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ABSTRACT

Grid-free solver has the ability to solve complex multi-body industrial problems with minimal effort.
Grid-free Euler solver has been applied to number of multi-body aerospace vehicles using Chimera clouds of
points including flight vehicle with fin deflection, nose fairing separation of hypersonic launch vehicle. A
preprocessor has been developed to generate connectivity for multi-bodies using overlapped grids. Surface
transpiration boundary condition has been implemented to model aerodynamic damping and to impose the
relative velocity of moving components. Dynamic derivatives are estimated with reasonable accuracy and less
effort using the grid-free Euler solver with the transpiration boundary condition. Further, the grid-free Euler
solver has been integrated with six-degrees of freedom (6-DOF) equations of motion to form store separation
dynamics suite which has been applied to obtain the trajectory of a rail launch air-to-air-missile from a complex

fighter aircraft.

Keywords: Grid-free method, chimera clouds, high speed flows, moving multi-body, complex multi-body, computational
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1. INTRODUCTION

Grid generation is one of the major challenges in
solving governing equations of fluid dynamics around
complex flight vehicle configurations. The complexity increases
further in generating suitable grids around relatively moving
multi-bodies. The grid-free methods which operate on
distribution of points, reduce the difficulty of grid generation
to a greater extend. Further, the grid-free methods are
amenable for parallelisation due to uniform and simple
data structure for even complex multi-bodies and hence
it is easy to handle relatively moving multi-bodies in a
parallel environment. Some of the notable grid-free methods
that are being used in computational fluid dynamics (CFD)
for compressible fluids are Deshpande’s least squares
kinetic upwind method (LSKUM)!-* and its extension to
higher-order accuracy through entropy variables(g) called
g-LSKUM*3, meshless method of Batina®, gridless method
of Morinishi’, finite point method (FPM)?, least squares
finite difference-upwind (LSFD-U) method of Sridhar and
Balakrishnan® and kinetic meshless method (KMM) of
Praveen!'?.

The above methods basically use least squares method
for estimating spatial derivatives of fluxes. Among those
methods, LSKUM and q-LSKUM have been applied on
various distributions of points''-'* and have solved number
of complex fluid problems!>!8. A 3-D grid-free Euler code
based on q-LSKUM has been developed'; lower-upper
symmetric gauss Seidel?® has been implemented in g-LSKUM
code?! to get faster convergence and the code has been

parallelised using message passing interface (MPI) to run
on cluster/parallel computers®’. The code has been thoroughly
verified and validated for various complex flight vehicle
configurations, from subsonic to hypersonic flows!”. The
code has been integrated with a 6-DOF solver for equations
of motion and preprocessor to form a store separation
dynamics suite®. The suite is being used in quasi-steady
mode to solve the store separation problems. The suite
has been validated for a generic store separating from a
wing-pylon configuration. The code is persistently being
enhanced to meet the requirements of the current need
and future requirements. The paper presents recent
modifications to the g-LSKUM code, store separation dynamics
suite and their applications to complex multi-body flight
vehicle configurations.

2. LEAST SQUARES KINETIC UPWIND METHOD

A detailed description of the method is presented*
and only a brief description is given here for completeness.
Entropy (q) variables-based least squares kinetic upwind
method (¢-LSKUM) is based on the kinetic flux vector
splitting (KFVS)? scheme, which exploits the connection
between the Boltzmann equation of kinetic theory of gases
and the governing equations of fluid dynamics using a
moment method strategy. More specifically, Euler equations
are obtained by taking W-moments of the Boltzmann equation
with Maxwellian as velocity distribution function. In
g-LSKUM, the spatial derivatives of the Boltzmann equation
are discretised using weighted least squares method and
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the upwinding is enforced by choosing split sub-stencils
from the connectivity based on sign of the molecular
velocity to evaluate the spatial derivatives. Finally, taking
Y- moments lead to g-LSKUM numerical scheme. Entropy
variables, also called g-variables, are used in the defect-
correction step to achieve higher-order accuracy in space
at all points including boundary points. The ¢-LSKUM
operates on a distribution of points in the computational
domain and does not require complex grid generation effort
to solve the governing equations of fluid dynamics. Therefore,
it considerably reduces the grid generation time and also
makes it possible to obtain solutions for the geometrically
complex configurations. The performance of the solver
crucially depends upon the quality of the connectivity
(set of neighbours) to estimate the spatial derivatives of
flux vectors using least squares method.

