, around 
H = 0. For the case when H i s  restricted between 0 and 1, the maximum deviation 
occurs when a is equal to. the intercept on the H,, axis. For u < 0, in Fig. I@), 
the roles of H,, and H,, are switched and the dotted line becomes the vertical axis. 

Both shifting and scaling need not be employed if the improvement is required 
either in stopband or passband alone. The ACF's for shifting (or scaling) for 



270 S C mtta Roy et al. 

improvement in stopband (or passband) may be obtained from Eqn. (2) by putting 
p = 1 (Or a = 0). 

2.1 Example 

In this example, it has been shown that the stopband performance of the 'shar- 
pened' filter can be improved without affecting the passband characteristic significant- 
ly, by shifting the ACF. It is also shown that this method can be applied to a 
rather crude filter which is otherwise not of much use. Consider the simple smooth- 
ing by 3's filter with the weighting sequence given by h = (113) (1, 1, 1). Since the 
stopband performance of the prototype filter is very poor, the values of n and m 
have been chosen as 3 and 1 respectively. For increasing the out of band rejection 
further, shifting with a = - 0.1 has also been applied. The fifth order ACF i11 this 
case can be written as 

When this transformation is applied to the above prototype filter, the frequency 
response obtained is shown in Fig. 2. Also shown are the responses of the prototype and 
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Figure 2. Comparison of frequency response of a crude filter, H, with its transformed 
vsrsions. 
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that of Hoo for n - 3 and m = 1. From this figure, it may be noted that Hoo and 
Hot attain a stopband attenuation equal to 0.0781897 (z - 22.137 dB) and 0.01 1844 
( z  - 38.53 dB) respectively. This improvement, however, is at the cost of increased 
transition width of the transformed filter Ho, as in evident from Fig. 2. 

3. New ACF for Equiripple Behavrour near H = 0 and H = 1 

Kaiser and Hamming5 have obtained another ACF in which the maximum devia- 
tion in Ho is within f 6 for a given deviation f y in H. This Chebyshev type ACF 
(Fig. 4 in ref. 5) may be written as 

H02 - HoO + E ( H )  (5)  

where E(H)  is a correction term. For the cubic case, for example, Hoo = Ha 
(3 - 2H) and E(H) = ao(H - 4) [ (H - 4)"- a,], a, and a, being constants. 

An alternate expression for obtaining similar characteristics6 is 

HO3 = ( 1  -k 26)Hd0 - 6 (6) 
I 

A relation between y and 6 can be obtained from Eqn. (6) by substituting H = y and 
f 1 - y), and is given by 

For the third order case with n = m = 1 ,  

HO, - ( 1  + 26) H2((3 - 2 H )  - 6 (8) 

where 6 = ~ " ( 3  - 2 ~ )  ! [2(1 - Y)? ( 1  + 2y)l (9)  

This is plotted as curve B in Fig. I(a) for 8 - 0.05. For y < 0.05, 6 e? 3y2/2 which is 
the same5 as that obtained in ref. 5 for y < 0.1. 

Some points for comparison between Eqns. (5) and (6) are in order. The correc- 
tion term in Eqn. (5) is a polynomizl of the order of Hoo, and is used to flatten the 
ACF around H = 0 and 1 .  As a result, the derivatives of Ho2 do not vanish at 
H -- 0 and 1 .  H,, is also much simpler than Ho, and it does not require any addi- 
tional filter blocks for its implementation, as in the case for Ho2. Further, generali- 
zation of Ho2 may be difficult while Ho, can be used for any order of transformation. 
Lastly, HO, has equal maximum deviation on either side of H = 0 and 1, while Ho, 
does not have this property. 

Shifting and scaling may be applied to Eqn. (6) to further improve the perfor- 
mance of the transformed filter, resulting in the ACF 

HO4 = (1 + 28) HO1 - 6 (10) 
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The number of extrema of Ho, is equal to three in both pass and stopbands. 
However, the amplitude of one of the extrema is less than or equal to that of the 
other two, the equality being valid for the case when a takes its maximum permissi- 
ble value (refer to Section 2) For the maximum value of a ,  the error in Ho4 is 
also minimum. This can be explained with the help of an example where the 
prototype filter amplitude lies between 0 and 1. Curve C in Fig. l(a), which shows 
Hod for the third order transformation with 6 r= 0.05, can be made to pass through 
the origin or to intersect the Ho, axis at a point 6' > 0. Let 6, be the maximum in 
band error for the 6' = 0 case, and let 6, be the corresponding quantity for the case 
6' > 0. Then, assuming the same value of u in the two cases, we get 

8 = a2(3 - 4u)/[l - 6u(l - a)] (1 1)  

and for 6 = a3 
6, = (u2/2) (3 - 4u)/[(l - a)2 (1 - 4a)l (12) 

It is seen that 6, z 26, for small values of a. The larger error in the first case 
is to be expected since, as can be derived from Curve C in Fig. l(a), the frequency 
responses in the two cases will have 2 and 3 extrema, respectively. 

