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Abstract . This paper deals with the problem of locating a new facility with respect

to # given demand points on earth, with upper bounds imposed on distances between
the new facility and each demand points. Distances are measured as the length of
the shortest arc of great circle.  The proposed algorithm makes use of a Lagrangean
relaxation in which the distance constraints, which are not satisfied by the associated
unconstrained solution, are incorporated in the economic function. Computational
results of a limited number of test problems are presented.

1. Introduction

The interest of economists and operations researchers in the locational decision models
appears to stem from the problem initiated by Alfred Weber! : how to locate a plant
(facility) in the plane with respect to fixed markets (demand points) with the aim of
minimizing the total transportation cost. The problem later studied on a net work
is characterised by a solution space consisting of points on a vertex-weighted network
or anywhere on the graph; the distance or time measurement is the length/time of the
shortest path between nodes in the graph®.

For optima location on the surface of the earth where the demand points are
widely separated the planar assumption introduces considerable errors. In a large
number of logistics and location problems, such as, detection station placement, loca
tion of air/naval bases, location of emergency supply centres around the globe, and
location of long range weapons systems, the distances involved occur over great
expenses of the globe. Jn such situations the geodesic assumption, in which travel
distance is measured as the shortest arc of a great circle, is the most appropriate
approximation in modelling. Jn the past, the researchers have usually made planer
assumption in dealing with large region location problems using latitude and longitude
as Cartesian Coordinates®t. But if demand points (destinations) are widely separated
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the difference between Euclidean and geodesic assumptions would be considerable,
resulting in significant variations in the location of the corresponding optimal source
points.

Although the interest in spherical location is relatively new, a number of literature
exist. The work by Drezner and Wesolowsky® and Litwhiler and Aly® provide a
conceptual discussion of, and mativation for, considering spherical location problems.
Aly, Kay and Litwhiler' have discussed the theoretical results concerning the reduction
of the search region and have establshed that any search for an optimal solution to
minisum location problem on a sphere can be restricted to the spherically convex hull
V of the set of demand points, provided ¥ is not a great circle. However, Drezner®
has extended this result to prove that if demand points are located on a great circle
arc, so it is the optimal solution point. Katz and Cooper® have discussed in detail the
computational aspects of the local convergence of the problem by employing a nor-
malised gradient approach. Dhar and Rao?%+12 have established several properties of
the problem. They have solved the single facility and the multifacility location
problems involving geodesic metric and have compared these results with those of the
straight line distance through the sphere.

Most of the effort in the past has been directed towards solving the unconstrained
problem and how to locate the facility/facilities any where on the sphere.  In doing so,
one has neglected the different elements which, in the real world, effectively limit the
locational possibilities of the facility/facilities. Some of these elements are : land
covers only a smal part of the globe, zoning regulations, international borders etc.
Nothing in the literature indicates a complete work concerning this aspect of spherical
looation problem. Dhar and Rao*® have considered a spherical location problem,
the solutions of which are constrained to lie within a prespecified region on the sphere.
They have adopted two empirical procedures for the solution of the problem.

This paper is addressed to the problem of locating a new facility with respect to
existing demand points on a sphere, with upper bounds imposed on distances between
the new facility and each demand point. Distances involved are geodesic. This
simple constraint on maximum distance (or time) incorporates an important notion
concerning the level of utilization of afacility. One notes that attendence or utiliza-
tion of a facility by users from demand sector falls with distance. Thus, the upper
bounds on distances between a facility and each demand point indicates the minimal
level of facility-utilization desired at each demand point. Toregas and Revelle! have
put forward the various reasons for considering distance restrictions in the location
problem in a plane. In the context of the spherical location problems, one may
envision military scenarios where an ar/naval base should not be too far from a
number of units, in order that the base may reinforce the units in need.  The method
proposed for a solution is analogous to that of Schacfer and Hurter'® for the related
problem on a plane. The agorithm is based on the solution of a sequence of uncon-
strained problems. It uses a Lagrangean relaxation in which the distance constraints,
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which are not satisfied by the associated unconstrained solution, are incorporated in
the economic function.

