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1. INTRODUCTION
It is now a common practice to conduct analyses of

devices or vehicles or even natural phenomena like the
weather by solving partial differential equations that describe
flows. While formulas and empirical relations remain useful,
computational fluid dynamics (CFD) has become a tool
of choice. The methods for numerical solution of differential
equations are now understood well, and computers are
powerful enough, that CFD solutions of laminar flows are
generally quite reliable. Turbulent flows present a lasting
difficulty: These flows contain a wide range of scales of
motion, and therefore a wide range of length and time
scales, that a direct computation of most flows encountered
in practice is not feasible, and perhaps not necessary. In
many cases, it would be sufficient to know the fields of
mean quantities such as the mean velocity, but even the
computation of mean fields, termed RANS for the Reynolds-
averaged Navier-Stokes equations that are solved, is not
as reliably accurate in general because the equations are
nonlinear. Models are needed for some terms in the equations
for the means, and it is widely understood that the demands
on such modelling are too severe. Nevertheless, it is possible
to use CFD solutions in such cases also by restricting
predictions to classes of flows for which the accuracy of
the modelling has been determined. In this article, a different
technique for computing a different approximation of turbulent
flows in which the requirements on the modelling are
comparatively less but at increased computation cost is
discussed. This trade-off is not the only benefit as will
be seen below in the article. The technique is called large
eddy simulation (LES).

An LES is a computation of a large-scale part of a

turbulent flow. If the equations had been linear, this would
have been straightforward. Instead, any approximation
like LES results in unclosed terms which must be modelled.
The main expectation is that the dynamics of a range of
large-scales will be obtained accurately, and that this is
sufficient to obtain close estimates of several quantities
of interest, with better accuracy and reliability than a
RANS solution. The basis is that most of the kinetic energy
in a turbulent flow is accounted for by the large-scale
motions, that the flow generally interacts with its boundaries
on large-scales, and that small-scale dynamics is nearly
universal. Differences in flows arise from the different
boundary and initial conditions; when these are, for example,
the different bodies embedded in a flow, an LES accounts
for the interaction of the flow with these objects. If small-
scale motions have universal behaviour, it should be easier
to find general models than in RANS computations which
require modelling of both large- and small-scale dynamics.
In fact, even though a model is a formal requirement for
an LES, since the model is for the effect of small-scale
motion on the computed large-scales, when this effect is
small the solution may not be sensitive to the model. This
has been the general experience, but is often viewed with
surprise because RANS solutions have been notoriously
sensitive to its turbulence models. In LES, models that
appear to be poor in a priori tests (tests of the model
using exact flow fields at some instant) have given acceptable
results in simulations. Simulations without explicit LES
models have also given acceptable results and are now
termed implicit LES (ILES) denoting a modelling for LES
provided by the numerical scheme.

An LES is a newer type of computation of a turbulent
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flow that seeks to overcome the deficiencies of RANS by
deploying more computer resources. The basis for RANS
is quite sound for many flows. Consider a turbulent flow
of water through a long pipe under a constant (stationary)
head. Although the velocity at any point, or the mass flux
through any cross-section, will exhibit significant fluctuations
in time, we would find much smaller variations in the
amount of water collected during equal finite intervals,
as long as the intervals are not too small. In other words,
one expects turbulent flows to have means. The flow at
any point in the pipe is also stationary and a mean velocity
field can be found that varies slowly along the pipe, more
rapidly over a cross-section, and most rapidly near the
pipe wall. Such flows are obtained quite accurately with
a RANS computation because the turbulence changes
little from place to place in the flow.

Now consider a small object placed in the pipe. Generally,
there will be some kind of intermittent shedding into the
wake of the object. All flow quantities in the vicinity of
the object will acquire variations in time corresponding
to the time scale of the shedding process. There are associated
length scales of the order of the size of the object. Now,
a RANS solution becomes more difficult. Although one
may still expect means to exist, the fluctuations contain
large-scale unsteadiness. RANS modelling, which accounts
for the enhanced transport by turbulent fluctuations, must
now account for the effects of large-scale unsteadiness.
If an accurate description of the near wake is needed, LES
becomes a good choice because it naturally captures the
large-scale unsteadiness.

