
Def Sci J, Vol38, No. 3, July 1988, pp 321-326 

Sound-Speed Prediction as a Function of Temperatumi 
at Discrete Depths* in the Bay ef Bengal 

P.K. Dineshkumar and J . S .  Sastry 
National Institute of Oceanography, Dona Paula, G o a 4 0 3  004 

ABSTRACT 

Through regression analysis, temperature dependent relationships 
art., developed to predict sound-speed.at discrete depths in the Bay of 
Bengal, thereby demonstrating the feasibility of sound-speed prediction 
through polynomial expressions in temperature disregarding salinity 
variations. A separate regression equation is develbped for the 
historical sound-speed and temperature data at the standard depths up 
to 250 m. At specific depths and in the given geographic area in the 
Bay of Bengal (5-8" N, W93" E) polynomials of temperature are 
proved to be a precise way to predict sound-speed. 

1. INTRODUCTION 

The most important acoustical parameter associated with the ocean is the speed 
of the sound'. The traditional means of obtaining the vertical sound-speed profile in 
the ocean are direct measurements with a velocimeter and computation from 
temperature salinity and pressure triplets obtained from shipboard measurements. 
The basic need common to both these means is the necessity for salinity estimates. 
It is possible for the near-surface water column to be statically unstable over the time 
period required for a BT cast. In the near-surface layers T-S relationships are gene~ally 
not well defined and the vertical distribution of salinity could be varying2. Propagation 
of sound in the ocean is complicated by several factors. It strongly depends on 
temperature, pressure and to a lesser extent up on salinity3. Hence to consider 
sound-speed as a function of temperature alone is to ignore the other two sources of 
variations. Variability due to differences in pressure can be minimised by establishing 
sound-speed relationships only at discrete ocean depths. The variability caused by 
salinity at these depths can be taken as a random variability for the purpose of fitting 
sound-speed to temperature. 
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Theoretically sound-speed in sea-water is given by 

where c is the sound-speed, y is the ratio of the specific heat at constant pressure to 
the specific heat at constant volume for sea-water, p is the density of sea-water and 
k is the true compressibility coefficient. But p; y, and k-are functions of temperature, 
pressure and salinity and these functional relationships are known only empirically4. 
In this study, at specific depths in a three degree square in the Bay of Bengal, (5-8" 
N, 90-93" E) empirical relationships of the form c = f (t) based on regression analysis 
are derived, employing the data archived at the Australian Oceanographic Data 
Centre, New South Wales. As the c = f (t) relationship has no natural origin or scale, 
a ploynomial in temperature is proposed as the equation form5. In the study area, it 
is assumed that a no covariation relationship exists for salinity and temperature, since 
salinity and pressure can't be held constant in a sound-speed equation such as wilson's6 
and the resulting polynomial espression in temperature for a particular depth. While 
considering the relative ease with which a polynomial expression can be fitted to the 
sound-speed and temperature data, this becomes an unnecessarily restrictive 
assumption. The method of fitting the least squares in regression analysis allows the 
coefficients of the polynomials to reflect systematic temperature-salinity covariation 
as fat as the equation form accommodates. The portion of the systematic covariation 
that the equation may be too inflexible will be met in the residuals. 

2. METHODS 

The archived data used in this study is obtained from the Australian 
Oceanographic Data Centre, New South ~ a i e s .  The initial data set was divided into 
ten subsets corresponding to one of the following standard oceanographic depths: 10, 
20, 30, 50, 75, 100, 125, 150, 200 and 250 m. within each depth the sound-speed 
observations are considered uncorrelated and replicated with respect to temperature. 

2.1 Curve Fitting 

Five polynomials, first through fifth order, were fitted to the ten sets of 
sound-speed and temperature data in the linear regression equation, 

where y. is the predicted sound-speed, and 4. is the temperature in the station; A(O), 
A(l) are the regression coefficients obtained using the principle of least squares7. 

and 

where 
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The linear regression is tested for significance using the ANOVA technique7 and 
the sequential - F-ratio statistic8. 

The test statistic, standard error of estimate calculated from an unbiased estimate 
of the error variance is calculated from 

where ya, is the estimated value of for a given value of 3.. as obtained from the 
regression curve. Examination of S,,, will indicate the preciseness of the prediction 
equation7. 