2. Problen Formulation and its Characteristics

Any point on a sphere can be defined by a two-tuple (¢, §) where ¢ is the latitude
(--n'2 € ¢ € =/2) and ¢ is the longitude or meridean ( -- # < § € n). The shortest

distance joining r: (34, 6;), i = 1, 2,...n and r (¢, §), via the shortest arc of the great
circle is defined by 4; (r) such that

Al (r) = Arc cos (COS ¢ COS ¢; COS (6~ g;) + Sin ¢ SN ¢y)

The single-source minisum location problem with geodesic norm on a sphere can be
stated as

min ,
b0 Ex wi Ai (r) Q)

@
where ri (¢, 8y),i = 1, 2,. . .nare n given distinct points on the sphere with associated
weights w; and r (¢, §) is a point to be located on the sphere, If the new facility is
restricted to be placed within specified distances of the existing demand points, then
the problem may be stated mathematically as
min
b, G{El widr ()| Ai(r) € di ¥y, i=1,2,..n )

where d; > 0 represents the corresponding upper bounds of the distances from the
possible location to destinations.

The following results, characterising the particular properties of the spherical loca
tion problem, would be useful for the subsequent development.

Definition 2. | : A st D in §, (S; being the surface of the unit sphere in Euclidean
3-space) is said to be convex if for any two points r; and r; in D, shortest arc distance
connecting them lies entirely within the set, the convex hull of a set C in §, is the
intersection of all convex sets containing C.

Theorem 2.1 : The geodesic distance from any given point r to any other point
within a calotte (spheric disk) of radius »/2 and centre r is a convex function.

Proof: See (ref. 1 1).

Theorem 2.2 : If all the demand points in §, are containable within a calotte of
radius =/4, and that not more than two demand points are collinear then the objective
function is convex and thus possesses a unigque global minimum.
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Proof: See [ref. 12].

Definition 2.2 : Theset S = {f| 41 (F) < d, i = 1, 2, n} defines the feasible set
for the constrained problem in Egn. (2).

Definition 2.3 : Theset J= {rx A (r*)> dk €i,i =1, 2,.. ,n} defines the
set of demand points whose constraints are violated by r+ where r+ is the optimal
solution of the associated unconstrained problem in Eqgn. (1).

Proposition 2.1 : If there exists on S, a shortest path between any point r and r,,
jE€i,i=1,2.. nthat has alength not greater than d; then the distance constraint

A, (r) £ d; is redundant.

Proposition 2.2 : The constraints in Egn (2) are consistant if

A, (R<d;+d, 1< j7# k <n

The proof of these propositions follow from those of Schaefer and Hurter** who
have made use of the triangular inequality property of the Euclidean metric for the
related planar problem. It may be noted that the geodesic distance measurement is
shown to be a metric by Blumenthal® and as such satisfies the triangular inequality.

The characteristics of the topology” on S, establish that the definition of convexity
imply the connectness of any convex set. Further the important concept of
‘dominance’, due to Kuhn'®, holds in the case of geodesic metric’ on §,,  In view of
these as well as Theorem 2.2, it is suggested that the concept of visibility, introduced
by Goldman'®"*® in convex programming®, may be employed for characterising the
solution to the constrained problem at hand.

Definition 2.4 : A point r € S C S, is said to be visible from ' & S if and only
if the ‘admisible’ (both r* and § belong to a calotte of radius n/4) great circle arc
segment A, (r') contains no point of S.

In the constrained problem in Egn. (2), the possible locations are limited to a
proper subset S of S,. Clearly, this set is closed and compact. Hence, with the
convexity property of S, following Hurter, Schaefer and Wendell*!, one may state the
following result, which will be exploited in the subsequent algorithm whenno solution
to the associated unconstrained problem belongs to S.

Proposition 2.3 : Let r* be a solution to the associated unconstrained problem
iNEqn. (1). Then either r* is a solution to the constrained problem i.e. r+ € S, or
there exists a solution 7 to Eqgn. (2) visible from r*.

3. Solution Methodology

An approximation method due to Schaefer and Hurter!® is adapted to solve the
constrained problem at hand. The agorithm terminates when the optimal location is
within 4; + € of each demand point #i.
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3.1 Role of Lagrangean Multipliers

The constrained problem in Egn. (2) [can be reduced to the unconstrained problem as
follows

min n n
$ 6, N[ Ew 4 () + TN (4 (r) = ]
or equivaently

min x "
¢, 6, M [E‘(Wl + M) 4 (1) - Ry di] @)

where A; is the optimal Kuhn-Tucker multiplier for the ith constraint.

