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ABSTRACT

Least squares kinetic upwind mesh-free (LSKUM) method has been the subject of research over twenty
years in our research group. LSKUM method requires a cloud (©2) of points or nodes and connectivity N(P )
for every Fy € Q. The connectivity of P is a set of neighbours F; € N(F)) of P,. The cloud can be a simple
cloud, Cartesian cloud or chimera cloud or can be obtained rapidly using advancing front method. The discrete
approximation to spatial derivatives was obtained using of least squares and it can be made accurate using
defect correction method. The LSKUM first operates on the Boltzmann level and then passes on to Euler
or Navier-Stokes level by taking suitable moments (so called yw moments) of the Boltzmann equation of kinetic
theory of gases. The upwinding in LSKUM method is enforced by stencil or connectivity splitting based on
the signs of v, v, in 2-D and v , v,, v, in 3-D. This leads to split fluxes encountered in Kinetic Flux Vector
Splitting (KFVS) method. The higher-order accurate LSKUM method can be made more efficient using entropy
variables, thus leading to g-LSKUM method. Lastly, boundary conditions are implemented using specular
reflection model on the wall (KCBC method) and by using kinetic outer boundary condition (KOBC) method
for a point on the outer boundary.

Keywords: Boltzmann equation, kinetic theory, LSKUM method, Chimera cloud, Cartesian cloud, mesh-free method,

gas dynamics, Euler equation

NOMENCLATURE

A(w) Weighted least squares matrix
C(P) Connectivity set

E Sum of squares of deviation

F Maxwellian

F,F, Incident/reflected Maxwellian

G GXGY Flux vectors
GE,Gx*t,Gy*  Split flux vectors

N(P) Connectivity stencil / neighbourhood of
a point

P, Node/Point under consideration

q Entropy variables

u,v Velocity components

U Vector of conserved variables

w, Weights at a point i

(x,y) Coordinates in global frame

xy) Coordinates in a local frame

Greek Symbols

Af Modified difference
1

B 2RT

p Density

1. INTRODUCTION

Research work on mesh-free (grid-free or mesh-less)
method began in 1989 at the CFD laboratory of the Department
of Aerospace Engineering, Indian Institute of Sciences,
Bangaluru'?. Grid generation around complex bodies was
a difficult task at that time as the commercially available
grid generation packages like Gridgen, GridPro were not
available then. It was therefore argued that if a cloud of
point around a body can be generated quickly then a grid-
free solver working on this cloud of points would be
highly worthwhile. The points in the cloud are not connected
by grid lines or coordinate surfaces to form tetrahedra,
hexahedra or prisms; it is just a point distribution which
can be generated as a Chimera cloud (Fig. 1(a), Quadtree
cloud or a Cartesian cloud (Fig. 1 (b) or cloud generated
by advancing front method.

It is interesting to observe that solution adaptive
point enrichment is relatively easy in the grid-free frame
work?®. The cloud of points after point enrichment is as
unstructured as the cloud before enrichment.

The last point in favour of working on grid-free method
is that the clouds can be generated around a geometrically
complex configuration by dividing the complexity into
several geometrically simple components and then using
a very fast algebraic grid generation to generate simple
grids around these components. These simple grids then
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Figure 1. (a) Chimera cloud (without lines) and (b) Cartesian
cloud (without lines).

overlap to form a Chimera cloud. The basic idea is to
quickly generate a cloud of points and to let the grid-free
solver operate on this structureless cloud to obtain numerical
solution. The mesh-free method LSKUM has progressed
considerably from 1989 till today and now it is a very
mature tool routinely used at DRDL, Hyderabad and NAL,
Bangaluru.

2. LEAST SQUARES DISCRETISATION

At the heart of LSKUM solver is discretisation of
spatial derivates based on least squares'>'®. The basic
idea can be explained by taking 1-D example. Assume that
derivative of fwrt x at node or point x, is required in terms
of values of f at neighbouring nodes i.

The node P, (x = x,) has connectivity or a neighbourhood
N(P,) consisting of points close to P,. Referring to Fig. 2
PeN(R).

The points PeN(F,) are arbitrary, these could be equally
spaced or unequally spaced. There is a lot of flexibility
about the choice of N(5) . Expanding f, in Taylor series
around £, we get,

A2

Aﬁzﬁ_ﬁnzAxifxo+Tlfxxo+H'O'T (1)
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where H.O.T= Higher-order terms. Defining the sum of
squares of deviations as

E=§(Afi ~ A%, f10)’s where A= fi— [, A =X, — Xy
2)

and minimising norm of E wrtf , one gets the first-order
accurate LS (least squares) formula.
2 Ax; A,
f(l) _ i
x0 ZAXI-Z (3)

The first-order accuracy of Eqn. (3) can be ecasily
proved by using Taylor series Eqn. (1). Taking only 3
points in the stencil or connectivity, i.e