3. CONNECTIVITY

The grid-free solver requires just a distribution of
points and a set of neighbours, called connectivity, around
each point. The distribution of points can be obtained by
two methods, namely simple cloud method and chimera
cloud method. In the simple cloud method, the point distribution
can be obtained using the grid generated around the body
and leaving the grid lines. In chimera cloud method, the
complex geometry is subdivided into geometrically simpler
shapes and clouds of points are generated around these
individual components. The simple clouds are then overlapped
to get the distribution of points over the entire computational
domain. The chimera cloud method basically uses grids
to get the distribution of points and connectivity, but as
the present method is different from the chimera grid method?*
as it is more efficient than chimera cloud method which
is being discussed along with the procedures of generating
connectivity.

An efficient preprocessor'® has been developed to
generate the connectivity using overlapped structured
grids, and recently the preprocessor has been extended
to generate the connectivity using overlapped unstructured
grids. The preprocessor accepts multiple unstructured grids
and overlaps the unstructured grids as per the geometry
position. Due to overlapping of multiple grids, certain
nodes of one grid may lie inside other components and
these nodes should be removed or blanked. This procedure
is generally called hole-cutting. In our approach, the
surface grids are used for hole-cutting, i.e., the nodes that
lie inside the solid bodies are identified using the triangles
that bound the surface. Advantage of the method is that
the hole-cutting is exact and no extra human interaction
is required to define the hole-surface. There are generally
four possible types of cells due to overlapping of multiple
grids as shown in Fig. 1. The first type of cells are those
cells that lie completely inside the solid body. The second
type of cells, are those that are cut by the cutting-surface
but some nodes of those cells are inside the body and
some nodes are outside. The third type of cells are also
cut cells, that are cut by thin surface, but all the nodes
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are outside the solid body, i.e., the cells pierce through
the body. The fourth type of cells are fully outside of the
cutting-surface. Handling of first and fourth types of cells
in our procedure is the same as that of the chimera grid
method.

The nodes of cells of first type are removed from the
computation and these are called as blanked nodes. The
nodes of cells of fourth type are available for computation;
these are called as field nodes and the cells are called as
field cells. In the chimera grid method, the second and
third types of cells are also blanked and the field cells
adjacent to the blanked cells are flagged as fringe cells.
The flow field of these fringe cells is not computed, but
interpolated from the field cells of the grid whose surface
is used for hole-cutting. This condition implies that some
field cells should be available between the two hole-cutting
surfaces in both the grids for interpolation of flow field
for fringe cells of other grid which may be difficult for
the bodies separated by thin gaps like aircraft launcher
and store or missile body with deflected fins.

In our approach, the nodes of cells of second type,
that are outside, are also used for the computation and
those nodes are called as fringe nodes whose connectivity
should include neighbours from the other grids. The nodes
inside the solid body are removed from the neighbour list
of the fringe nodes. The nodes of cells of third type are
also called as fringe nodes, but the nodes on the same
side of the surface are only included in their respective
connectivity lists. Unlike chimera grid method, the fringe
nodes also take part in computation, and therefore, no
interpolation is required.

Major advantages of this important difference are: (i)
the same upwind discretised equations, which satisfy local
characteristics of the flow, are solved at these points, (ii)
there is no time lag in the unsteady computations between
various clouds, (iii) uniform treatment for all the points,
which simplifies parallelisation and implementation of
convergence acceleration methods, and (iv) importantly,
very thin gap can be modelled without much consideration
on the grid size of the component grids. After classifying
the nodes as blanked, field and fringe, the connectivity
is generated for each node. The blanked node does not
require any connectivity; neighbours for field nodes are
obtained from the cell connectivity information, and for
the fringe nodes, neighbours from the same side of the
hole-cutting surface of the same grid and some nodes
from the overlapping grids are also included. The neighbour
nodes in the overlapping grids are the vertices of the cell
in the overlapping grid that contains the fringe node.
Overall, connectivity generation process involves identification
of cut-cell, classification of cut-cells and solid cells,
classification of solid-nodes, field nodes, and fringe nodes,
and connectivity generation for the above nodes.