Initially as CFD tools were deployed for analyses, it
was encouraging that reasonable answers were obtained
for flows in complex geometry.  Even when there was a
significant difference between an experiment and a RANS
solution, and by different amounts in different parts of
the flow, such solutions were still useful indicators of how
the solution would change when some input parameters
were varied.  However, if we seek to design the flow for
significant performance improvements, an LES becomes
necessary. An LES can be used to guide local changes
better, such as placement of injectors, or even the continuous
variations that a formal shape optimisation algorithm might
give. It is then a tool for more demanding applications
that can accommodate the increased computing costs.

For readers who would like to pursue LES in their
work, the necessary background on turbulent flows can
be found in Pope18. An early review was provided by
Lesieur and Metais12. Pitsch15 writes on developments in
LES for reacting flows. A textbook for LES, covering a
broad range of topics in LES, is by Sagaut20 and includes
an extensive bibliography.  A conference series called
Direct & Large Eddy Simulation (DLES) has been organized
every two years since 1994

2. DEFINING  AN  LLARGE EDDY SIMULATION
PROBLEM
Some essential aspects of an LES can be understood

by considering the simpler problem of a one-dimensional
transport equation. Let the function u(x, t) satisfy the
transport equation
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The problem specification is completed by adding
initial and boundary conditions on u. Suppose we wish
to find an approximation U(x, t) = G*u rather than u itself
(convolution operator G will be defined below). Formally,
the governing equation for U can be obtained by applying
the operator G to Eqn. (1) to get
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For completeness, we would apply the same operator
to initial and boundary conditions. The problem defined
by Eqn. (2) would be equivalent to that defined by Eqn.
(1) if it were possible to invert the operation on u. In an
LES, G is a low-pass filter and U is a large-scale part of
u. In RANS, G is a time-averaging or an ensemble averaging
operator. It is obvious that one cannot recover the signal
from its average alone (G as an averaging operator is not
invertible). In an LES, G as a low-pass filter discards
information on scales smaller than some cut-off and is
also not invertible. So, the problem defined by Eqn. (2)
is not equivalent to that of Eqn. (1) for operators G of
our interest.

They can re-write Eqn. (2) as

( )
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where the RHS of Eqn. (3) ,
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vanishes if f(u) is a linear function of u. Then, problem
in Eqn. (3) is closed, and it does not matter that u cannot
be recovered from U. When f(u) is nonlinear, it is necessary
to find a model for R(u, U), since it contains a quantity,
u, which cannot be obtained from U. Closure requires that
they have a model R

m
(U) in terms of the computed quantity

U. In RANS of incompressible flow, this term arises due
to the nonlinear convection terms in the momentum equations
and is called the Reynolds stress. The RANS problem is
closed by providing a turbulence model. In LES, such
terms arising from the same convection terms are called
sub-grid stresses and closure is obtained by sub-grid
modelling.

So the LES problem is defined by applying a low-pass
filter to all the equations defining the original physical
problem (both differential equations and intial/boundary
conditions) and prescribing a sub-grid model. Although
much effort has gone into investigating different sub-grid
models, there have been other requirements which are
unique to LES, such as time-accurate numerical schemes,
and prescribing fluctuating, turbulent, inflow boundary



DEF SCI J, VOL. 60, NO. 6, NOVEMBER 2010

600

conditions. Also, most LESs have been formulated where
the low-pass filter is spatial but temporal filtering has also
been investigated. Owing to the implied dispersion relations,
small-scale motions are related to small periods or high
frequencies. A low-wavenumber-pass filter will also filter
out dynamics of high frequency motions and similarly, a
temporal filtering out of high frequency components will
filter out large wavenumber (small-scale) motions.