N(Ry) ={xy, B =x5+Ax, P, = x, — Ax} (4)
the LS formula Eqn. (3) reduces to
M _ fi—h
x0 2AX
which is central difference formula. If one chooses
N(R) ={R =xp, B = x + Ax, P, = x; + 2Ax} (5)
Then Eqn. (3) reduces to
B+ fit2/1
M _ ot/ 2
fxO SA)C (6)

which is a first-order accurate forward difference formula
on a 3-point stencil. For symmetric and evenly spaced
points in connectivity, the LS formula in Eqn. (3) can
become higher-order accurate formula. The LS formula in
view of its reduction to finite difference formulae for uniform
stencils, can be regarded as generalised finite differencing.

The LS formula in Eqn. (3) can be made second-order

accurate by defining F as

2
E=§(Afi_Axifx0_AxTifxx0)2 (7)

and then minimisation of £ wrt £, /. yields the linear
algebraic equations,

3
(Zax?) fu +(Z%]f = Y AfAY,
3 4 2 8
(ZA%’]fxo +£Z%]fm IV

Solving for f

w0 Wwe get second-order accurate formula.

Figure 2. Connectivity of a point in one dimension.
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Ax,-4 Axf Ax,-z
e e o

fxO 2
(zaw? )(ZM ]—{z A ] ©)
! 4 2

The denominator can become zero or close to zero
in Eqn. (9), and hence, this formula can give inaccurate
results for /| ‘not’ because derivative is ill behaved but
because connectivity is bad. This method of determining
spatial derivatives on arbitrary irregular grids (clouds in
our terminology) has been developed by Liszka & Orkisz?.
They have also referred to problems about well conditioned
FD formula. The authors have followed a different approach,
namely defect correction method, for achieving higher-
order accuracy of LS formulae. In the first-order formula
in Eqn. (3) the denominator can never become zero. This
property of Eqn. (3) was exploited and build a second-
order formula around the first-order one by using defect
correction technique first employed by Ghosh & Deshpande'*'®.
Multiplying Eqn. (1) by Ax,and summing over i gives

Ax3
SAfAY = (2A%2) £ J{z 2’] foo + HOT
which after a slight arrangement gives
3

>t
AY; 2
0 = —t 1+ o THOT
’ ( ] sag? |0 (10)

The first term on RHS of Eqn. (10) is a first-order LS
formula. For the second term

3 2
EAXTI EAXizifXXO E%(Axifmm)
fxxO = =
SAx; SAx] TAx
Ax:
) 21 (fxi_fx0>
= —2+H.0.T
A,

Substitution in Eqn. (10) yields

2| - 8 = )|
TAx?

Jro = (11

Defining the modified difference
~ Ax;
Afi = Afi _T(fxi _fxo)
Ax; Ax; 12
=(fi_7fxij_(f0_7fx0j (12)

We then get the second-order accurate LS formula
as

_ 2x; Aj‘l—

Jro = AL (13)

which has the same non-zero positive denominator as in

the first-order accurate LS formula [Eqn. (3)]. Several comments

on Eqn. (13) are in order now.

(1) It has the same structure as the first-order LS formula
Eqn. (3), modified or perturbed difference Eqn. (12)
appears in Eqn. (13) instead of Af;in Eqn. (3).

(i) The formula in Eqn. (13) is implicit in the sense that
value of derivative at node P depends on its values
of derivatives at other nodes.

(iii) Due to its implicit nature the formula in Eqn. (13) has
a better spectral bandwidth for scale resolution. To
demonstrate this property, a stencil as shown in Fig. 3
was chosen.

Figure 3. Stencil of a point in one dimension.

The point P has evenly spaced 3-Point stencil. The
LS formula in Eqn. (13) then reduces to

—h(fj4 _fi)+h(ff” _f/)
1) 1)
(2#)

2 \"-
ij =
Sin=fia (1 1 1
S T

Or equivalently

Sin = Jjm
T (9

The LS formula in Eqn. (14) is one special case of
compact difference formulae due to Lele?' and these
are known to have better spectral resolution property.
(iv) Iterations or some kind of inner iterations are required

1 1 1
foifl +Efx/ +foi+1 =

to obtain higher accurate values of f,, from Eqn. (13).
One possible of cycle of iterations could be

7o ZAx;Af;
T EAx?
C A
S (-]
fxO - ZAXl-z
C A (- - (15)
- Z:Axi Af;'_ 21 (fxi_fx0j:|
fxO - ZAx,—z
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Let us get back to first-order LS formula in Eqn. (3)
for spatial derivative f . It is possible to use weighted
least squares. Introducing weights in Eqn. (2) we get,

