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ABSTRACT

This paper focuses on the evolution of advection upstream splitting method(AUSM) schemes. The main
ingredients that have led to the development of modern computational fluid dynamics (CFD) methods have
been reviewed, thus the ideas behind AUSM. First and foremost is the concept of upwinding. Second, the
use of Riemann problem in constructing the numerical flux in the finite-volume setting. Third, the necessity
of including all physical processes, as characterised by the linear (convection) and nonlinear (acoustic) fields.
Fourth, the realisation of separating the flux into convection and pressure fluxes. The rest of this review briefly
outlines the technical evolution of AUSM and more details can be found in the cited references.
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1. INTRODUCTION

With the concept of upwinding laid out by Courant,
Isaacson and Rees (CIR)' in 1952 for a scalar linear equation,
what is to be further followed in this vein is the ability
to compute discontinuities (shock and contact) from a
system of nonlinear equations in multiple space dimensions
with high-order accuracy. For this, the criteria that a useful
numerical method should have are: (i) accurate and monotonic
resolution of discontinuities, (ii) entropy satisfying, (iii)
positivity preserving, and (iv) generality for other conservation
laws.

We will focus on the development of methods that
find their roots in the concept of upwinding are robust
and reliable to meet some, if not all, of the above properties.
In particular, having a monotonic and sharp resolution of
shocks is the aim. First, the connection of employing
characteristics in the space-time dimensions and upwinding
in space dimension alone is elaborated. The latter is the
basis of Eulerian formulation at a fixed time level.

Prominent upwind methods developed in the period
of over half a century, including the methods by Godunov,
Roe, and van Leer, laid the groundwork for describing the
development of the advection upstream splitting method
(AUSM) have been reviewed. We are interested in its
evolution beyond the realm of single phase compressible
aerodynamics, into low speed flow and multiphase flow.
It has been noted that during this evolution, the fundamental
gist still remains, requiring only slight expansions to handle
mathematical properties unique to the new flows.

2. CASEFORUPWINDING
As a preface to the topic of this paper, we begin by

considering the scalar hyperbolic equation written in
conservation form:

o _, 0

ot Ox

For our purpose, it is instructive to consider its
nonconservative version,

Ou  Ou

ot Ox
where a(u)= df/du, is called the advection speed since
a equation of this form can be used to describe the transport
of a material.

In the first upwind method known in the literature,
Courant, Isaacson and Rees' took advantage of the fact
that the solution u is constant along the characteristic
dx/dt = a and obtained the solution by tracing backward
from the grid point (xj,tnﬂ) along the characteristic line
to find the intersection x , at the time line of #". Since a(u)
is constant on the characteristic, the characteristic is thus
a straightline, and we have an exact solution of the form

u(xj,t"H):uch (xp,t") = u(x; FaAtt"), if +a>0  (3)

=0 (2)

Since X, =X; F alt in general does not coincide
with the existing grid points, the function values
Uy =u" (xj F aAt) can be obtained only from the grid
values {-~~,“'LI a“'; »”';H ,---} through interpolation. For example,
a linear interpolation of functions at grids that sandwich
x,, gives, assuming here a is a constant,

U, :(1—%]@[’? +|a|ﬁu’?_ and 0<iilTAtS 1 (4)
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Substituting into Eqn. (3), the solution at the new
time level is obtained and written in the following form:

n n .
Y’ (uj—uj,l),tfaZO
u(xjutyn)=uj™ =uj-Tmay

(ul.ﬂ—u/.),lfa<0

®)

The CIR method Eqn. (4) is upwinding since it takes
information only in the direction from which the characteristic
propagates. This formula turns out to be identical with
that resulting from the first-order explicit approximation
of time derivative and one-sided approximation of space
derivative. One-sided differencing of u_by taking in the
upwind direction yields a stable scheme, whereas the central-
differencing is known to result in an unstable scheme
unless a different time stepping is employed. Moreover,
if there is discontinuity initially (such as a jump in concentration),
the upwind scheme can yield an exact solution if the CFL

ALY L .
number [ME) is unity, while a centred scheme smears out

the discontinuity and produces a non-monotone profile
even if it is stable.