2.1 Sub-grid Modelling
Early computations, that have been termed LES, were

those that were clearly on too small a grid to resolve much
of the turbulent scales. It was to compute atmospheric
flows which had very large Reynolds numbers and
consequently, a very large range of scales.  A term was
added to the momentum equation, similar to the eddy
viscosity term used in RANS. The eddy viscosity for
RANS takes a length scale which is an estimate of the
integral scale of the turbulent flow, and a velocity scale
which is of the order of the velocity fluctuations. The
analogous model for LES is known as the Smagorinsky
model17, the length scale is a mean-grid spacing and the
velocity scale is obtained from the local velocity gradient.
In LES, the model is for the effect of uncomputed small-
scales on the computed large-scales. The uncomputed
scales are then of the order of the grid spacing, and smaller,
so that the model is commonly termed a sub-grid-scale
(sgs) model.

The simplest turbulent flow is an incompressible flow
of a Newtonian fluid. The governing equations are the
Navier-Stokes equations for a divergence-free velocity
field u:
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On applying a low-pass filter we get the equations
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for the uppercase variables, which are the low-pass filtered
velocity and pressure fields, (line over variables or terms
denote low-pass filtering). Note that there is no term involving
u in Eqn.(6) because it is a linear equation. The last two
terms on the RHS of Eqn. (5) can also be cast in the form
of the divergence of a tensor ô= -UU uu  termed the sub-
grid stress tensor (a stress because they appear in the
momentum equation). The simplest model is to take this
stress to be proportional to the large-scale strain rate
( )å U with an eddy viscosity coefficient n

s
 to be obtained

by calibration as in RANS. Then sô= ñí å, and for the
Smagorinsky model

s
gn µ D e                                           (7)

What does this model achieve? When inserted into

the momentum Eqn.(5), the effective viscosity in the flow
is the sum of the eddy and the molecular viscosity. Where
velocity gradients are large, this term acts to reduce the
magnitude of the gradient. The eddy viscosity itself is
more effective where the velocity gradients are large, but
diminishes as the grid spacing is reduced. For further
understanding, consider the general spectral dynamics in
a turbulent flow. Turbulent flows interact with their boundaries
on the scales of the bounding surfaces (chord and span
of a wing, pipe diameter, radius of curvature of a pipe
bend, etc.) and the motions on these scales interact, generating
smaller scales in a cascade with little dissipation of kinetic
energy. The cascade is cutoff at small-scales when the
velocity gradients are large enough for dissipation to become
dominant. In an LES, the smallest computed motions are
still much larger than the dissipation scales. So the transfer
of energy is disrupted.  If this transfer of energy is prevented,
energy builds up at the computed small-scales and the
solution becomes unbounded. In mathematics, this calls
for a regularisation of the approximate problem (the LES
problem) because the divergence or appearance of a singularity
is due to the approximation. The complete problem, which
includes all relevant small-scales, does not have this singularity
(often accepted, but without a proof).

The role of the LES model is to allow the transfer of
energy from the computed large-scale motions to uncomputed
small-scales. An eddy viscosity model dissipates kinetic
energy over that due to the physical process implied by
the molecular viscosity. The effect increases with wavenumber.
A calibration constant such as C

s 
can provide an adequate

amount of dissipation. When this constant is larger than
necessary, the computation will be stable but inaccurate;
when it is too small, the inadequate dissipation will cause
the solution to diverge. We may easily accept some error
in the dynamics of the smallest computed scales, but with
a simple model like the Smagorinsky model, we must accept
that there is some error in the dynamics of the large-scales
also.

2.2 Initial and Boundary Conditions
Prescribing initial conditions for an LES problem does

not present any special difficulty.  The required solution
is unsteady but stationary, and effects of initial conditions
are expected to have disappeared when statistics are taken.
Boundary conditions, on the other hand, require special
attention. In some simulations, the conditions at inflow
boundaries are laminar, and transition to turbulence occurs
within the computational domain. Then, either steady or
unsteady, deterministic or stochastic, inflow conditions
may be specified.  If the inflow is turbulent, the inflow
conditions need to be the unsteady field of a relevant
turbulent flow over the inflow surface. If, instead, some
kind of stochastic field is supplied, since the correlations
among the fluctuations are not those of a turbulent flow,
these fluctuations will decay until regenerated with correct
correlations in downstream shear layers. This inflow length
can add significantly to the computational domain size.
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 Another approach has been to perform a precursor
simulation (LES) of a closely-related turbulent flow and
supply the solution from a plane as the inflow boundary
condition. For example, when simulating a turbulent boundary
layer responding to changing geometry, pressure gradient,
protrusions, etc., the inflow condition can be taken from
an LES of a flat plate turbulent boundary layer of the
required thicknesses. A more economical approach is to
take the downstream boundary layer, rescale it to the
thickness required at inflow, and use it as the condition
at the inflow. Outflow and far-field conditions can be prescribed
as would be appropriate even for laminar flows, such as
fully developed, non-reflecting, or convective conditions.