2
Ezélv‘}i(AJ{i_Axifxo) A =x-x, AN =fi— 0
Minimising E wrt. f_ one gets weighted LS formula

O _ ZWiAxiAﬁ}

S0 =
0 ZW,-A)Cl-z (16)

and the denominator will be positive if all w. > 0. The
formula in Eqn. (16) is a weighted least squares formula
for derivative f, . The truncation error in Eqn. (16) is given
by

T, = =5 |fuo = O(Ax

Zwl-Axl-z ‘max )a Ax

zmax{Axl-}

max

(17)

There are several ways in which weights w, can be
determined. One possibility is to minimise the coefficient
of f_,in Eqn. (17) thereby making the formula in Eqn. (16)
more accurate. Yet another possibility is to choose

(A, )
W= (18)

where Ax, =min{Ax;}, r is any positive integer. The idea

in choosing Eqn. (18) is to reduce weight attached to points
far away from the node P, and thus make the weighted LS
formula more local. Yet another possibility is to choose
weights for increasing the spectral bandwidth of Eqn. (16).
To demonstrate the ideas behind spectral bandwidth, consider
the choice

f(x) = (19)
Which gives f5“ =(* )ik
Substituting for f(x) in Eqn. (16) one gets

Iw;AX; (el g —e”““)

£ = 20
x0 ZWJ-ijz (20)
We can easily verify that
Ax}
, wy K
W =ik | —2 |+ HOT
2w;Ax; @n
Noting that
, 2
Tw Ax, ("
£ _ pexact 2 77 ik
x0 x0 = ZWijiz (22)
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One can choose weights so as to minimise a norm
kl
E=|
k()
which is an integral of the square of the difference over

the bandwidth ky <k <k, . Alternatively choose weights
w, such that

ZW.AX-"3 =0
i (24)

So as to make fx((l)) second-order accurate.

2

dk (23)

1) _ pexact
x0 x0

3. MULTI-DIMENSIONAL LEAST SQUARE
FORMULA

Taking f(x,y)to be two-dimensional functions, we
define

E:%:Wi(Aﬁ_Axifxo_Ayz'fyO)z (25)

Here N(F)is the connectivity of node Fy(xy,),)
(Fig. 4) at which we want to derive LS formulae for the

derivatives fxo,fyo . Minimising F wrt fxO’fyO we obtain

(ZWiAxiz )fxO +(ZwAYAY,) fro = ZwAxAf,

26
(ZwAGAY) fro+(ZwAN7) fr0 = EwARAS, (26)
The LS matrix A(w) defined by
SwAY  SwAvAy,
A(W) = 5 (27)
ZwAx Ay, ZwAy;

is a 2x2 symmetric matrix and has

det[A0w)] = (2 wax? ) (X way? ) - (X waay ) 28)

The determinant is always non-zero due to Cauchy-
Schwartz inequality. The det [ A(w) ] will be zero if all the

Figure 4. Connectivity of node P, in two dimensions.
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points x;,y; fall on a straightline in which case it will not

be 2-D distribution of points. Solving Eqn. (26) for fo- /0

we get

_ ZAy,-ZZAxl—Afi _zAxiAyisziAfi
det[A(w)]
Fo= ZA’Q‘ZZA)GAfi _zAxiAyizAxiAfi (29)

0 det[A(w)]

Again several observations can be made. Let the
coordinate system X, be rotated to x, y . The LS formulae
for derivatives in x, y’ frame are easily obtained by changing
X,y into x',y' in Eqn. (29). This invariance of form of
formulae (or covariant formulae) follows from Eqn. (25)
which in the transformed frame becomes

. 2
E=Zw, (&A% £ -0/, (30)

fxO

The rest of derivation for fxvo,fyvo then easily follows.

The invariance of the inner product'**
Ax; fro + A, fyo 31

between gradient vector fyo./,0 and coordinate differentials

vector carries over to invariance of

Ax 1)+ Ay £ (32)

in which discrete LS approximation Eqn. (29) is employed.
Assuming v;,v, to be particle velocity vector (commonly

used in construction of Boltzmann schemes) one could
similarly conclude that,

Wi +vaf (33)
will also be invariant under rotation. Keshav?* and Keshav?’,
et al. have exploited this property in constructing rotationally
invariant LSKUM called KUMARI for inviscid gas dynamics.

The rotation of global frame x,y to local frame ',
y' is useful in application of LSKUM to problems involving
flow past bodies.

A point Fyis on the solid boundary (Fig. 5). Here
X,y in the global frame and (x',y' is the locally rotated
frame so that ' is along the body and y normal to it.
The flow tangency gives

i-i(Ry)=0 (34)
where, 5 =fluid velocity vector and #n(F)) is the unit

normal vector at Fy It is easier to enforce Eqn. (34) in
the local frame (x', y') . At an interior point also sometimes
it is profitable to use x,y with ' along the streamline
and y' normal to it. Dauhoo® has made use of LSKUM
with streamline upwinding by rotating coordinate frame.