It is easily seen, since real argument of the Arccos in the objective function of
Eqgn. (2) is restricted to lie between — 1 and -+ 1, the function is convex in this region.
Recognizing that the argument is convex and the objective function is a non negative
sum of convex functions, it follows that it, too, is convex. Unfortunately though, the
solution space is not convex, resulting in a non-convex programming problem?,
Further. it is well known that the existance of a saddle point of Lagrangean function
is heavily dependent upon convexity properties of underlying problem, although Arrow
and Hurwicz?? have shown that convexity assumption could be relaxed by using a
modified Lagrangean approach. However, it has been noted earlier that if al demand
points in the problem are located within a calotte of diameter =[2, then the objective
function is unimodal within the region which assures a unique global minimum within
theregion. Since the generdised Slater’s constrained qudification holds in all non-
trivial cases, the existence of the multiplier in Egn. (3) for this case is guaranteed by
Kuhn Tucker saddle point necessary optimality theorem.

Schaefer and Hurter have interpreted these multipliers as the additiona weight
that would have to be added to wy in order that the optimal solution to the constrained
problem is an optimal solution to the unconstrained problem with the original weights
replaced by the modified weights, ; i.e. A is an additional weight to be added to the
original weight so as to pull the unconstrained optimum into the feasible region S for
the constrained problem.  Clearly, as d; in Egn. (3) increases, the optimum value of
the objective function for the constrained formulation decreases towards the uncons-
trained minimum and the artificial weights A; decrease.  Thus the optimal value of the
objective function for the constrained problem decreases strictly as the weight increases
(with an exception when the facility coincide with a demand point and only that
demand point’s weight increases, in which case the objective function remains un-
changed). The approach may be summed up in the following lemma.
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Lemma: If R solves

min .

é, 8, M ¢§1 W 4 X)) 4, (r) (4)
A= 0w ®
AR dwi (6
AAR) <dy»M=0 7

then R solves also as given in Egn. (2)

Proof: Let r be feasible for Eqn. (2). Then by Eqgn. (6) and Egn. (7), one has

SwAR) =Zwm AR+ INMAR —4D
= ‘E‘ Wi + ) 4i (R) + ? (- d)
< ‘z Wi+ X) AI(r) + %‘. M (- dy), from Egn. (4)
= ?w; A (r) + ‘2/\1 (A (r) — d))
< ? wi Ai (r) from Egn. (5) and due to feasibility of r

3.2. Search Procedure

It has been noted in Section 2 that one need only consider the demand points whose
constraints are not satisfied by the optimal solution r* to the associated unconstrained
problem.  Consider the Lagrangean formulation of the constrained problem in Egn.
(2) for a demand point 7« € J,

min n
0 M [ ZWidi (1) A (Ai (1) = do)]

or equivalently
min n
$, 0, Ak 1 El WA ()« (wr o+ A (A (1) = di)] ®)

¥k

An increase in A, is equivalent to an increase in wg, and the objective function increases
as weight wx + Ag) increases. The god is to arrive at solution procedure based upon
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the successive adjustment in the Af’s, The algorithm involves solving a sequence of
unconstrained problem of Eqgn. (4); i.e. for each r € J and finding the smallest
A = 0 such that the solution is feasible with respect to demand point r. when al
other weights are unchanged.

It is well known that the optimum p* would be located?® at rx, if and only if

We = _El wi. Thus one has an upper bounds A« on A, for any constraining point #; ¢ J,
i

1%k

where Ay =‘£: w = w,. The convexity of the objective function of Egn. (3) in
-
i#k

interval [0, ), enables one to apply the bisection method of Bolzano to find the
optimal value of the additional weight A} added to wx in order to pull the uncons-

trained optimum into the feasible region. The details of Bolzano search given by
Martos®.