3.1 Example 

Consider Blackman and Tukey's simple smoothing by 3's and 5's filter giving the 
weightng sequence 

Since the passband response of the prototype filter is fairly good, we apply transfor- 
mation Hod with a = 0 to further improve the passband response. The stopband 
response will be almost the same as that in the Hoo. The ACF for the cubic case, 
scaled by p, can be written as 

Ho, = [H2/(3@ - 211 (38 - 2H) (13) 

The above transformation with 8 -- 0.95 is applied to the smoothing by 3's and 5's 
filter. The transformed filter has two extrema in the passband, as shown in Fig. 3, 
which compares the frequency responses of the original filter H and the sharpened 
filters Hoo and Hod. The improvement in the passband response is obvious. 

4. Variable Cutoff Filtering 

The cutoff frequency of a linear phase FIR filter can be varied using the cosine trans- 
f ~ r m a t i o n ~ ' ~ .  However, in this method, the coefficients of the transformed filter 
are to be recalculated for varying the cut-off frequency, since, the coefficients of the 
filter determine the cut-off frequency of the filter. 

The variations in cut-off frequency can also be achieved by constructing an ACF 
which is restricted to pass through a predetermined point (p, e) in the (Ho, H) plane 
For 0 < E ,  ,U < 1, the new ACF can be writteng as 
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Figure 3. Comparison of the response of a prototype filter H with its sharpened 
version Ha, and Ha, having two extrema in the passband. 

where K ~ , ~  = a - (n t l )  (1 - r)-(m+l) 

The second term in Eqn. (14), which represents a modification of the ACF used 
in filter sharpening5, increases tlle order of the transformed filter by one. ,For the 
case when E is kept constant, p can be changed to vary the cut-off frequency wifhin 
certain limits, beyond which H,, will not remain between 0 and 1. The order of 
tangencies of H,, is the same as that of Ho0 except for the limiting values of p for 
which the order increases by one at H - 1 ( p  = paax) or at H = 0 (p = pmin). 
Based on this, ~t can be shown that 

en+l(l - Omtl (n + rn + I)! 
prnax = n! (rn + l)! 
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and 

From Eqns. (16) and (17), it is easily seen that the extent of variation in p, i.e., 
pmax - pmin, is maximum and that p varies symmetrically on either side of Po, the 
value of p for Kn,, = 0 and n = m. Also, as I n-rn I becomes large, pmax - pmin 
decreases and the absolute value of the range shifts away from Thus for a given 
order of transformation (n + m + I), the largest variation in cut-off frequency is 
obtained by varying p as well as n and rn such that (n + m) remains a constant. 

4.1 Example 

With the help of an example, it can be shown how the largest range of variation in 
cut-off frequency can be achieved. Consider the simple, raised-cosine bandpass filter 
with the following weighting sequences, 

To illustrate fairly large variation in cut-off frequency, we choose n + nl = 3. The 
ACF for different values of n and rn are given by 

How Eqn. (18) can be implemented in hardware as well as software will now be 
discussed. 

4.2 Hardware Implementation 

Hardware implementation of H,,,,,,, necessitates different interconnection for 
different values of n and rn. This problem, however, can be avoided by expressing 
Hoe(n,m) in terms of powers of (1 - H) giving 

HOS(n,m) ---; H [ I  +G1(l - H )  + G2(1 - H)' + Gg(l - H)' 

+ G4(1 - H)dl (19) 

where G,, G2, G3 and G, are functions of ,LA, n and rn while n + m is kept equal to 3. 

Table 1 gives the range of values of the gain factors G for different combinations 
of n and m. Curves A and B in Fig. 4 show the ACF for the maximum and minimum 
values of p corresponding to n = 0, m = 3, and n = 3 and m = 0 respectively while 
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Table 1. The range of values of the gain factors G for different combinations of n 
and m. 

n m Range of p for e = 0.5 GI G ,  G3 G, ---- --- --- .---- 
~ m a ~  pmin max min max min m&x min max min 

curves C and D show the ACF for n = I ,  m = 2,  and n =: 2, in = 1 for p = p,. The 
hardware implementation of Eqn. (19) is shown in Fig. 5. The frequency responses of 
the transformed filters for n = 0, in = 3, p = p,,, and for n = 3, m = 0, = p,i, 
are compared with that of the prototype filter in Fig. 6. 

-0.1 J , , I I 1 -  
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Figure 4. ACF curves. 

4.3 Software Implementation 

The filtering algorithm for H is stored as a subroutine and the overall filtering is 
carried by the repeated use of the subroutine. For example, the filtering operation 
of Eqn. (1 86) starts first by passing the input signal through the filter H once. The 
resulting signal is subtracted from the input, delayed by N sampling intervals where 
N is one half of the total delay of the prototype filter. The residue thus obtained is 
multiplied by the constant K,,,. This is then added with the delayed input signal 
once again. The overall filtering is done by repeatedly passing the resulting signal 
four times through the prototype filter. 
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Figure 5. Hardware realization of the structure. 
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Figure 6. Comparison of the frequency responses of a raised-cosine bandpass 
filter with the transformed versions. 