Yet another observation about the LS formulae Eqn.
(29) is that onee can choose weights w;in such a way
that the LS matrix A(w) becomes a diagonal matrix, that

is, choose w;,to satisfy
2w, Ax; Ay, =0 (35)
The LS formulae Eqn. (29) then reduce to 1-D like
formulae. Konark and Deshpande* have developed a method
to determine weights w, to satisfy Eqn. (35). Denoting
these weights {V;‘ by the multi-dimensional LS formula for
spatial derivatives reduce to 1-D LS formula

_2WMAG D W AGAY,
X0 ZWI*AXIQ ’ Yo ZVV,*A)/? (36)

The weights w1, used in formulae for f,,and f,,are
generally different>’. Here, weights mf‘,ﬂ;: are the weights
for the diagonalisation of 4(w).One of the advantages of
1-D like formula Eqn. (36) apart from its simplicity is the fact
that denominators in Eqn. (36) can never be zero if weights

w, are positive. The rank deficiency problem of A(w) can
therefore be tackled by use of 1-D formulae Eqn. (36). Arora®,
Arora, Rajan and Deshpande’ and Arora and Deshpande*
have used the above diagonalisation in construction of
their robust and accurate LSKUM.

The order of accuracy of multi-dimensional LS formulae
can be enhanced using the defect correction technique'+1
explained in the previous section. For this purpose they first
write Eqn. (26) in the matrix form

Sro w;Ax; B
A(W){fyj {%mAylAfJ (37)
write £ defined by Eqn. (25) as
Ax? ’
Oy =A% oy = B3y = Fa
(38)

- Ay2
; :
_AxiAyifxyo _Tlfwo

For the purpose of deriving second-order accurate
LS formulae. Again minimising E wrt. [/, one gets

Figure 5. Point distribution around a boundary point P,
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Figure 6. Point distribution around an interior point P,.

(ZM}IAXIZ )fro +(zM}zszAyz )f‘yo RHS

2
= (ZM}IA'XIAJFI)_ZVVIAXI {%f.‘ao +AxiAyif;c}’() +A%f}yo}
(zM}iAxiAyi)fxo +(zszy12)f‘}o :RHSZ

Ax] A
= (ZM}IAy’Afl)_ZVVIAyI {Tlfxxo +AxiAyifA}o +i }yo}

One wants to prove that

Ax? A 1 1
vaoco +AxiAyifW() +Tfyyo = EAXI'MW' +5Ay,-4fy,- +HOT.
(40)
where Afxi:fxi_fxo;Afyizfyi_fyo (41)
One may note that
Afxi =fxi _fxo :fxonxi +fxy(,Ay,- +H.OT.
(42)

Afxi :fxi _fxo :fxyoAxi +fyy0Ayi +H.OT.

and therefore we get

I I A Ay
EAxiAf.‘w’ +5Ay1A vi :Tf:rxa +AxiAyi xyo +Tfj/ya +H.OT.

which is identical with Eqn. (40). The RHS of Eqn. (39)
is therefore given by

AX. Ay,
RHS, = w,Ax, {Af,- _TIAfxi —%Afﬂ}
Axl- Ayi Axl. Ay,‘
= ZWiAxi {[fl‘ _Tfri _Tf;)iJ_[f“’ _Tf“m _TfynJ}

= Zwl.Axl-Afi
(43a)
Similarly,
Ax; A
RHS2 = ZM};Ayl {Af; _TlAfxt _l fyt}
_ (43b)
= zWiAyiAfi
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The second-order accurate LS formulae therefore take
on the first-order form

fxo ZM}IAXIAJ?;

A(w) = ~ (44)
Fro ] | 2wl

We note that the modified difference Afl.

~ AN Ny
Afi:Afi_TAxi__Afyi

. Ay, (. .
(fz o)__(fxz fxo)_%(fyi_fyo)

- g - -2 )

2 2
=fi~Jo
(45)

where modified f at node i is

. Ax, Ay,

R . (46)
and modified f at node o is

. Ax, Ay,

fozfo_?fxo_%fyo (47)

In obtaining modified £, the midpoint [%%yj (Fig. 7)
was used. Modified fl,fo use derivatives at nodes o and
i and these spatial derivatives were used to obtain fl,fo .
The defect correction technique for second-order accuracy
has been used by Anandhanarayanan?, Arora®, Dauhoo?,
Ghosh'®, Praveen?” and Ramesh?.

The extension of second-order accurate LS formula
Eqn. (44) to 3-D is now obvious. We write by inspection
the 3-D formulae

Fo| | Zmiaf
AW S0 | =| L wiAr A, (48)
Lol | 2wz,
where
- Ax; Ay, Az,

As mentioned before, the above LS formulae Eqn.
(44) and Eqn. (48) are implicit in nature as the RHS depends
upon spatial derivatives at nodes o and i. A few iterations
are therefore required to compute fy>/y05/2 at node o
to second-order accuracy.

