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Abstract. In this paper, the effect of buoyancy force on the parallel flows bounded
above by arigid permeable plate which may be moving or stationary and below, by
a permeable bed has been investigated. To discuss the solution, the flow region is
divided into two zones. In Zone 1, the flow is laminar and is governed by the
Navier-Stokes equations from the impermeable upper rigid plate to the permeable
bed. In Zone 2, the flow is governed by the Darcy law in the permeable bed below
the nominal surface. The expressions for velocity and temparature distributions,
Slip velocity, slip temperature, mass flow rate and the rates of heat transfer coeffi-
cients are obtained. The effects of magnetic, porous, slip and buoyancy parameters
and Biot number on the above physica quantities are investigated. The thickness
of the boundary layer in Zone 2 has been evaluated.

1. Introduction

Fluid flow through porous media is of fundamental importance to a wide range of
disciplines in various branches of natural science and technology. Petroleum engineers,
civil engineers, mining engineers and hydrogeologists are all interested in ‘ seepage’

problems in rockmass, sand beds and subterranean acquifers. Civil and agricultura
engineers are aso interested in the same phenomenon for efficient layout of drainage
systems for irrigation and recovery of swampy area. Geotechnical engineers and soil
physicists are all interested in the water movement in clays and other surface active
soils. The chemical engineers and ceramic engineers have filteration and seepage
problems in their respective fields. The nuclear engineers are interested in fluid flow
through reactors to maintain a uniform temperature throughout the bed. The textile
technologist is interested in fluid flow through fibres, whereas biologists are interested
in water movement through plant roots and out of the cells of living systems.

In view of al these applications of flow through or past porous media, it is impor-
tant and aso interesting to study such flow models. In the case of flow over a
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permesble surface, Beavers & Joseph', Beavers?, et a. and Rajasekhara® have shown
experimentally the existence of a dip at the permeable surface. A rigorous theoretical
judtification for the existence of dip velocity at the permeable surface was given by
Saffman', Rajasekhara? has investigated plane Couette flow in the presence of a
pressure gradient and found slight deviation between his theoretical and experimental
results.  Rudraiah, Rejasekhara & Ramaiah® have studied about the flow of an
‘incompressible Viscous fluid past a porous bed. Venugopol & Bathaiah® have studied
the flow of an incompressible viscous and slightly conducting fluid past a porous bed
neglecting the buoyancy force under the influence of uniform transverse magnetic field.
In the case of paralel flows at low Prandtle numbers bounded by rigid porous walls,
Sparrow’, et a. and Gill & Casol® found that the buoyancy force cannot be neglected
since it significantly affects the flow field.

The objective is to study the effect of buoyancy force on the paralel flows bounded
above by rigid impermeable plate which may be moving or stationary and below by
a permeable bed. To discuss the solution, the flow region is divided into two zones.
In Zone 1, the flow is laminar and is governed by the Navier-stokes equations from
the impermeable upper rigid plate to the permeable bed. In Zone 2, the flow is
governed by the Darcy law in the permeable bed below the nominal surface. The
expressions for velocity and temperature distributions, slip velocity, dip temperature,
mass flow rates and the rates of hesat transfer coefficients are obtained in Section 2.

The effects of magnetic, porous, dlip and buoyancy parameters and Biot number on
the above physical quantities are presented in Section 3.

2. Formulation and Solution of the Problem (Zone 1)
2.1 Part A : Couette Flow ,

We consider the flow of a viscous incompressible sightly conducting fluid between a
plate moving with the velocity . and a permeable bed at a depth h under the influence
of a uniform transverse magnetic field. The interface is taken as the X-axis and a
line perpendicular to that as the Y-axis. The magnetic field of intensity H, is
introduced in the Y-direction. The fluid being dlightly conducting, the magnetic
Reynolds number is much less than unity so that the induced magnetic field can be
neglected in comparison with the applied magnetic field (Sparrow & Cess®).

We introduce the non-dimensional quantities as follows :
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where u is the velocity component in the Y-direction, p the fluid density, p the fluid
pressure, us, T, are the slip velocity and. slip temperature respectively, U is the

characteristic velocity, T, is the ambient temperature, 7, is the temperature at y =1
and T is the temperature of the fluid.