The CIR method, as presented in Eqn. (3), traces the
solution upwindly in both space and time directions, while
the upwind method, as formulated in the framework of
fixed grid [Eqn. (5)] considers solely in the space direction.
The former is natural and intuitive. The characteristic approach
has some serious technical drwabacks. The first one concerns
with solving flows with shock waves since the interpolation
itself does not guarantee satisfaction of conservation laws.
The second concerns with the practical implementation
for a system of equations in several space dimensions.
In this case, there are multiple characteristics with mixed
signs and one can no longer form a decoupled family of
characteristics so that a constant set of variables can be
obtained. Hence, upwinding by viewing only in the space
direction has become the prevailing approach because it
can easily alleviate the above drawbacks. In the following
decades, further developments have been made by
incorporating the idea of spatial upwinding and solid evidences
of its superior performance over directional-neutral methods.
For example, the upwind scheme applied to Burger’s equation,
is known to yield a sharper representation of a shock
wave than the centred Lax-Friderichs scheme?.

2.1 Resolution of Shock Waves

Pursuit of accurate computation of shock waves is
as old as CFD and still remains a challenge. The main
difficulty with computing shocks has its roots in that the
grid stencils desired for the smooth regions are in conflict
with those for providing the sharpest representation of
a discontinuity. The method of characteristics, as proposed
in the CIR method, is not capable of dealing with discontinuities,
but modifications are needed when free boundaries are
to be determined in the problem (e.g. shock, contact
discontinuities, etc.'). These modifications turn out to be
no small feats, as feasible procedures would not be available

for more than 20 years, until the work by Moretti?, et al.
The only challenge left then was the satisfaction of the
Rankine-Hugoniot jump relations across a shock. The procedure
required a robust way of defining, tracking the shock
location, and implementing precisely the jump condition
there. Appropriately, the approach is called shock-fitting.
The result is the shock wave resolved with high accuracy,
having no internal point at the shock, as it should be for
a true discontinuity. The coding logic demanded within
this framework is daunting, in situations where shocks are
embedded in the flow or with multiple discontinuities interacting
with each other; it took them several years to build a
logic* to track and fit the shocks. This is the reason for
the least use of shock fitting for real-life multi-dimensional
problems; however, such computations appeared in the1990s
by Nasuti and Onofari®. It is interesting to note that the
equations were formulated in nonconservative form written
for some unconventional and nonconservative variables
such as speed of sound and entropy.

Clearly the mystique of conservation equations* is
dispelled in computing shocks, as long as the jumps are
properly incorporated, since in the smooth region, there
is no preference of one form over the other. Nevertheless,
the benefit of having accurate shock representation with
neither non-physical oscillations or non-physical smoothing
may compensate for the extensive and complicated programming
effort.

The other approach for handling shock waves is
known as shock capturing, by which the shock wave
automatically appears in the solution without resorting
to extraneous devices. Lax®in 1957 laid out the theoretical
foundation of the shock-capturing approach and the entropy
conditions that guarantee the existence of a weak solution
with correct jump conditions. The Rankine-Hugoniot relations
are typically satisfing over several cells; multiple discontinuities
and the interactions among them are accommodated properly
as part of the computed solution. Several questions however
have not been addressed by Lax®, such as (i) what would
be a proper discretisation method, and (ii) what would
be the quality of a captured shock profile: how sharp
is the profile and is it monotone in one and multiple
space dimensions.

The search for answers to these questions consumed
the CFD community in the following decades. In fact,
the centred schemes, such as by Lax-Wendroff” and Lax-
Friedrichs® or their variants, have the favourable attribute
of being simple and not requiring sophisticated Riemann
solution; hence these were considered the mainstream
for capturing shock up to the 1970s. However, a breakthrough
took place in the Soviet Union more than half century
ago, when Godunov in 19598 proposed an ingenious way
of defining the interface flux, via solving an initial-value
Riemann problem. While it was introduced to the Western
world in a textbook®, the Godunov method had not gained
recognition in practice until two decades later by van
Leer'. Arguably the introduction of Godunov’s method
began the era of modern CFD and the shock-capturing
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approach took a giant leap forward. In the light of voluminous
and extensive body of research works in the decades
after Godunov’s method, we shall focused only on
representative efforts, those increasing efficiency, accuracy,
and generality.

3. CONSERVATIVE UPWIND METHODS FOR

HYPERBOLIC SYSTEMS

The following system of conservation laws in one
dimension is considered,

oU JF(U)

ot " Ox 0 (6)

The finite volume approach is adopted because it fits
most naturally the description of conservation laws of
fluids within a control volume and it is consistent with
the weak solution formulation in the sense of Lax!''. For
this reason, the finite-volume framework is adopted by
almost all modern schemes developed for compressible
flows.