3. STANDARD SUB-GRID MODELS
Sub-grid models may be broadly divided into functional

and structural models. A functional model provides expected
properties of the model and the Smagorinsky model  and

dynamics Smagorinsky model are examples. These models
provide dissipation as a model for the transfer of energy
to small-scales. The second kind is a structural model.
Here, an estimate of the full field including the sub-grid
scales is found and the sgs stress is calculated.

3.1 Smagorinsky Model
The Smagorinsky model is

 
( ) ( )

( )1/22 22s sC Sn = D

with the value of the coefficient C
s
 often adjusted to

obtain the best results. Typical values for shear flows are
0.1 to 0.12. This model is still in wide use, perhaps because
it is simple to implement and will at least stabilise a computation.

3.2 Dynamic Smagorinsky Model
A dynamic model is a procedure that finds coefficients

such as C
s 
from the simulation field itself, during the course

of the simulation such that some expectation is met. This
idea was first proposed in conjunction with the Smagorinsky
model for the eddy viscosity by Germano19, et al.  The
principle used was that the sgs stress should have the
same form with the same coefficient even when the small-
scale cutoff size is changed. In practice, one field is obtained
with the given grid, and the second is obtained by filtering
the solution to a grid whose spacing is twice that of the
original. This procedure returns a Smagorinsky coefficient
which evolves with the flow and varies in space. Sometimes
the value so obtained can be negative. Either a limit, and/
or averaging over homogeneous directions is done to
maintain a positive dissipation. The success of the dynamic
Smagorinsky model has been a turning point for LES taking
it from a subject for research to applications.

3.3 Scale Similarity Model
Bardina1, et al. modeled the sgs stress   UU uut = - as

m UU UUt = - . The field U  is obtained by filtering the
LES solution at every time step. The expectation is that

the stress, which is due to nonlinear terms containing the
sub-grid part, should be represented adequately by applying
a filter to the LES field itself. While this estimate of the
sgs stress shows good correlation with the actual sgs
stress in a priori  assessments with DNS data, in actual
computations, this model does not provide an adequate
dissipation.

3.4 Chollet-Lesieur Spectral Model
These models originate from an analytical theory of

turbulence5. An effective spectral viscosity function n
e
(k/k

c
),

which is a function of the wavenumber k scaled with the
cutoff wavenumber k

c
, is used to model the energy transfer

rate. This viscosity rises sharply near cutoff. There is an
extension to a physical space model also.

3.5 Mixed Model
A mixed model combines one the many models devised

to have a closer correlation to the sgs stress, such as the
scale similarity model, or tensor diffusivity model, etc.,
and adds a term proportional to the Smagorinsky model
term which provides an over-riding dissipation.

3.6 Deconvolution
The approximate deconvolution model (ADM)16 drew

wide attention because of the significantly better results
that were reported. Both ADM and the several versions
of the velocity estimation models8 were procedures to
estimate a flow field with small-scales beyond that of the
LES field and use this estimate to construct the sgs stress.
By approximate deconvolution of the LES field U, a field
u* was found as an estimate for u. In velocity estimation
models, there were sub-steps in the LES computations on
a grid of twice the size, this extending the small-scales
to twice the wavenumber, to obtain the field u* which has
this additional small-scale content. Similarities between
these two developments have been discussed in a joint
paper7 by the principal authors of two methods.

3.7 Explicit Filtering
The explicit filtering approach of Mathew13, et al.

follows from the observation that the ADM procedure can
be reduced to an integration of the discretised, unfiltered
equations of the problem with a low-pass filtering of the
primary fields, say velocity, density and temperature or
enthalpy after time step. It is necessary that the spatial
operations such as differentiation, interpolation, etc., be
performed with high-resolution schemes that are accurate
over most of the represented length scales; also, the low-
pass filter should not filter out a large part of the represented
large-scales. It was shown that such an approach provides
an adequate LES model without adding any model terms
to the problem equations.