5. Frequency Transformation Through ACF 

The concept of ACF can be used for the frequency transformation of linear phase % .  

FIR filters, viz. transforming a lowpass (LP) filter into highpass (HP), bandpass (BP) 
or bandstop (BS) fil terslO. 

For transforming a LP filter into a HP filter (or a HP filter into LP filter), the 
passband of the LP filter is to be mapped on to the stopband of the HP filter, the 
stopband to passband and the transition to transition. An ACF satisfying the above 
condition is obtained by allowing the corresponding curve to pass through the points 
(0, 1) and (1, 0). The expression for such a curve is obtained as 
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where n and m are the order of tangencies at the points (0, 1) and ( I ,  0) respectively. 
The simplest case of first order tangencies at the above points can be written as 

and is shown in Fig. 7(b), while Fig. 7(a) is the ACF for sin~ple symmetric sharpen- 
ing (Refer to Curve C,  Fig. 2 in ref. 5) drawn for easy reference. 

If the ACF is required to transform a LP filter into a BP filter, then the passband 
of the LP filter is to be mapped on to the stopband of the BP filter, stopband to stop- 
band and the transition to passband and transition. Clearly, such a curve should 
pass through the points (0, 0), (?, 1) and (1, 0) where q represents the centre of the 
passband of the transformed filter and its value lies between 0 and 1. An expression 
for an ACF curve for q = 0.5 can be written as 

-0.2 0 0 2  0 4  0.6 0.8 1 0  1.2 - 0 2  0 0.2 0 4  0.6 0.8 10 1.2 
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C) dl 

Figure 7. ACF for (a) lowpass to lowpass transformation, (b) lowpass to highpass 
transformation, (c) lowpass to bandpass transformation, (d) lowpass to bandstop 
transformation. 
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k odd 

where n is the order of tangency at H = 0 and 1 ,  and m is that at H = 0.5. Equation 
(22) is also valid for HP to BP transformation. The fourth order transformation with 
first order tangencies at H = 0, 1 and 0.5 is given by 

H,, = 16H2(1 - H)" (23) 

which shows that H,, is a product of two cascaded, squared sections of lowpass and 
highpass filters. This is also evident from Fig. 7(c), a plot of Eqn. (23), which depicts 
a combination of LP to LP transformation for H = 0 to 0.5, scaled by a factor 0.5 
and LP to HP transformation for H = 0.5 to 1, shifted by 0.5. While Eqn. (22) will 
also transform a HP into BP filter, H,, .= 1 - H,, can be used for LP to BS trans- 
formation. The ACF H,,,, for the first order tangencies at the points (0, l), (0.5, 0) 
and (1, I )  is shown in Fig. 7(d). It may be noted that the transformations H,,, H,, 
and H,, are not only used for frequency transformatiorr, of filters, but the frequency 
responses of the transformed filters can also be improved by properly choosing the 
order of tangencies at the points corresponding to the passband and stopband. 

The cut-off frequency of the transformed filter can also be varied continuously 
within certain limits. In the case of LP to HP transformation, the method is similar 
to the one discussed in Section 4. For varying the cut-off frequency of the BP 
transformed filter with q = 0.5, it 1s required to simultaneously vary the following 
two points on the ACF : (a, p) and (1 - a, p). The resulting ACF is given by 

(k odd) 

where n and m have the same significance as in Eqn. (22). Larger variation in the 
cut-off frequency is achieved by varying e(p = const.) as well as n and m. 

The centre frequency of the BP/BS transformed filters discussed in the previous 
sections is a constant for a given LP/HP prototype filter. It is equal to the frequency 
at which the amplitude of the prototype filter becomes equal to 0.5. An ACF can 
also be constructed for continuously varying the centre frequency of the transformed 
filter while keeping the bandwidth constant. The curve for LP to BP transformation 
passes through the points (0, O), (q, 1 )  and (1, 0), where 7 represents the centre of the 
passband and lies between 0 and 1 .  The corresponding ACF can be expressed as 
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where n is the order of tangency at H = 0, m is that at H = 1 and I at H = 7 .  

The centre frequency can be varied by varying q such that H,,, remaints within 0 
and 1 for all values of H between 0 and 1. For a given order of transformation, 
the largest variation in centre frequency is achieved by varying r )  as well as by chang- 
ing n and m, keeping I a constant. 

5.1 Example 

The prototype lowpass filter chosen is a maximally flat, linear phasell FIR filter 
with the following weighting sequences : 
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The transformation given by Eqn. (25) is applied to this filter for several values of ?, n 
and m while keeping I and n + m a constant, equal to 3. The results of the transfor- 
mation are expressed in terms of powers of (1 - H) for the uniformity of hardware 
implementation. The gain factors associated with each of these (1 - H )  modules can 
be calculated in a similar way as was discussed in Section 4. Fig. 8 compares the fre- 
quency responses of the transformed filter for q = 0.25, 0.5 and 0.75, respectively, for 
the above prototype filter. 
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