After an explicit time integration, the finite-volume
version of the above system gives the following generic
equation

u;ﬂ ~u’ +%[f(xj+l,2,tn)—f(xjfl/z,tn )J -0 %

where u is a vector of cell-average values of U and f is
a vector of numerical fluxes evaluated at the cell faces
xjil/z'

For a hyperbolic system of equations, there are a
multitude of waves propagating with positive and negative
velocities. Owing to the upwinding concept, the numerical
flux f  atthe cell face x ,, , should receive contributions
originating from the cells to its left and right (u,, u,).
Hence,
f0,=f (x_;+1/2 1" ) =f (“_l}a“_l}ﬂ ) =f (“L sUp ) (8)

where the subscripts L and R refer to the values associated
with the left and right cells.

The epoch-making work by Godunov?® lays out a
solid foundation for constructing the numerical flux function.
Godunov regards the solutions (u,, u,) at each time level
t" as the initial-value pair of the Riemann problem. Clearly,
the Riemann solution is the heart of the entire method.
Since there is no characteristic time and length in the
equations under consideration, a similarity solution w(§)
can be formulated in terms of the similarity variable
E=(x—- X10) /(t —t") and the solution is constant along
each ray of constant value of £. The cell interface coincides
with the ray on which & = 0, hence the numerical flux is
simply
f].H/z:f(uL,uR):f(w(azo;uL,uR)) 9)

A description of its practical implementation is
available'®'>!3, Unfortunately, the details of the exact solution
are not preserved after one time step, instead it is averaged
out according to Eqn. (7). Because of this approximation,
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seeking for an exact solution in each time step might not
be necessary. Also, approximate solutions may be essential
because of the following situations: (i) the Riemann solution
may require substantial computational efforts, or (ii) a
similarity solution may not exist, for example, when a source
term exists. Moreover, the exact solution of a multi-dimensional
Riemann solution is still unknown. Thus, it is useful to
devise other methods that are not based on the restrictive
requirement of solving the Riemann problem exactly.

Several approximation procedures for solving the Riemann
problem have been proposed, by Roe'?, Colella and Glaz'?,
Osher-Solomon', HLLE'S, etc. The main difference among
these lies in the way these approximate the exact wave
structure by more tractable wave configurations; for example,
either all shocks'?, all rarefaction/compression waves'>,
or a gross description of wave envelope'®. Consequently,
how the waves structure is represented, has direct implications
on their performance of the waves and potential for further
extensions to other conservation laws.

The Roe splitting is perhaps the most popular approximate
Riemann solver in this class. Instead of attempting to
solve the nonlinear equations, Roe suggested to replace
it with a locally frozen coefficient linear system such that
certain features of nonlinear problems are still retained.
As in Godunov’s Riemann problem, Roe considers the
difference of two neighbouring fluxes as a disturbance
that is to be propagated in both + and — directions, based
on the signs of eigenvalues of the Jacobian matrix A4,

evaluated at a special state # = 4 (u,, u,) known as the
Roe-average state.

F(uR)—F(uL)=A(ﬁ)(uR —uL) (10)

= A7) (ug —uy )+ 4 (@) (up —u,) (1)

With this decomposition of 4, an easily facilitates the
definition of flux at § = 0 by either accounting for the
negative waves (to the left of £ = 0) from the left flux or
the positive waves from the right flux. Thus,

f02 = F(u,)+ A7 (@) (ug v, ) (12)
:F(uR)+A*(ﬁ)(uR—uL) (13)

_ %[F(uL )+ F (ug )= (4 (@)~ 4~ (@) (up— v, )J

(14)

Because of the splitting in flux difference [Eqn. (11)],
this type of approach is often referred to as flux difference
splitting (FDS). By Roe’s construction, the Rankine-Hugoniot
condition, is satisfied if two states u, and u, are connected
by a single discontinuity (shock or contact) moving at
a speed coinciding with an eigenvalue of A(ﬁ) .

A downside of this exact property for the Roe splitting
is that it can not distinguish between a stationary shock
and an expansion shock. That is, the entropy condition
may be violated, and while this situation appears, the
expansion shock manifests itself as a jump in the profile.
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To correct this problem, an eigenvalue associated with the
nonlinear fields (either u + a or u — a) is modified when
it is near-zero. This procedure is generally known as entropy
fix, first suggested by Harten and Hyman'” and later by
others with variations.