The explicit filtering method combines features of
several of the models listed above. Filtering is effectively
like the Smagorinsky dissipation, except that it is weighted
towards high wavenumbers. Scale similarity model is implicit,
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though it is more easily understood in the ADM formulation.
The shape of the explicit filter provides an effective spectral
viscosity, which is like that of the Chollet-Lesieur special
model.

3.8 Implicit Large Eddy Simulation
Several computations without any explicit model terms

or procedures for LES modelling were found to be suitable
for LES. The earliest example was the use of the Boris-
Book scheme devised for shock capturing. Since the result
of turbulence simulations on a grid, that is too coarse to
capture the small-scale dynamics, is the appearance of
wiggles, just as in flows with shocks, a method that suppresses
these wiggles is effective for LES also. The ILES of Visbal
and Rizzetta19 was initially devised to obtain stable solutions
with high-resolution compact difference schemes by high-
order filtering. In effect their scheme meets all the requirements
of the explicit filtering method listed in section 3.7. For
LES of aeroacoustics, Bogey & Bailley3 also use the explicit
filtering approach (they called it selective filtering) coupled
with very high-order difference schemes, motivated by
the requirements of aeroacoustics LES.

4. LARGE EDDY SIMULATION FOR REACTING
FLOWS
Methods for LES of combustion are not yet well-

established. Combustion, rather than reacting flows in
general, presents a conceptual difficulty. LES of non-
reacting flows are based on the expectation that the flow
interacts with its surroundings on large-scales, that most
of the energy is contained in large-scales, and that the
dynamics of small-scales do not alter the evolution of
the large-scales except to the extend that the dissipation
at small-scales drain the energy cascading from the large-
scales at a certain rate. The large-scale dynamics would
be altered if this energy transfer rate is not obtained in
the simulations.

In turbulent combustion, on the other hand, there
is an essential process that occurs only at small-scales;
in typical examples of technical combustion such as in
engines, reaction rates are high enough that flames are
very thin, much thinner than the smallest scales we expect
to compute in LES. No part of the processes which occur
in flames is computed in a typical LES. So, an auxiliary
model of the effect of these small-scale processes must
be provided.  In combustion, the issue of flame modelling
is similar for LES and RANS in that it arises from the
strongly nonlinear form of the reaction rate term; an
estimate of the reaction rate using the computed field
can bear little connection to the appropriate source term
(mean or large-scale part of the reaction rate). For RANS,
the reaction rate is estimated from mixing rates or from
pdf models, or CMC modelling.

Analogous approaches, and some original ones, have
been studied for LES by a few groups with varying degrees
of success. A common finding is that, generally, the LES
provides a better prediction than a RANS for combustion.

The probable reason is that in both RANS and LES, the
reaction yield is dependent on the mixing rate (species
for non-premixed flames, heat for premixed flames) which
can be obtained more accurately in LES. The difficulty is
not so much that the flame sheet is thin, much thinner
than the grid spacing, but that small-scale motions wrinkle
the flame sheet and provide a much higher flame sheet
area than a smooth surface over a similar region in space.
Since these small-scales are not computed in an LES, this
wrinkling is not obtained.

4.1 LES Models for Combustion
We consider models for non-premixed combustion

first. Since the flames of interest are thin, the flame brush
can be modelled as a collection of flamelets. In this limit,
in the neighbourhood of every flamelet , the distribution
of each scalar is obtained from the steady flamelet equations

2
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iY

Z

¶
rc + w =

¶
&                                 (8)

Here, the production rates  iw&  are a function of mass
fractions Y

i
 and the temperature. For a given value of the

scalar dissipation rate c Eqn. (8) can be solved and a table
of scalars as a function of  c and mixture fraction Z prepared
before the LES. During the LES, scalars are found from
the table, and then the density, which is used to integrate
the LES equations for mass and momentum conservation,
and transport of mixture fraction. An estimate of c is
obtained from the mixture fraction variance, or from a
presumed-shape pdf which also requires the mixture fraction
mean and variance as inputs. Unsteady flamelet equations
have also been investigated.