The situation is generalized to more variables in second, third, fourth and fifth 
demensional spaces. 

Since the y 's  are random variables, any function of them is also random; two 
particular functions are Ms.Reg, the mean square due to regression and s*, the mean 
&pare due to residual variation, which arise in the analysis of variance. These functions 
then have their own distribution, mean and variance. The ratio ~ s . ~ e g l S ~  = Ffollows 
an F-distribution with p and n-p degrees of freedom. Examining the probabilities of 
the sequential F-ratios, the polynomial which appears adequate to fit the data sets 
can be selected as the prediction equation. 

2.2 Residuals Analysis 

The difference between the predicted sound-speed 5 at a temperature decided 
by the data and the sound-speed c, as provided by the data is computed for each 
datum, in the data sets. The locus of the appropriate confidence-interval points for 
each equation is computed as 

where s is the standard error of estimate for the prediction equation; q ( w ) ,  m] 
is the student's t-distribution with ( n - p l )  degrees of freedom, n is the sample size; 
p the order of the respective polynomial, c, is the power of some specific temperature 

n 

where each t, is an originai temperature daium; and d .  is the ijth element of the 
'I 

inverse matrix formed by it's transposeu. 

3. DISCUSSION 

The curve-fit statistics is presented in Table 1. The probabilities associated with 
the sequential F-ratios and the standard error of estimate of the polynomials is given 
A notation such as (b&, b,) means that the temperature squared for quadratic term for 



Table 1. Curve-fit statistics 

Depth 

(m) 

Statistical variable 

Sample size 

45 51 61 72 84 77 73 68 53 46 

Probabilities associated 
with sequential F-ratios 

b,'bo 

Standard error of estimate 

Linear 0.727 0.849 0.701 0.561 0.583 0.231 0.527 0.843 0.541 0.916 

Quadratic 

Cubic 

Quartic 

7-- - 

Order of the selected 2 2 2 2  2 3 3 3 3 3  

polynomial 

which b, is the coefficient was added to the polynomial after the constant and linear 
terms, whose coefficients are 6, and 6,. The tabulated value, therefore indicates the 
necessity for including that term in the prediction equation. Higher the tabulated 
value, the more desirable would be the inclusion. A minimum standard error of 
estimate calculated from an unbiased estimate of error variance is an indicator that 
the associated polynomial is adequate for prediction purposes. The smaller the 
standared error of estimate, the more precise would be the prediction. 

Table 2 lists the coefficients and standard error of estimate for the selected 
equations. For example, at I -  150 . m depth, the appropriate prediction equation is 

where c;. is the predicted sound-speed in meter per second and 5. is the temperature 
in degree celcius. 

The prediction confidence-interval width and the distribution of residuals would 
have to be the basis for deciding whether a prediction equation is useful. A prediction 
confidence-interval pertains to the prediction of an event. With a locus of end points, 
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Table 2. Coeficients and standard error of estimates for the sound-speed equations 

Depth 5 = A(0) + A(1) r,. + A(2) ( + A(3) ( + A(4) t! + A(5) t; Sample standard 

(m) error of estimate 

for the 95 per cent prediction confidence-intervals. Since the data sets are sets of 
events, like those to be predicted, the locus of end points for the 95 per cent prediction 
confidence-intervals should generally encompass 95 per cent of the data used to obtain 
the regression equation coefficient. For each subset of the data, the confidence-interval 
width are approximately. 

20.40 m/s 
20.73 rnls 
20.89mIs 
k 0.76 m/s 
20.99 m/s 
k0.41 m/s 
k0.66 m/s 
k0.56 rnls 
20.25 m/s 
k 1.02 rnls 

for the 
9 9 

4. CONCLUSION 

prediction equation 

In the specific geographic area in the Bay of Bengal, at specific depths, polynomials 
in temperature have been shown to be a simple and precise way to predict the 
sound-speed. Hence bathytherinographic data which are more easily acquired may 
be readily converted to a sound-speed profile. These equations are of much use to 
the observational Navy. as this may help to optimise the SONAR performance. 
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