Another useful class of numerical flux functions for
inviscid flows is known as flux-vector splitting (FVS). The
basic idea of the flux-vector splitting is that the full flux
at the interface collects contributions from its neighbours
on the basis of upwinding, in a similar spirit of the CIR
method' by tracing backward to the source of signals.

f(uL,uR)=F+(uL)+F’(uR) (15)
where the Jacobian matrices of the split functions F and
F~ are required to have non-negative and non-positive
eigenvalues, respectively. Hence, proper upwind states,
either u, or u, are taken in the respective fluxes.

Various decomposition can be devised, but they all
can be interpreted as consisting of two streams of particles
travelling to the interface, with certain distribution functions
and physical contents (mass, momentum, and energy)'®!’.
Two flux-vector splittings are well-known, proposed by
van Leer?® and Steger and Warming?', respectively. The
former has several advantages over the latter as follows:
(i) it is smooth at sonic points, (ii) it does not involve
derivatives of flux functions with respect to u, and
(iii) it remains identical for a fluid having different equation
of state (EOS). As a result of (i), the van Leer splitting
in general also performs better than the Steger-Warming
splitting. However, excessive numerical diffusion, in
describing a contact discontinuity in particular, is the
common deficiency of this class of methods; this error
cannot be simply reduced by reducing grid size and/or
using higher-order differencing. This fact had largely
gone unnoticed until 1987 when van Leer again brought
attention to this deficiency?.

The ability to resolve a contact discontinuity is very
important for both inviscid and viscous calculations. In
the inviscid calculations, especially in multi-dimensions,
varieties of discontinuities exist and interact; excessive
numerical diffusion in contact discontinuity can lead to
an erroneous solution.

However, the Van Leer splitting has many desirable
features. It is algorithmically simple, has the same form
for fluids with complex EOS, satisfies entropy condition,
and is operationally robust for a wide variety of problems.

Despite its superior capability in computing a contact
discontinuity, the Roe splitting is complicated and is limited
to fluids with simple EOS. In fact, the extension to non-
ideal gases is not unique?-*,

Based on the above comparison, it has been concluded
that the FVS and FDS approaches have their own distinct
advantages and drawbacks, but these clearly compensate
each other. This observation has led to the development
of a new type of numerical flux, the AUSM, originally by
Liou and Steffen®, and the subsequent improvements?® 27,

4. EVOLUTION OF ADVECTION UPSTREAM

SPLITTING METHODS
4.1 The Beginning of AUSMs: The Era of Interest in

Shock and Contact Capturing

The pursuit of AUSM is based on the premise that
the mathematical details similar to the FVS can be exploited
but the linear field must be recognised and incorporated
as part of the complete splitting. The aim is to combine
the desirable attributes belonging to both FDS and FVS
splittings and simultaneously eliminating their weaknesses.

For a scalar hyperbolic equation, [Eqn. (2)], the contact
discontinuity is inherently associated with the convection
process, and the quantity transported by the convection
process is the material property, namely the density (or
species concentration). For a system of conservation laws,
examining the continuity equation gives the first clue about
the roles of flow convection velocity and the density; the
density must follow with the flow from upstream. Hence,
once the convection velocity at a certain location is defined,
the source of the density is known from its upstream side
and the mass flux is determined accordingly. Examination
of the other conservation equations gives the second
clue that this mass flux also appears in the momentum and
energy equations in the form of convective fluxes. This
is the missing link in the van Leer method.

At the core of the AUSM family of schemes is the
realisation that the convection and acoustic waves ought
to be treated as two physically distinct processes®. Hence
the inviscid flux at the continuum level is expressed as
a sum of the convective and pressure terms:

F=F© +F® (16)
where
1
FO=mW¥,m=pu,¥=| u (17)
H
and
0
(p) =
F ' (18)

. c) . .
Here, the convective flux F“ contains the convective

mass flow rate 1;1 and the corresponding passive scalar
quantities in W. The pressure flux F?” contains nothing
but the pressure term.