A modification of the flamelet approach is the flamelet-
progress variable (FPV) method, which takes mixture fraction
and a progress variable during the course of the LES to
look-up scalars from tables. Since the progress of the
combustion is obtained from a transport equation for the
progress variable (a sum of concentrations), the local
state of the flame is made determinate; when  c is used,
a �burning� solution is always found in the moderately
high c  hysteresis (multiple-valued) regions. So the FPV
approach is an improvement for flames with local extinctions/
ignitions.

An extension of the successful pdf methods for RANS
is the filtered mass density function (FMDF) method for
LES6,11. The FMDF is a density weighted, spatial large-
scale distribution function. As in the pdf method, the
transport equation for the FMDF contains the reaction
rate term in closed form so that, formally, no modelling
of this term is required. However, other problems such as
the treatment of mixing, and the increase in dimensionality
do appear. Mixing models have been proposed, and a
Monte Carlo approach of solving a stochastically equivalent
problem provides some relief from the increased dimensionality.

There is even less experience of LES of premixed
combustion. Several attempts have made using flamelet
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methods with a progress variable. As in RANS, the reaction
rate is obtained using models for the flame surface density.

5. APPLICATIONS OF LARGE EDDY SIMULATION
Methods for LES were assessed using by a priori

and a posteriori tests. A priori tests refer to tests of SGS
models using DNS data. The terms in the LES equations,
which require a model, can be calculated from the DNS
data and the accuracy of the estimation of such terms by
the SGS model can be determined. Canonical flows used
for such tests were homogeneous, isotropic decaying or
stationary (forced) turbulence, which has spatial periodicity
in a cube, or channel flows with periodicity in the streamwise
and spanwise coordinates. A posteriori tests are assessments
of the results of LES against DNS or experiments.

Often the DNS data are first filtered to the same scale
range as the LES, but there is no particular merit toin this
approach since the objective of the LES is to obtain an
approximation of the flow. It is more helpful to know the
extent of the error in the approximation (LES) than how
close the LES is to the DNS data, which contains only
the same range of large-scales. A posteriori tests are available
for the periodic flows mentioned above as well as for
several spatially developing flows such as mixing layers,
jets, boundary layers and channel flows. Many examples
are available in the literature12,15. Here, a few examples
from their work are given.

5.1 Non-reacting Canonical Flows
As an example of LES of a non-reacting flow, consider

the round jet. Well-known benchmark experiments12,14 at
a Reynolds number (Re) of 11,000 based on the mean
velocity U and jet diameter D at exit, and of Hussein10,
et al. at Reynolds number of 95,500. These two flows were
simulated with 256 x 160 and 320 x 192 gridpoints over
40 D x 10 D and 40 D x 12 D in the axial and radial directions
at Re = 11,000 and 95,500, respectively. Figure 1 shows
a visualisation of the jet with vorticity magnitude at the
higher Re.

 Figure 2 shows the decay of the centreline velocity
and radial distribution of shear stress to demonstrate the
quality of the LES possible. The decay constant (reciprocal
of the slope from Fig. 2(a) is 5.98, as whole that in the
two experiments were 6.02 and 5.8. This solution is from
a recent LES using the explicit filtering approach. Results

Figure 1. Round jet at Re = 95,500; vorticity magnitude contours
on longitudinal section.

of earlier simulations of round jets do not show the fast
breakdown at the end of the potential core followed by
a clear linear growth in the reciprocal of centreline velocity.
Excellent results for the same round jet experiment were
reported by Bogey & Bailley3 also. Their method is also
an explicit filtering approach, though it has been termed
selective filtering. They use high-order finite difference
schemes with large stencils and filters out a narrow range
of high wavenumbers.