The non-dimensional momentum and energy equations are (after dropping the
superscripts - “*’)

d®u du p
QF‘ - M? 71}_ = G (2)
T _ du \* |
Wr—ﬂT—ERm—RE(&E)+MW?) &)
where
op® H? bt

M= — (magnetic parameter)

_ AP gk - Ah
G= ywuo b In-To
o= ZF

= & (heat source parameter)

— P‘Cp

e (Prandtle number)
o

e

R = %ﬂ (Reynolds number)

2
E = C(T—[j'"'r) (Eckert number)
P 1 [

The non-dimensional boundary conditions are

b
u=u, T'=laty=1 (4a)
du Py d*u _ ar _ -
=)y = PG =Bay=0
where
a= [—(f',—,—z (porosity parameter)
and
P=-R2

ox
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Solving the Eqn. (2) and using Egn. (4), we obtain the velocity distribution

W=t + 353 (Cosh M = Cosh My) + £ (sinh My — Sinh M)

N,P Sinh -S
+ #((l _y)+(lﬂ MVM Sinh M)) (5)
where
G
Ny = 5 (Buoyancy parameter)
C = sa(un - 5—5-)
un = M ___(sPSinhM+ + P (Cosh M = 1)
"= (M +saSmh )\ " amg M
NP Sinh M
v (1 - )) (6)

2.1.1 Mass flow rate

The non-dimensional mass flow rate F per unit width of the channel is

1 ’
) P 1Si M oNEN pﬁ
F= J udy = fo = 312 (s———mxl +2—")+(M.°+ ,)
[ ]

(Cosh M = 1) M

where

Sinh M CP Sinh M
~fo==“o+M= (CoshM—l—No( iy )) ——3 -

Solving the Eqgn. (3) and using Eqgn. (4), we obtain the temperature distri bution.

2.1.2 Rate of heat transfer

The rate of heat transfer at the interface y = 0 is given by

- (&) -pen

The rate of heat transfer at the upper plate y =1is given by

q*a: ("‘11—7:) = d Tanh d + BaTs + Per(
)’ Yol

fs
Cosh d fo dTanhd +& 4
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P .
+ 3= (M SinhM + No)— fi Cosh M)~%}z§(ﬁ d Tanh d

2
+ co o = o (M3 Sinh 2M + 2N, M? Cosh M)
] 2
~f; msinhom+ ZASIOM P G sinn au

+ 2N, Cosh M+ 2N, M Sinh M + 2N2) ~ £ M Sinh 24

+ 2Pfo (M Sinh M+ N,) + 2Pf,Cosh M -

- 2fs fi M* Cosh M) ©)
where
B= (T TBaTanhd)Coshd + d(1 + Ba Tanhd) \ Coshd
Tanh 4 P F, E Tanhd
R O M?) dr (Cc{;hd — /s
2N 2
- -PMN’O . f; ?_Pfl_ 12 M"'—v——+2Pf0) “
N, P
fi=FF+e€
inh M
fo=1y f, Siah ¥
PN,
fi=h— g

H
fu = 370 (M* Sink* M + 2Ny M Sich M + N2 )47 Cosh M

2
W;;‘,Bh_'\" + M® 3+ o (Cosh®M + 2N, Cosh M +N})

+ f! Sinb* M — 2Pf, —2Pf, (Cosh + Ng) — 2Pf; Sinh M|M

+ 2fy f, M Sinh M

2
fi = 41}1‘;P

-2Pfo Ny = 2Pf; + 2fo f; M?
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2.2 Part B Poiseuille Flow

In this part we consider the buoyancy effect of flow of a viscous incompressible,

dlightly conducting fluid between a stationary upper plate and a permeable bed at a
distance h below the plate, under the influence of a uniform transverse magnetic field.
All the results can be obtained from those of Part A by taking u, = O.

Thevelocity distribution is

P . >, - -
wp= o (Cosh M = Cosh My + N, (1 — ) + S MyMS'”h M))

+ C (Sinh My -~ Sinh M)
o (10)

where

C = sa(uao - ;‘)

M [[sP SnhM , P
Bo={M+saSmh M) | aM +—M_2(CO§]M—I+NO
- S)] an

2.2.1 Mass flow rate

The nondimensional mass flow rate F* per unit width of the channel is given by

1
inh M
F* = Ju, dy = [Cosh M — (S“‘hM+ 3.t M@ —Smnl} )
+ N, (Cosl}lwiz"l - 1) {(Cosh M ~ 1) = PM Sinh M}
(12)

Temperature distribution is obtained from the temperature distribution of Part. A
by taking ug = O