3.1 Identification of Cut-cell
Each component is associated with a bounding box
as shown in Fig. 2 (for clarity 2-D example is shown) and
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Figure 1. Four possible types of cells in the overlapped grids.

the bounding box is divided into small uniform bins as
shown in Fig. 3. Each bin is identified with indices (i, j).
A bin that contains a point (x, y) can be easily located
using the bounding box size (x_,, x ., v .. v, ) and
number of bins along each co-ordinate direction (/, J). For
example,

i= X~ Xmin . odx= Xmax ~ Xmin
dx 1

. V=™ Vmin Ymax ~ Vmin
== Iy -

_ Xmax,Y max
p
[k
Xmin,Ymin

Figure 2. Bounding box of a component.

The surface triangles of the component are stored in
the bins that intersect the bounding box of the triangles.
Typical intersecting bins (shaded) for an edge are shown
in Fig. 3.

In the cut-cell identification procedure, each component
grid is checked for possible intersection with other components
using respective bounding box intersections. Should there
be a possible intersection, then each cell of the grid is
checked for possible intersection with the component.
Checking each cell of a grid with each surface triangle
of possible intersecting components is time consuming.
Instead, each cell is checked only with the triangles stored
in the bins that are intersecting with the bounding box

Figure 3. Intersecting bins of a component edge.
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Qi

Figure 4. Intersection of an edge with a triangle.

of the cell. A cell can intersect with a triangle only if any
edge of the cell intersects the triangle. It leads to finding
the intersection of a triangle with an edge. Typical intersection
of an edge and a triangle is shown in Fig. 4. The parametric
representation of the edge and triangle are

0=0+(1-50,

P=R+u(B~R)+v(R~PR)

The intersection point can be obtained by equating
the above two parametric equations. It constitutes a system
of three equations and three unknowns namely, s, u and
v to be solved. The intersection of the edge with the
triangle is possible only if

0<s,u,vu+v<l

If the above conditions are satisfied, then the intersecting
cell is flagged as cut-cell and each vertex of the cut-cell
is checked to classify the vertex as solid node or fringe

node using surface normal test which will be discussed
later.

3.2 Classification of Active Cells, Solid Cells, and

Blanked Cells

The active cells are cells that are outside all the components.
The active cells are identified using recursive method. In
this method, first one cell in each component grid is identified
by choosing a cell near the far-field boundary, confirmed
that the cell is outside the bounding box of all other
components and flagged the cell as active cell. Starting
from this active cell, each of its neighbours is checked.
The un-flagged neighbour cells (neither active cell nor
cut-cell) are flagged as active cells. In turn, their neighbours
are checked and flagged as active cells, if these are also
un-flagged. This procedure is repeated recursively till all
the active cells are flagged. Finally, the cells that are
neither active nor cut-cell are flagged as blanked cells.

3.3 Classification of Solid Nodes and Fringe Nodes
The vertices of blanked cells are straightaway flagged
as solid nodes. The vertices of cut-cells, which lie inside
other component, are flagged as solid nodes and outside
the component are flagged as fringe nodes. The surface
normal test is used to check whether a node is inside the
component and the discrete surface grid of the component
is used to represent the surface for this purpose. Consider
a point P in the domain as shown in Fig. 5. A point Q
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Figure S. Surface Normal Test.

on the surface S, closest to the point P, is obtained by
projecting P onto S. Let r,be the position vector of point
P, r, be the position vector of the point Q on S and n
be the unit outward normal vector at point Q. Then, the
point P is considered to be a solid point of the component,
if the following condition is satisfied

(rp=ry).n,<0 (1)
Otherwise, the point is flagged as fringe node.

3.4 Connectivity Generation

The connectivity for an active node is obtained using
the grid information. A typical connectivity for an active
node P is shown in Fig. 6. Vertices of all the cells connected

Figure 6. Connectivity for an active node.

to the node P are considered as its neighbours.