5.2 Reacting Canonical Flows
A few well-documented experiments have become

benchmarks for assessing turbulent combustion simulations.
The SANDIA flames A, B, C, D, E, F, are partially pre-
mixed, round, methane-air jets surrounded by a hot pilot
co-flow, at increasing jet flow velocities. As the flow speed
increases there is more local extinction. Flame A is formed

Figure 2. Round jet at Re = 95,500: (a) decay of mean velocity
along centreline; (b) Reynolds shear stress in
similarity variable h, error bar shows variations at
different x-stations.
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Figure 3. Contours of temperature T at an instant of SANDIA
flame D, and mixture fraction contour at stoichiometric
level superposed as a black curve.

in a laminar jet, while D is a turbulent jet at Re = 22,400
with mild extinction. There have been several LES of flame
D and some of flames E and F15.

Our initial simulations with the explicit filtering method
have been a mixed success. Although the mixture fraction
is predicted well, both along and across the jet, the radial
profiles of temperature and concentrations showed significant
differences that can be traced to excessive reaction rates.
One reason for the discrepancy is that only a single-step
reaction model has been used, which calls for a judicious
selection of reaction rate parameters. Improvements have
been observed in subsequent simulations. Figure 3 gives
an impression of the flame close to the nozzle exit. Temperature
contours are shown with a range of colours and the
instantaneous, stoichiometric mixture fraction contour is
superposed as a black curve.

Figure 4. Radial distributions of: (a) temperature, and (b) rms
of its fluctuations.

(a)

(b)

r /D

r /D

T
T
�

explicit filtering LES with constant Ze
explicit filtering LES with variable Ze
explicit filtering LES with FMDF and variable Ze

is on for related methods such as detached eddy simulation
(DES) and its variants, and hybrid RANS-LES method.
The hybrid  method becomes necessary because LES of
wall-bounded flows have unusually large grid point
requirements in the wall-normal direction. It would be easier
to use a RANS solution in attached boundary layer regions,
that blend into LES solution, where there is massive separation
and low frequency unsteadiness.

An example of reacting flow LES is that of a combustion
chamber of a helicopter engine9. The computation is of
36° of an annular combustion chamber designed by Turbomeca.
An unstructured grid of 286,500 nodes and 1,550,000 tetrahedral
elements was used. The flame was resolved in the LES
by artificial thickening. RANS was also performed with
150,000 nodes and 825,000 tetraheda. It was conclude that
the LES results were more useful, in providing insight into
prevalent combustion regimes (e.g., very few regions of
flames at very rich conditions), as well as being closer
to available experimental data (radial temperature profiles,
whose non-uniformity is an important design parameter).

Figure 4 compares radial distributions of temperature
and its fluctuations at 15 diameters with data from the
experiment. Two curves are from simulations with explicit
filtering LES and a WENO scheme (also a filtering scheme)
for scalar transport equations. The third uses the FMDF
method for obtaining the scalars. It is difficult to draw
definitive conclusions at this stage. However, note that
the temperature fluctuations are quite large which underscores
the need for the special modelling of turbulence (an LES
approach) and the reaction rate term. The pure filtering
approach seems to do about as well as the FMDF in this
case. The prediction of peak levels and especially the jet
core region may be considered acceptable. The most notable
difference is that the computed flame is narrower than that
of the experiment. The solution at 7.5 diameters (not shown
here) follows the experiment more closely.

5.3 Industrial Flows
Large eddy simulation are beginning to be used for

industrial analyses, especially as it becomes a feature in
commercial codes. For industrial applications, the search
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6. CONCLUSIONS
Large eddy simulations is emerging as a technique

for engineering analyses and design as we seek to improve
performance of current devices, or find new designs for
more challenging applications. It is but the next step from
using empirical relations or analytical results for simple
flows, to CFD of laminar and simple turbulent flows, to
LES. Clearly the extra effort is justified only when the
detailed flow field is of interest and not merely overall
balances. LES is called for when large-scale, low-frequency
unsteadiness of the flow field is of interest. Over the past
decade, the efforts have resulted in establishing LES practice
for cold flows. Practitioners have their own favourite models
and approaches which give roughly similar results. Because
these results are significant improvements on RANS, LES
is beginning to be used for many practical flows. LES of
combustion is not as well established as RANS, but the
results of attempts have been generally encouraging. A
turning point for combustion LES, similar to that brought
about by the dynamic Smagorinsky model, is awaited.
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