4. LSKUM-FREE FOR EULER EQUATIONS OF

GAS DYNAMICS

The LS approximations to spatial derivatives was
considered in terms of data at nodes in the connectivity.
These ideas were applied to develop Least Squares Kinetic
upwind mesh-free (LSKUM) method for obtaining numerical
solution of Euler equations of gas dynamics. We illustrate
the basic principles behind LSKUM method by considering
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Ax; Ay,
272

Figure 7. Midpoint used in evaluating modified f ( f” ).

1-D problem. Also, moment method strategy'' is used.
Here the Euler equations are obtained as suitable moments
of the Boltzmann equation of kinetic theory of gases. It
may be noted that Finite Pointset mesh-free method for
incompressible viscous flows employing weighted least
squares approach has been developed by Tiwari and Kunhert*
and Kunhert'® have developed upwind finite pointset method
(FPM) for compressible Euler and Navier-Stokes equations.
They have on the other hand developed kinetic mesh-free
method and used defect correction technique for higher-
order accuracy.

For 1-D problem, the Boltzmann equation without collision
term is given by

OF OF

—_—ty—=

ot Ox
where F is the Maxwellian velocity distribution defined
by

F=%\/§exp(—ﬁ(v—u)2—é] (51)

Here p is the mass density, P= %ZRT) , R = gas constant,

0 (50)

T = absolute temperature, u = fluid velocity and v = particle
or molecular velocity, / = average internal energy due to

, 2+D—yD
non translational degrees of freedom =57 ) RT D =

degrees of freedom, The W —moments'"** yields 1-D Euler
equations
Y%= (52)
ot Ox

where U = O].dIT yFdv,G = Oj‘cll?O vyFdv and
0 0

—00 —00

> (53)
1+2

2

It is noted that U and G are vectors given by

P pu
U=|pul|,G= p+pu2 (54)
e (e+p)u

where p = pressure, e = total energy per unit volume
1

S 2Ly
(v=1) 2

by using Courant splitting, that is write Eqn. (50) as

. Kinetic flux-vector splitting®* is obtained

oF v+MoF v-poF

—t——+——=0

ot 2 oOx 2 Ox

Taking ¥ —moments of Eqn. (55), one gets KFVS
(Kinetic Flux Vector Split)**>?* Euler equations.

(55)

oU oG* oG~
—+ +——=0
ot ox ox (56)

and further

where G* = J.d] IV__I;'V'\VFCIV
0

pud* +pB
G = (p+pu2)A++puB ,G™ = (p+pu2)A’—puB

(e+p)uA*+(e+§jB (e+p)uA’—[e+§jB

(57)

pud" —pB

1+ erf (S e752
where 4" = ( >,B: ,S:u\/E
2 2 /BTC
With this background material, they are ready to develop
LSKUM" ' for the 1-D Euler equation Eqn. (52). In the
Courant split Eqn. (55), we replaced the space derivatives
66_1; by the LS approximations, and then by taking W — moments

we obtain.
D AG; Ax,

n Z AG;—AX[
i [T —
2%
i

A il
o), | e

=0

ieC*(R,) ieC (R,)
(58)
The notation used in Eqn. (58) needs explanation.
The connectivity C*(P,) is of node P and it is split into
C*(P) and C(P,) which are defined by

C*(P) = {Vi|xl- —-X, SO}

™ (B) ={¥ilx;~x, > 0} (59)
The split connectivity C*(P,) is used in discretising

the term
viMor

2 ox (60)
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and split connectivity C*(P,) is used in discretising the
term

v—|v| aF |

2 Ox (61)

The suffix i runs through C*(P ) in the LS expression
for discretising Eqn. (60) and it runs through C(P ) for
discretising Eqn. (61). Using first-order time marching for
the time derivative in Eqn. (58) we get the LSKUM method-
based state update.

ZAG;Ax,.