Since the objective function of Egn (3) has the same properties as that of Eqn (2),
the Lemma 3.1 indicates that a solution technique for solving unconstrained problem
of Egn. (1) might be easily extended to handle the constrained problem (Egn. 2). The
algorithm described’® for solving the unconstrained problem in Eqn. (1) is used in
conjunction with the present algorithm, with respect to each demand point w ¢ J, to
determine whether a feasible solution to the distance constraints exists. The feasible
solutions thus constructed form the feasible set S and the minimum value of the
objective function in Siis fixed as upper bound UB. The procedure is repeated once
again with respect to each rx € J and if the new solution is less than the previous UB
it becomes the new UB. This procedure continues until all points in J have been
examined and the final UB represents the optimum value and its corresponding solu-
tion is the optimal solution.

3.3 Algorithmic Procedure

Capitalizing on the foregoing interpretation of Lagrangian multipliers and the search
procedure, the minimization algorithm is now described. The notation and termino-
logy used is as follows :

i, j = Point indexes
k = Number of pointsin the set J. The index k essentially corresponds to only
those demad points # € J.

KOUNT = Control key used to check the feasibility criterion
p = lIteration index
¢ = Convergence parameter (= 0.001)

8 = Convergence parameter (= 0.0 1)
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n = Number of demand points

d, = Distance constraint associated with the demand point  in radians.
w; =-Weight associated with demand point i

¢ = Latitude of the demand point i in radians

8 = Longitude of the demad point i in radians

(.) = Vaue of objective function a (.)

Initial Steps

0. Input parameter (¢, ;) with weights w; and distance constraints d;, where
i=1 2,0

1. Comupte 4 (7)), 1 < i j < n. If 4 (r;)) > d + d; then the constraints are
inconsistant, go to 23. Otherwise, go to 2.

2. The associated unconstrained problem in Eqn, (1) can be solved by the algorithm
described by Dhar and Rao'* or by any other existing agorithm. If the terminal
solution rt (¢, *) does not violate the constraints then r+ represents the optimum
location and its corresponding solution is the optimal solution to problem Eqn. (2);

go to 23. Otherwise, go to 3.
Main Steps

3. Input parameter ¢ and &

4) Let J= {ry...rx, . .. rs} be the set of demand points which violates the constraints.
5. Set KOUNT =0

- n
6. Sethk:Ew,-wk,vrng.
=l

i#k
7.Set k=0
8.Setk =k + 1|

9. If both k > | J | (where || denotes the cardinality of the set J) and KOUNT=0
then the feasible set S is empty, go to 23.

10. If both k > | J| and KOUNT = 1 then the finad UB is the optimum solution,
go to 23.

11. Set p =1 and AY = A2

12. 56t wg = we + AP
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13. If KOUNT = 0 then go to 16. Otherwise go to 14.

14. Solve the unconstrained formulation (1), using the same agorithm as before
(step 2), with respect to rx € J and set r gda, #) = the terminal solution

Compute A (r). Set Q (o = A (r) ~ dy

15. If both Q (k) > 0 and f(r) > UB then r. cannot yield optimum, go to 8.
Otherwise, go to 17.

16. Solve the unconstrained formulation (1), using the same algorithm as before
(Step 2), with respect to rye J and set r (¢, §) = termina solution.  If r is feasible
with respect to al r, i = J,...n then set 7 = r and go to 22. Otherwise, set
Q (k) = Ax (r) — di and go to 18.

17.1f [Q (k) | < ethenset R =r, UB = f(R) and A7 = A{”, and go to 8,
Otherwise go to 19.
18. If |Q (k) | < e then set 7 = r and go to 22.

19. Q (k) > e then perfor m Bolzano search (19 through 21) Set a¥™*? = a%® 4+
220D and go to 2 1.
20. If Q (k) < — ¢ then set Ai”*” = AP poorn
21 Setp = p + 1,
If | AP w AP0 | < §then goto 12. Otherwise go to 8.

22.1f k= | J | then set UB=""10 7 (7).

KOUNT = KOUNT <+ 1 and go to 7. Otherwise go to 8.
23. Stop.

4. Convergence Properties

When al the demand points lie within a calotte of radius #/4 then the objective func-

tion in Egn. (1) is unimodal within the region’*. In this case, the agorithm has been
found to converge to a solution. However, if the demand points are scattered over a
larger region or, if the distance between any two demand points or between the
possible location and any demand point is greater than =/2 then the algo-
rithm will not work, because the necessity of the convexity of the objective
function for the Kuhn-Tucker saddle point theorem is violated. In this case some
other method must be used. Progress, in the agorithm, follows from the fact that



Table 1. Relevant data of three sample problems.