2.2.2 Rate of hear transfer

The rates of heat transfer ¢, and ¢} at the interface and upper boundary are given by

a7,
w0 = (52) =8 aTu (13)
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s _ (4T - 1 8 aTs, P,Rb
9, = (dy )y-q dTanhd+ Cosh d + ‘dz
fedTanhd 4 =2 f“ ~ f, MCosh M + P(MSiI}‘ILM + No}
2
- P' (fdeanhd+ fu S Aé‘f, thZM—A%-

(M® Sinh 2M + 2Ny M? Cosh M) + f, P2M Cosh M
+2PNo F, SthM = 77 SthoM = 2o (sinh 2m + 28]

+ 2N, Cosh M + 2N, M Sinh M) = 2f1 f, M® Cosh M

+ 2fs P (M Sinh M + No) + 2Mf, Cosh 2M

+ 2fy NyMCosh M + 2f, N, Sinh M ) ' (14)
where
. d P, Rb ( fo
0= @ + Pa Tanh d) Cosh d at [d ¥ Ba T@n & d \ Cosh d
_fTanhd_f P)_ P, E ( Jio
i ¢t M? (d + aTanh d) d \ Cosh d
N l ! 2
f” Tanh d M2f7 PM]YO + 2P411v°f7 _ f82 M2 — T’;—!
+ 2/,P)
fo= 37 (Cosh M + N, — NoSish M M) Csinhu
CNP |
L RS T

fo =fs +f;, SohM — Mp—z(CoshM+No)

PN,
Je ‘=f7 - _Iw_;)_

fo= M [} Cosh® M + 7 (M* Sinht M + NZ + 2N, M Sinh M)

P
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w fypSithopy _ 2PNo S CO Moy pr e o popge sinht m

2
+ 1\1;2— (Cosh* M + N; + 2N, Cosh M) + 2fs f M* Sinh M
— 2f, P (Cosh M + Ng) = 2f; Sinh M (Cosh M + Ng)

4N}|P2 3 -2 —_
fu= g = 2PM fy + 2 fr M® = 2f; PNy — 2Mfy

3. Conclusions

Conclusions are drawn on the basis of numerical work done in the cases of dip velo-
city, velocity, dlip temperature, temperature and rate of heat transfer (Fig. 1 to 6).

We have observed that the dlip velocity decreases with the increase in magnetic
parameter M in the case of Couette flow whereas the slip velocity increases first as M
increases and then this trend gets reversed in the case of Poiseuille flow. But Venugopal
and Bathaiah® have observed that the dlip velocities decrease with the increase in mag-
netic parameter M in both the Couette and Poiseuille flows. Further, it is noticed that
the dip velocities decrease with the increase in a in both the Couette and Poiseuille
flows. We have noticed that the dip velocities in both the flows decrease with the
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Figure 1. Slip velocities up, up, against s for different values of Ng.
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Figure2. Vdocity profiles againgt v for different vaues of  Ne.

increase in s whereas Venugopal and Bathaiah® have seen that the dlip velocities increase

as s increases. It is also noticed that the presence of buoyancy force is to decrease
the dip velocities in both the flows.

3.1. Velocity distribution

We have observed that the velocity decreases with the increase in M in the case of
Couette flow whereas it increases in the case of Poiseuille flow. But Venugopa and
Bathaiah* have obtained that the velocities decrease with the increase in M in both the
flows under study. It is observed that the velocities decrease with the increase in ain
both the flows. The velocities decrease in both the flows with the increase in 5.  But
Venugopa and Bathaiah® have observed that the velocity increases as s increases in the
case of Poiseuille flow and definite trend is not followed in the case of Couette flow,

The velocities decrease in both the flows with the increase in buoyancy parameter N,.

3.2 Slip temperature

It is observed that the dlip temperature decrease with the increase in Min both the
flows whereas Venugopal and Bathaiah® have found that slip temperature increases in



404 S Venkataramana & D Bathaiah

the case of Couette flow, first increases and then decreases in the case of Poiseuille
flow with the increase in M. Further, it is noticed that the slip temperature decreases
with the increase in ain the case of Couette flow whereas it increases as a increases in

the case of Poiseuille flow. But Venugopal and Bathaiah® obtained the result that dip
temperatures decrease with the increase in aiin both the flows. We have seen that the
slip temperatures decrease with the increase in buoyancy parameter N, in both the flows
and the dlip temperatures decrease with the increase in s in both the flows.  The dip
temperatures are found to be decreasing with the increase in P,E in both the flows

whereas Venugopa and Bathaiah® have seen that the dlip temperatures increase with
the increase in P E in both the flows under study. The dip temperatures increase with
the increase in B in both the flows which differs from the result of Venugopa and