1
Ay
ieC*(8)

D AG; Ay,
2
iec(8)
(62)
For the sake of easy understanding Eqn. (62) we repeat
the definitions

AG =G -G, ,Ax; =x; —x, (63)
The LSKUM-based state update Eqn. (62) uses the

+

KFVS fluxes G* and stencil splitting for obtaining an

um™(p)=U"(P)-At — At

upwind numerical scheme at Euler level. We do velocity
splitting at the Boltzmann level and then pass on to the
Euler level by taking ¥ — moments of the split Boltzmann
Eqn. (55). The state update Eqn. (62) is first-order accurate
in space and time. The second-order accuracy in time can
be easily obtained by using RK-2/RK-4 in Eqn. (58). The
second-order accuracy in space can be achieved using
defect correction. Using the theory explained earlier in

Section 3, we defined modified flux differences AG* by

~ Ax; *
AG; = AG; ——’A(aG J
1

! 2 ox

a2 {2)
2 ox ). ox
1 o (64)

=1G* _Ay oG _IG* A% 0G"
! 2\ ox : ? 2\ ox ,

The second-order accurate LS formulae for space derivative
then yields the semi discrete law

. [ S AGAx, > AG; A,

%) ’
ot ), Z AX? Z AX?

ieC*(P,)

=0
ieCi(Pn)

(65)

We can use RK2 or RK4 for higher-order accuracy

in time. It may be noted that as mentioned before a few

inner iterations are generally required to achieve second-

order accuracy for space derivatives. The extension of

Eqn. (65) to multidimensional flows is straight forward.
We have to discretise the 2-D Euler equation

oUu 0 0
—+—(GX)+—(GY)=0
ot +8x( >+6y( ) (66)
Here

p puy pu,

2 puu

=" ex=| PP | gr=| T,

pu, puy iy ptpu, (67)

€ (e+p)u1 (9+P>”2
Next we split Eqn. (66) as
&+Q(GX*)+£(GX’)+£(GY*)+£(GY’):O
ot ox ox oy oy

(68)
where GX*,GY* are split flux vectors given by

p(ulAftBl) p(uzAziiBz)
pu, (uzAzi iBZ)

(P"' Pug)Azi Tpuy B,

(]7+ Pu|2 )Ali £ pu By

Gx* = pu, (ulAli + B ) GY* =

(e+p)u|Alii(e+§]Bl (e+p)u2A2ii(e+§]Bz

(69)
where
1 exp(-S?
B:mvsl 2”1\/6:52 :uz\/E,B] Z%,
op(=53) . (lxef(s) . (1zerf(s,))
B, = = A =

2fpn 2

C(P,)
C(Py)
C(Py)
Figure 8. Left and right stencils of the node P in one dimension.
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We now do stencil splitting as shown in Fig. 9(a) and
Fig. 9(b).

The connectivity or stencil C(P ) of node P is split
in two ways, that is into C (P ), C,(P,) and C(P,), C (P )
as shown in Fig. 9(a) and Fig. 9(b). The Eqn. (68) is then
discretised as

[FL o)., e )
ot J)o \8x c(p) \O Cy(B,)

+(§GY+j +(§GYJ (70)
oy Cy(P,) oy (P

The discrete LS approximations used in Eqn. (70) are
given by

[3 GX*) | XA Y AGAGK] 3 AxAY 3 AV AGX
G(%)
i<G(r,)

& > a8 Y (S anar)
(71)
| A AxAGT ZAxAyZAyAGX
S Tt -(Zavan)
(72)
GY* ZAx D AvAGY - ZAxAy,ZAx AGY*
ZA)C[ ZA)}, (ZM Ay’ ieGy(P,
(73)
DAY AvAGY ZAxAy,ZAx AGY;
Yagyar-(Tavan) |,
(74)

The modified differences AGX",AGY,* are given by

AGX; =A(GX})- A; [;(GX )l—%(GX+)0:|

N N - (75)
3 glor) —lor)
C(Py)
C:(Po) C,(P)

ox ox

; + + (76)
2 () - 2(er) |

It may be noted that a few inner iterations are required
for second-order accuracy. The well known time marching
methods RK2/RK4 can be used for the semi-discrete law
Eqn. (70) to obtain time accurate LSKUM based state
update.

AGYE :A(Gx*)—ﬁ{ 0 (67 )I_E(GY+)J

5. ¢-LSKUM METHOD

The gq-variables or entropy variables were introduced
by Deshpande!® for casting Euler equations in symmetric
hyperbolic form. These variables have been used by Dauhoo,
Ghosh, Ramesh and Deshpande’ and by Deshpande,
Anandhanarayanan, Praveen and Ramesh'®. For 1-D problem,
the g-variables are defined by

Inp
y—1

_Buz

Inp+

(77)

The g-vector is a unique function of U-vector and
vice versa. The variables p,u,} are

,p—eXP{qﬁBu lnﬁ}

B__?a '\{—l

2B
Given U or ¢, we can construct a unique Maxwellian
denoted by F or F(gq).