For fringe nodes, similar to active node, first connectivity
is obtained using grid information excluding the vertices
that are blanked or the vertices that are on the other side
of the surface, as mentioned earlier. A typical connectivity
for a fringe node Q in grid G, is shown in Fig. 7. The
connectivity includes nodes a and b of the same grid G,.
The connectivity for a fringe point should also include
nodes in the overlapping grid. This is achieved by finding
a cell, called donor cell, in the overlapping grid G, that
contains the point O as shown in Fig. 7. The vertices of
the donor cell (1, 2 and 3) are added to the connectivity
of the fringe node Q. All the vertices are added only when
the donor cell is an active cell. If the donor cell is a cut-
cell, then each vertex is passed through surface normal
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Figure 7. Connectivity for a fringe node.

test before it is added to the connectivity of Q.

A gradient search method?” is used to obtain the
donor cell. In the gradient search method, physical coordinates
x(x, y, z) of each cell are mapped to a reference frame of
coordinates s(&,m,g) of uniform size as shown in Fig. 8.
A trilinear function is used for mapping and is given by

G
P, P; P,

Ps

P, P, Py P,
Figure 8. Mapping of a tetrahedral cell.

x(s) =x, + (—=x,+x) & + (=, +x )N + (=x,+x,) ¢ 2)

Let x(sp) the coordinates of a point P as a function
of the computational space coordinate s of a candidate
donor cell. Values of x and s are known for the four vertices
of the candidate donor cell. The computational space coordinate
s, of point P is obtained by solving Eqn (2) with the
known value of x of the point P. If the point P is inside
the cell, values of s, will be bounded by 0 and 1. If any
of the components of s, are outside these bounds, then
the point is outside the cell and the search must be continued.
However, the direction, in computational space, to the cell
that bounds P is indicated by S, Therefore, it is possible
to traverse through the neighbours to reach the donor
cell shortly as shown in Fig. 9. Once the bounding cell
of P is identified, the vertices of the donor cell are added
to the connectivity of point P as mentioned earlier.

4. MODELLING OF AERODYNAMIC DAMPING
Dynamic derivatives or aerodynamic damping derivatives
are very important for slender-finned vehicles and play
a vital role in neutrally stable air-to-air-missiles separating
from fighter aircraft. During store separation studies, these
derivatives are naturally included in the unsteady simulations,
but in the quasi-steady simulations, the dynamic derivatives
are generally ignored or added explicitly in the aerodynamic
moments. These damping terms are obtained either empirically

or experimentally for isolated flight vehicle not in the
presence of aircraft flow field. In the grid-free code, the
aerodynamic damping is estimated using surface transpiration
boundary condition?’. The boundary condition includes
damping due to linear and angular rates. During simulation
of store separation, the relative velocity of the store is
imposed as solid wall boundary condition on the surface
of the store. This boundary condition models both relative
velocity of the store as well as the aerodynamic damping
to the store. The transpiration boundary condition models
the relative movement by imposing a flow into or out of
each boundary node on the surface of the store to match
the linear and angular velocity of that point on the store

relative to the parent aircraft. The transpiration velocity, j/ 7rans

is prescribed at each node on the surface of the store,
such that,

” 7 Store | =S = -
Vtrans :V tore_HD torex(r _rCG) (3)

where cc is the position vector of the CG of the store
and 7 is the position vector of the node on the store
at which transpiration velocity is applied. The translational
velocity 75" and rotational rates ¢ predicted by the
6-DOFs trajectory solver are used to find the transpiration
velocity at each store’s surface nodes and the transpiration
velocity is used in the grid-free solver to apply the surface
boundary condition. Since the motion of the store relative
to its parent aircraft is modelled by this technique, the
effects of the induced incidence and damping due to rotary
motion are also modelled.

5. APPLICATIONS

The grid-free Euler solver has been thoroughly validated
for various complex flight vehicle configurations and is
being routinely used for the flight vehicle design and
analysis. Some of the important recent applications of the
grid-free solver are presented.