Problem \ 2 3 4 5 6 7 8 9 10
1 ¢ 38.40 34.00 41.90 52.50 59.30 39.90 55.70 34.30 23.40 39.50
9 -9.10 -6.50 12.50 13.40 18.90 32.80 37.70 69.10 90.20 116.20
d 80.50 85.00 45.00 85.00 45.00 65.00 4245 36.50 58.50 92.00
W 0.05 0.12 0.07 0.06 0.05 0.07 0.08 0.05 0.03 0.05
) 53.20 51.30 48.25 41.54 59.55 59.20 42.41 55.45 33.21 35.40
) 6 15 -0.10 2.20 12.29 10.45 18.03 23.19 37.35 44.25 51.26
d 4550 39.90 25.90 2230 25.10 8.25 20.50 22.50 50.00 52.50
w 0.05 0.05 0.03 0.05 0.06 0.05 0.07 0.07 0.05 0.10
3 ¢ 51.50 48.90 47.40 41.90 55.70 55.70 34.40 18.90 14.60 35.60
0 0.40 2.30 8.50 12.50 12.60 37.70 51.40 72.80 121 00 139.70
d 50.90 48.00 45.00 33.00 35.30 25.50 29.30 72.00 96.00 78.90
W 0.12 0.07 0.08 0.05 0.08 0.05 0.07 0.03 0.05 0.10

¢, 8, dare in degrees.

79¢

4oyd ¥ N1
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the one dimensional Bolzano search for the optimal A, & € J over the interval [0, A
clearly convergesto aunique A, , and hence converges approximately to the correct

solution for each r, € J. For afurther discussion on the convergence of the overal ago-
rithm and the approach for choosing the value of the convergence parameter 3, refer-
ence can be made to the closely related procedure developed, for the planar problem,
by Schaefer and Hurter'®. The value of « can be chosen depending upon the degree
of accuracy sought for the underlying problem.

5. Computational Results

The agorithm was programmed in Fortran |V and successfully tested for a limited
number of sample problems. Table 1 represents the relevant data for three sample
problems with ten demand points each, and the computational results are given in
Table 2. Location of demand points and the corresponding values of d; were chosen
using a uniform probability distribution; the weights, w; were generated randomly
on [0, 1. The demand points in each of the problems lie within a calotte of radius

Table 2. Computational results

Problem Optimal (4, 8) in degrees and the corresponding objective values

rt = (48.81, 19.83), f(r*) = 14.4708
1 J=(8 9

r = (46.53, 39.31), f(r) = 22.9837
R = (48.79, 22.50), f(R) = 15.7384

‘- —
A, = 0033

r* = (49.01, 21.82), f(r*) = 8.5996
2 J= 16

r = (5753, 18.32), f(r) = 9.7088
R = (51.11, 20.93), f(R) = 9.0020

16* = 0.045

rt = (53.11, 14.37), £(r+) = 19.8923
3 J =11, 10)

= (4332, 44.19), f(r) = 26.3306

R = (5258, 17.27), f (R) = 21.5126

AT = 0.053

7
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45" that assures a global minimum. The tota run time (Z/0 included) was found to be
52 seconds on Burroughs B 6700.

6. Conclusions

It has been observed that the constrained spherical location (besides the one of restrict-
ing it to the sphere’s surface) is much more complicated then its counterpart on the
plane. Due to the nature of the spherical location problem, convergence in genera
may be local rather than global. The Lagrangean relaxation procedure adapted has
worked well for problems involving not so large regions of the globe but the procedure
is bound to fail for real large region location problems due to the fact, already noted,

that Kuhn-Tucker conditions for the problems are then violated. The convexity of
the function defined here is arc-convexity which is different from standard convexity
and, the relaxation of the convexity assumption using modified Lagrangean approach
applies only to the latter one.  Nothing in the literature indicates a complete work
concerning this aspect of the problem and an efficient algorithm awaits a break
through in nonconvex programming. -Following existing methods, efforts towards
developing techniques to capitalize on the structure of constrained spherical location
prablems could be investigated by suitably formulated search method which does not
use the analytic properties of the objective functions.
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