Because of logarithmic dependence of q on p,u,f
the linear combination

G=(1-0)q'+6q" (78)
of two q-vectors lead to a multiplication of corresponding

Maxwellians. Let f' and F" be the Maxwellians
corresponding to ¢' and ¢" and further let fF be the

C,(P,)

C,(P,)

Figure 9. (a) Split stencil in X direction and (b) Split stencil in Y direction.
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Maxwellian corresponding to ¢. We then have®®
F=(F) 0 (F)’ (79)

for which 7 p,p are given by

B=(1-0)p'+06p" (80)
_ (l_e)ﬁvuv+eﬁvv "
w= B (1)

1

1)(1=0) (gm0 |51 .
5‘(9')“'0)(9")0{M} exl{—e(l-e)(u'-u")2 L }

B B
(82)

. Inp ~.
=lnp+—Bl—Bu2 in terms of ¢,

We want to obtain ¢

and ¢,”.
The Eqn. (82) gives

Inp=[(1-6) lnp'+91np"]+ﬁ[(l—9) Inp'+0lnp"]

v_uvv)z B'B"

1 ~
——lnB—e(l—e)(u
v—1
The variable g, for the product of Maxwellian Eqn. (79)
is then given by

=1n5+@—f3a2
y-1

=|(1-0)Inp+Onp" +L 1-0)InB+06Inp" |-
(1-9) -

0(1-0)(u'-u

..)Béi" B{(l e)ﬁ'gureﬁn }

=(1—6){lnp'+ﬁlnﬁ'}+9{lnp"+ﬁlnﬁ'}—

0(1-0) (u'~u")

2pipr, [(1-0)pru+0p™u ]’
p p

(83)
The sum in the curly brackets in Eqn. (83) can be
simplified as follows:

Sum =

'@1| —

0(1-0)(w u,,)zB,B,,+(1_9)2(B,u,)2]
+0% (Bu”)” +20(1-0)p B "
[0(1-0)pp{a )+ (1-0)" ()" + 0 (")
[(1-0)p'(1-0)p'u™+0p"u")

| +0B"((1-0)B '+ 0B"u" ) ]
=(1-0)Bu "+ 0p"u"

o —

o =
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In view of these tedious algebraic manipulations, the
Eqn. (83) simplifies to

q =(1—9){1np+lnﬁl}+9[ "+ lnB"} (1-6)B'u"~0p"u"
Y y-1

ln—B'—B'u'2}+9{lnp"+w—[3"u"2}
y-1 1

:(1—6){lnp'+
:(l—e)q'+9q"

(84)
We have thus shown that the addition of ¢' and ¢"
leads to multiplication of corresponding Maxwellians which
itself is a Maxwellian f . This property of entropy variables
has been used in constructing g-LSKUM method, i.e. the
LSKUM method based on entropy variables®!3:3,
For developing q-LSKUM method, we first critically
look at the LS formulae used in LSKUM method. For 1-D
problems, we have employed the first-order accurate LS

OF
formula for the derivative 8_x -

2 AGAF,
FO | i

W (85)

ieC(Fi))

and for second-order accurate derivative, we have defect
correction formula

> AxAF,
FR) _|

W (86)

ieC(E))

The two LS formulae look almost alike but there is
an important difference. Aﬁ; in the first-order accurate
formula (85) is a difference between two Maxwellian
distributions while AF; in the second-order accurate formula
is ‘not’ a difference between two Maxwellians. It is in fact
given by

tEE)

It is a difference between two perturbed Maxwellians
which strictly speaking is not a valid velocity distribution
because it can become negative for some values of velocity
v. Instead of the Maxwellians, now g-variablesi.e., g,, g,
and g, was used. They have the following LS formulae
for derivatives of g,

ZAxiAqi

S A (88)

ieC(Po)

d\) =
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D AYAG;

S ax (89)

ieC(r,)

¢\ =

where

ofs@es®)]

We define modified g-variables by

- oq

ql'—%__ ox ), (€)Y
~ Oq

4 _qo__(ﬁxj (92)
The modified difference Ag; is then given by
Ag=4;=4, 93)

It is noted that g; and g, are linear combinations of
q;,j€C(B) . This is obvious when we note that the LS

oq) (%q . o
approximation of derivatives ox )\ ax ) are linear combinations

of g belonging C(P) or C(Pn). The modified g; and g,
being linear combinations of g they will have corresponding
Maxwellians F(g;) and F(4,) . In terms of these modified
Maxwellians, we have second-order accurate LS formula

25 {F(4)-F(a,)]
v > A% (94)

ieC(Po)

This second-order accurate LS formula has the same
form as the first-order LS formula Eqn. (85). The first-order
accurate numerical schemes are known to give smooth,

wiggle free contours of p, p,T , have residue fall of several

decades but smear the solution to unacceptable level. It
is reasonable to expect that the above second-order accurate
formula based numerical scheme will retain good properties
of first-order scheme, still giving accurate solution with
crisp flow features. This expectation is indeed supported
by many computations done using g-LSKUM method*%2"-%,