5.1 Control Characteristics of Finned Missiles

The prediction of aerodynamic loads and hinge moments
of a missile with all movable fins are crucial in the design
of control systems. Further, minimising the hinge moment
is necessary to meet the control actuator power. Estimation
of aerodynamic loads of missiles with deflected fins involves

Figure 9. Gradient search method.
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exact modelling of the gap between the missile and the
fins during the grid generation and flow simulation. In our
approach, clouds of points are generated around the body
and fins separately. The cloud of points around the fins
are rotated for the desired deflection angles and overlapped
with the cloud of points around the body. The solid points
are blanked and connectivity is generated for each point
in the overlapped clouds. This approach automatically
models the thin gap irrespective of complexity of the shape.
The various fin deflection angles can be simulated efficiently
by rotating the cloud around the fins and overlapping
with cloud of points around the body. This approach does
not require regeneration of grids for every deflection angle.
The grid-free solver has been applied to a flight vehicle
configuration with various deflection angles®®. The point
distribution is obtained using overlapped structured grids
as shown in Figs 10 and 11. The number of points around
body, wings, and fins are 1.7, 1.0, and 0.8 million, respectively.
The ¢g-LSKUM solver is applied on the cloud of points
to obtain the flow fields around the vehicle. The surface
Mach contours for a flow condition are shown in Fig. 12.
The flow deflection near leading edge of deflected fins
is clearly seen. The predicted aerodynamic loads are compared
with the experimental results in Table 1 which compare
well.

5.2 Fairing Separation of Hypersonic Launch Vehicle

A hypersonic cruise vehicle is placed in the nose
portion of a launch vehicle and covered with nose fairings
(Fig. 13). The nose fairings are separated before launching
of the cruise vehicle. The fairing is opened in two portions
with the help of aerodynamic loads and is separated from
the vehicle after opening to an optimum angle. The design
of fairing, separation mechanism, and the time sequences
of separations require aerodynamic characteristics of the
vehicle with fairings at different positions. In the present
work, 3-D unstructured grids are generated around the
launch vehicle with cruise vehicle and two nose fairings
separately. The surface grids near the fairings are shown
in Fig. 14. The grids are overlapped to get the distribution
of points within the domain. Total number of points in
the domain is 1.3 million. The grid blocks around the nose
fairings are rotated about their respective hinge lines during
the opening of fairings and as well moved during the
separation of fairings to get the distribution of points at
different geometrical orientations of the panels. The
preprocessor is then applied on the overlapped grids to
generate data structure. The overlapped unstructured grids
before and after the blanking of solid nodes are shown
in Figs 15 and 16 respectively. This application is complex
and would have been a great challenge for even the chimera
grid-based approach.

At smaller opening angles, the vehicle grid and the
panel grids cut each other and no field cell is available
in both the grids near the hinge line because of small
gaps. Some of the fringe points of one grid has only wall
points of the other grid as neighbours. The ¢-LSKUM
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Figure 10. Overlapped grids around the flight vehicle.

Figure 11. Zoomed view of overlapped grids showing grid blocks
around wings and fins.

Figure 12. Surface Mach contours on aerospace vehicle
M_ =2.0, o = 14°, 5 = 5°).

Figure 13. Launch vehicle with cruise vehicle during opening
of fairings in the yaw plane.

solver is applied on the cloud of points for flow simulations
to get aerodynamic loads on the vehicle and the fairings.
The Mach contours for a typical orientation during opening
and separation are shown in Figs 17 and 18, respectively.

The flow field consists of shocks and expansions
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Table 1. Comparison of aerodynamic force and moment coefficients with the experimental data.

. . M, 0.6 3
Aerodynamic coefficients ” 550 5.00 550 .00
Normal force, Cy Present 0.494 0.984 0.335 0.705

Expt. 0.490 1.046 0.375 0.793
Pitching moment, C,, Present -2.308 -4.723 -1.475 -3.175
Expt -2.170 -4.712 -1.653 -3.535

Figure 14. Zoomed view of surface grids.

Figure 15. Overlapped grids before blanking of solid nodes.

waves which cross different domain boundaries. Since,
in the present approach, the governing equations are solved
at all the points (no interpolation as present in the chimera
grid approach), the discontinuities are captured crisply.
The figures indicate that there is a shock-shock interaction,
a triple-point shock occurs near lower side panel and
there are expansions and recompression shocks at aft of
the panels. The flow field is complex which includes large
subsonic pockets, and therefore, number of iterations required

Figure 16. Overlapped grids after blanking of solid nodes.

Figure 17. Mach contours in yaw plane of the launch vehicle
during opening of fairings.

for convergence for each case is order of few ten thousands.
The flow field of the previous case is used as initial condition
for the computation for the next orientation of fairings and
the better initial conditions reduce the computation time
by one order. The aerodynamic data estimated at various
panel orientations are used to arrive at the scheme of
panel separation and time sequence of separations of panels.
The trajectory of fairings during opening and separation
are shown in Fig. 19.
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Figure 18. Mach contours in yaw plane of the launch vehicle
during separation of fairings.