Examination of Eqn. (17) term by term gives a clue
to how the numerical convective flux f7 at the interface
is to be constructed in terms of the L and R states

fl(/CZ)(uDuR) =mi2 (uL’uR)LPI/Z (uL’uR)

¥(u,),if 1;11/2 >0

Wy (ug.ug) = :
¥ (ug), otherwise

(19)

Here, the linear field, to which the contact discontinuity
belongs, is characterised by the mass flux, and the mass

609



DEF SCI J, VOL. 60, NO. 6, NOVEMBER 2010

flux selects its content p from the upwind source based
on the sign of u :

. p, ., if u, >0
iz =taPLr = P, otherwise (20)

Clearly the definition of the interface convective
velocity u, ,is a critical step, for which we employ two
functions, respectively expressed in terms of eigenvalues
u * a when |u| < a, as envisioned in Van Leer's flux-
vector splitting. Note that using the eigenvalues as a
basis for expressing the numerical fluxes is quite common
in the upwind formulation, easily identifiable in all flux
schemes mentioned above. Here, we write in terms of
split Mach-number functions

_ u
Uy =dy2 [M(tn)(ML)JrM(m) (Mp ):|’ML/R = _aL/R 21
1/2

where the subscript m refers to the degree of polynomial
used in M* specific definitions?®.

The algorithm is an improved version from the original
one?, hence referred to as AUSM . A major concept
introduced in AUSM is the single speed of sound a,,
commonly used for defining both M, and M,, rather than
separate a, and a,. Another modification is the use of
higher degree polynomials, as specified by the subscript
m.

The pressure flux fl(/’é) involves only p, ), for which
we again apply the same concept used in defining u, ,,
consisting of contributions from the left and right cells
in accordance with waves u * a,

P2 =B (M) pp + By (Mg)pr (22)

Again the subscript n refers to the degree of

polynomials?®.

4.1.1 Remarks

(i) Itisevident that the upwinding idea prevails throughout
the construction of AUSM, [Eqns (19) to (22)]. Moreover,
the definition of u,, and p, , can be interpreted from
the viewpoint of following characteristics originating
from L and R cells at time level ¢ to the cell face,
in the spirit of CIR.

(i) Unlike Roe’s FDS, the numerical dissipation in the
AUSM family is merely a scalar, not of a matrix type.
As a result, the system is decoupled, and hence,
requires only O(n) operations, n being the number
of unknowns. Moreover, the same formula is easily
extendable to include other conservation laws, or to
fluids with general EOS, as in the case of a multiphase
flow.

(iii) Asin van Leer’s splitting, the AUSM family does not
require differentiation or the flux Jacobian matrix, for

the evaluation of f ,; they always involve only the

common term my/ for any additional conservation

law.
(iv) A general procedure of constructing the mass flux
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within the framework of AUSM by encompassing other
formulae®®. It also expounds the impact of the flux
formula on the occurrence of shock instability, the
so-called ‘Carbuncle’ phenomena.

(v) There is a great deal of freedom for defining the interface
speed of sound a,,. A peculiar one is proposed that
gives an exact capturing of a 1-D stationary entropy-
satisfying shock wave?-?7,

(vi) Note that when mu/2 is equal to zero, the sign of mui2

is immaterial since the convective flux vanishes with m/2 .
This also means the switching is continuous.

4.2 The Era of Interest in Low Mach-number Flows

As the upwind flux functions have, by and large,
overcome the challenges for computing compressible flow
phenomena reliably with satisfactory accuracy, it is only
logical to evaluate how they would perform in an incompressible
(or more precisely, low Mach number) flow regime in which
the scales between the speed of sound and flow convective
speed are disparate, that is, u <a . This results in an
inordinate amount of numerical dissipation that worsens
as u—0, and it manifests itself in a slow or stalling
convergence and large numerical disturbances overwhelming
discretisation errors. To rectify both the problems, a proper
rescaling must be introduced so that the resulting speed
of sound and convective speed become of equal order.
For schemes utilising the Jacobian matrix, such as Roe’s
FDS, this rescaling can be accomplished by introducing
a pre-conditioning matrix so that the eigenvalues of the
resulting matrix are of the same order®®. For the AUSM
family, the modification to equalise scales is simple, requiring
only a rescaling of the speed of sound by a scalar factor
so that it is diminishing as M is decreasing. However, this
leaves with insufficient numerical dissipation for stability,
hence, additional couplings between velocity and pressure
fields are introduced in the convective (via mass) and
pressure fluxes. The final results are:

M, <My, -K, maX(l—p]V[Z,O)pR—_pé
P12 (faal/Z)
+
P12 = PL > PL 23)
where

2aj), (24)
Similarly,
fa (M) =M, (2-M,) [0
M3 = min (1 max (M 13 )) (25)

Similarly,

- 2
P2 < Pia — 2K, By BoyPia (faal/2)(MR -M;) (26)
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It is noted that the factor faaf/2 produces a factor of
the order of u ,. The effectiveness of this rescaling for
low-Mach number flows is documented?’.