Bathaiah®.
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Figure 3. Slip temperature against § for different values of Ng.
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3.3 Temperature distribution

It is observed that the temperatures decrease in both the flows with the increase in M.
But Venugopa and Bathajaht® have noticed that the temperature increases with the
increase in M in the case of Couette flow and in the case of Poiseuille flow they have
observed that the temperature distribution is not uniform, in that it is neither increas-
ing throughout the field nor decreasing throughout. We have observed that the tempe-
ratures increase in both the flows with the increase in a whereas Venugopa and
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Figure 4. g*,—g*_ against s for different values of Ny.

Bathaiah® have studied that the temperatures decrease with the increase in a in both
the flows under study. The temperature decrease with the increase in s in both the
flows which vary from the results of Venugopal and Bathaiah®. We have seen that
the temperatures decrease with the increase in buoyancy parameter N in both the
flows. The temperatures decrease with the increase in P,E in both the flows whereas
the results of Venugopa and Bathaiah® are different from our results. We have seen
that the temperatures with the increase in 8 in both the flows which are differing from
the results of Venugopa and Bathaiah®.

3.4 Rate of heat transfer

We have observed that the rates of heat transfer coefficients ¢ and ¢, decrease with
the increase in M or a which vary from the results obtained by Venugopa and
Bathaiah®. The rates of heat transfer coefficients q and g, decrease with the increase in
Nyors. But Venugopal and- Bathaiah® have shown that ¢ and g, increase with the in-

crease in s in both the flows under study. We have seen that the rates of heat transfer
coefficients q and ¢, decrease with the increase in P,E or B. This result is opposite to that

of the result obtained by Venugopal and Bathaiah®. We have observed that the rates of
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heat transfer coefficient g* increases with the increasg_jn Mora Whetw,ﬁ;»q: _decreases
with the increase in a4 or a. But Venugopa and Bathaiah® have shown that 4* decreases
with the increase in M and ¢ increases as M increases.  We have seen that ¢* incre-

ases with the increase in buoyancy parameter N, or s whereas qf,' decreases with the
increase in N, or s. We have noticed that ¢* increases with the increase in P.E
whreas g, decreases. This result is opposite to that of the result obtained by

Venugopa and Bathaiah®, Further, it is observed that ¢* and g, decrease with the
increase in ‘g’.

4. Zone-2

The flow region in the permeable bed immediately below the nominal surface. The
flow in this region is governed by the Darcy law.

4.1 Part A : Couette flow
The nondimensional equations of momentum and energy are

du 3 db
a—y‘g— b-IF; =G (15)
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T _ a7 =p Rou = PE{( )+ u2} | a6)
aF U =W dy ‘
where L i
b = a® + M2
The non-dimensional boundary conditions are
du - _
u=us oy ~P=T =Tgay=0 (17a)
n
u= &, T=0aty=— 3 =—n° (17b)

Using the, conditions (17) and solving the Eqn. (15), we obtain the velocity distribution.

P i : _ P L os
U= (u3+ E)-}- W{FoSlnhbly b? Slnhbx(Y+n)}

_ My P (18)
Y IR ‘
where P P N, P
FO = Up + b_f— - a_‘_ <+ T;;— n*

Using the conditions (17) and solving the Egn. (16) we obtain the temperature
distribution.
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4.1. 1 Expression for the boundary layer thickness

We know that, at the edge of the boundary layer, the shear stress has to be zero. In
other words

du _ ok
& =0aty = n

Therefore the expression for »* is given by

‘—-Lg “t (L - 4L1 Ls)ll’

(19)

where

bt (P P
L1= %(;2——”5— b—)

7
P
L, = -— — N,P
2 1 1}
: . P
L= = 8 (- )

Neglecting the order of 0 (n*°)

4.2 Part B  Poiseuille Flow

The velocity and temperature distributions and the expresson for the thickness of the
boundary layer are obtained from those of the Couette flow by taking #, to be zero.
Thus Egns. (15), (16) and (19) give the velocity, temperature and thickness of the
boundary layer respectively for this flow of us, Ty and n* are respectivly replaced by

up, . Ty, and nj, where nj is the boundary layer thickness in the flow under

consideration.
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