Figure 19. Trajectory of fairings during opening and separation.

5.3 Aerodynamic Roll Damping of a Finner

Configuration

The grid-free solver is applied to the finner configuration
at free stream Mach number (M ) = 2.5 and angle of attack
(o) =10° with zero and 0.01 non-dimensional roll rate
(p :pDre/ZUw) to compute roll damping coefficient. The
roll rate (p) is non-dimensionalised with body diameter
D, and free-stream flow velocity U,. The surface Mach
contours with and without roll rate are shown in Figs 20
and 21, respectively. The increase in local Mach number
due to roll rate can be seen on the surface of the fins.

The aerodynamic coefficients with and without roll
rate are given in Table 2. The aerodynamic normal force
and pitching moment coefficients do not vary with roll
rate and compare very well with experimental results. The
solver has predicted the coefficient of roll damping as
—18.0 compared to the experimental value®® of —20.5 and
the results prove the validity of the present approach for
estimating forces and moments due to aerodynamic damping.

5.4 Missile Powered Separation from Fighter Aircraft

Separation dynamics of a rail-launched air-to-air missile
from an aircraft (Fig. 22) has been carried out using the
grid-free Euler solver. In the present study, the simulations
are carried out including the missile motion in rail, tip-
off motion at the end of rail motion, and free flight in the
presence of aircraft flow field.

The constraint forces of launch shoes are derived
and implemented in the six degrees of freedom (6-DOFs)
trajectory solver. The present study includes the launch
shoes of missile and rail launcher of the aircraft in the
geometry definition. There is a small gap of 1 mm present
between the launch shoes and rail launcher. As stated
earlier, unstructured grids are generated around missiles
and aircraft separately and overlapped to get the distribution
of points. The surface grids on aircraft and missiles are
shown in Fig. 23.

The number of points around aircraft is 2 million and
about 1 million points are around each missile configuration.
As mentioned earlier, the gaps are modelled automatically
and no special care is required to treat the gaps. This is

Figure 20. Surface Mach contours in yaw plane without roll
rate.

Figure 21. Surface Mach contours in yaw plane with roll rate.

Table 2. Aerodynamic force and moment coefficients for finner configuration

a Roll Rate Normal Force Cy Pitching moment C,, Rolling moment G
(Deg.) p= % Present Expt. Present Expt. Present Expt.
10 0 1.677 1.765 -1.642 -1.588 0.001 -

10 0.01 1.681 --- -1.653 - -0.178 -0.205
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Figure 22. Aircraft with four missiles attached with the help of
launcher and launch shoes.

Figure 23. Surface grids of aircraft and missiles.

another application where grid-free method stands out in
handling multi-body geometry. The grid-free Euler solver
is applied on overlapped clouds of points to obtain aerodynamic
coefficients which are used to integrate equations of motion
using 6-DOF trajectory solver to get new position and
velocity of missile. The cloud of points around the missile
is moved to new location and the connectivity is regenerated.
The missile velocity obtained using 6-DOFs solver is used
to treat the moving wall points with surface transpiration
boundary condition which models the relative velocity of
missile with respect to aircraft as well as aerodynamic
damping. The procedure is repeated till the missile reaches
safe distance. The overlapped grids and corresponding
Mach contours at different instant of time are shown in
Figs 24 and 25, respectively.

6. CONCLUSIONS

The grid-free Euler solver has been applied to a number
of multi-body aerospace vehicles using chimera clouds
of points. A preprocessor has been developed to generate
connectivity using chimera clouds of points. Surface

Figure 24. Cloud of points at different instant of time.

Figure 25. Surface Mach contours at different instant of time.

transpiration boundary condition is implemented to model
aerodynamic damping and to impose relative velocity of
moving components. Dynamic derivatives are estimated
with reasonabe accuracy and less effort using the grid-
free Euler solver with transpiration boundary condition.
Further, the grid-free Euler solver along with transpiration
boundary condition has been integrated with 6-DOFs equations
of motion to solve powered separation of air-to-air-missile
from a complex fighter aircraft.
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