4.3 The Era of Interest in Multiphase Flows

Computation of nonequilibrium multiphase flows is
confronted with two major difficulties, one is the closure
modelling of the effective field (multi-fluid) equations,
and the other is the design of a robust and accurate numerical
procedure for these systems. The difficulty with the latter
stems from terms in nonconservative form, which often
make the system nonhyperbolic?!*2. Moreover, the flow
usually contains disparate fluids properties, severely restricting
stability. The contact discontinuities are of major importance
and often the centre of flow phenomenon. Hence, the
ability to, or inability to, accurately compute the contact
discontinuities plays a pivotal role in determining the
reliability in correctly simulating flow phenomenon.
Unfortunately, excessive smearing is typically inherent in
any capturing scheme, even for the successful upwind
schemes described so far, unless a special tracking or
fitting approach (much like the shock fitting) is enacted.
The property of preserving positivity of scalar quantities
(e.g., volume fraction) is critical for stability. It is well
known that the lack of hyperbolicity property poses numerical
difficulties as to instability and convergence; what is not
known is how to handle the situations when presented.
Finally, treating nonconservative terms is still an open
problem; spurious oscillations can appear if they are not
properly discretised?.

Liou and Chang®** continue to expand the basic
framework of single-phase AUSM to solve multi-fluid equations.
In this setting, it is conceptually and procedurally identical
to extend the single-phase AUSM to each individual phase
since it is described by equations consisting of the same
convective and pressure fluxes, except additional
nonconservative terms. It is noted that the Jacobian matrix
of this equations system can become exceedingly complicated,
making inaccessible an analytical form for the eigen system.
Hence, the FDS-type schemes are not feasible to be used.
The AUSM framework, not based on the Jacobian matrix,
is not restricted by this complexity; its advantage in this
regard is distinct.

What is further to be addressed is the nonconservative
terms, which typically characterise the action of pressure
force at a phase interface. These must be addressed with
care to ensure there is no imbalance with the conserva-
tive terms; otherwise, spurious oscillations® are often
encountered at phase boundaries. An effective balance
at the discrete level can be found?*3.

4.4 The Era of Interest in High-order Schemes
Godunov’s order barrier theorem® (Any linear monotone
scheme for solving partial differential equations can be
at most first-order accurate.) stood to crush any hope to
achieve high-order monotone solutions for even a linear
problem. This barrier had not been circumvented until the

concept of nonlinearity in terms of limiter functions of
variations was introduced by Boris®*¢ and van Leer®’. This
nonlinearity concept has been the only way around the
barrier ever since. Once successfully applied to various
realistic problems, interest in achieving accuracy beyond
second or third order naturally arose. Harten developed
a systematic approach to construct high-order essentially
non-oscillatory (ENO) interpolations **. These schemes
are based on a comparative procedure to select the discrete
stencil that yields the smoothest interpolant. A later version
with a weighted combination of all stencils under consideration
gives a much easier implementation and improved computa-
tional results; the method is hence called WENO?.

Interest in efficient utilisation of discrete data to achieve
high accuracy and flow resolution has led to the study
of combining very high-order accurate interpolations into
the AUSM, especially with emphasis on flows with shocks.
This effort is documented in a recent paper* in which a
detailed comparison of very high-order interpolations (up
to 13" order) based on WENO and a monotonicity preserving
scheme*! is shown for some problems with complicated
shock waves. This work is the recent addition to the evolution
of AUSM, the only known publication on AUSM-based
high-order solutions. Further research on this topic is
their future plan.

5. CONCLUSIONS
In conlusion, we summarise a few key lessons drawn

from the discussion as follows:

(i) Upwinding embodies physics into the mathematical
procedure. It has been the fundamental underlying
concept for nearly all modern CFD methods.

(i1) The accuracy of the shock fitting method for resolving
shock waves is superior to the shock capturing method.

(iii) The shock-capturing framework is easy to implement
and to include weak solutions; hence, it is the only
framework in use today. Practicality (in implementation)
determines acceptability. The lack of sharpness in
computing shocks, in comparison to the shock-fitting
methods, is compensated for by deploying the grid
adaptation and high-order interpolations; both are
again relatively easy to be incorporated.

(iv) Searching approximate procedures for solving the Riemann
problem produces numerous interesting and useful
works. Perhaps, the search isn’t yet exhausted.

(v) The framework of AUSM proves to be quite fruitful
and broad, to be casily adaptable to various types/
regimes of flows, with only small modifications.
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