6. CONSERVATION PROPERTY OF LSKUM
Questions about conservative nature of mesh-free
numerical method are often raised. Following the celebrated
paper by Lax'? on conservative numerical schemes, it is
assumed that conservative schemes are essential for accurate
capture of jump conditions. By implication, it is assumed
that non-conservative numerical schemes will not yield
accurate jumps such as for example Rankine-Hugoniot
(RH) jump relations across a shock. They have computed
many flows (subsonic, transonic, supersonic, hypersonic,
and strongly rotating viscous flows) over years'-3:6:827-30
using LSKUM method and always got accurate solution
of Euler equations. There is a strong body empirical evidence

to believe that LSKUM method, even though its conservative
nature cannot be proved in the sense of finite volume
method, always yields accurate flow solution. Recently,
Katz and Jameson'” have also noted good agreement of
mesh-free computations with conventional finite volume
computations despite absence of any proof of conservation.
Sridar and Balakrishnan®' gave experimental demonstration
of mass conservation with mesh-free method. The issue
is studied in more details.

They note that for every point or node P ecloud Q
of points, they generate connectivity C(P). The LS formulae
for discrete approximations to F_, F operate on the
connectivity sets C(B),B Q. Also set of connectivities
form an ‘overlapping cover’ for Q. That is,

Q=c(R)UC(R)UC(R)...Uc(r,)

Compare this situation with a finite volume method
for which the triangulation 7, provides a mutually disjoint
cover, that is T, N7T; = either null, or an edge or a point.
FVM achieves conservation property by having pairwise
cancellation of fluxes at common edge between two triangles.
This is not the case with mesh-free method LSKUM. Hence
conservation property of LSKUM cannot be proven by
proceeding on lines similar to the proof of conservation
for FVM. 1-D LSKUM method is studied in more detail.
The 1-D split Boltzmann equation

oF v+MoF v-p|oF
—t— Tt 7= 95)
ot 2 oOx 2 Ox
is discretised as
ZAxAF
aF+v+|v|
ot 2 ZAX
ieC*(PR) ~0
L
vl (96)
2 ZAx
L iecf(PD) ]
Using Taylor series for AF,, one gets
F F., Z
Zi:AxiAFi ZM{ WA + S }
o | %
i ieC*(P,)
ieC*(P,)
a7
N F_4+HOT
ZA,XIZ xXxo Tt
l ieC*(P,)
)
Similarly,
3
XA >
o =F,+| ——— Fo, +HOT.
ZAxlz X0 ZAxlz XxXo
i ieC™(PR,) i o
ieC (B,)
(98)
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Hence Eqn. (96) gives the modified pde at Boltzmann
level.

OF OF v+|v|
+v +

— v K,(B)F
o  ax 2 (B P ~0
v—| (99)
+ K, (P)F,,+HOT
Ax
2
KI(BJ>= IZA)CZ
i ieC*(F,)
Ax3
where, 2 (100)
KZ(P0>= img
i ieC*(Fi,)

Taking y—moment of Eqn. (99), one obtains the modified
pde at Euler level.

(@) &) ey le)-

(101)

Consider a steady 1-D shock with I/ = F', for x < x_

and I = F, for x > x . Obviously p,u;,7; and p,,u,,T,

are related by Rankine-Hugonoit(R-H) jump conditions.
In steady-state, the pde will enforce

0 o o
—|G+K(P)—G +K,(P)—G |=0
xl: " 1( 0>8x " 2( 0>8x }

(102)

that is G; = G, because all gradients such as %,aa% will
be zero for uniform states 1 and 2. For shock propagating

at constant velocity s, we will get

Gz—Glzs(uz—ul) (103)

Thus the LSKUM method satisfying the pde (in the
limit of number of points — o ) will automatically ensure
correct jump conditions across shocks. It is therefore not
surprising that LSKUM method captures shocks quite
accurately satisfying R-H jump conditions. Depending on
the numerical diffusion present in the numerical scheme,
the shock will be smeared. Smearing can be reduced by
refining the cloud. The above arguments support the strong
empirical basis for the claim that LSKUM method yields
accurate flow solution capturing all flow features. We
therefore believe that the conservation property is sufficient
but not a necessary condition for getting accurate jump
conditions across shocks.

7. BOUNDARY CONDITIONS

The boundary conditions have been derived from the
concepts of kinetic theory of gases. Boundary conditions
are theoretically introduced at the kinetic level and then

594

the state update at Euler level is arrived at by using moment
method strategy.

7.1 Inviscid Wall Boundary Condition — Kinetic

Characteristic Boundary Condition

Kinetic Characteristic Boundary Condition (KCBC)
was developed by Mandal? to treat wall boundary condition.
The wall boundary condition for inviscid flow states that
the normal velocity of fluid is zero. This is called flow
tangency boundary condition. This boundary condition
is enforced using specular reflection model of kinetic theory
of gases. In this model a particle incident on a solid wall
has its normal velocity reversed after reflection from the
wall. The tangential velocity remains unchanged. The velocity
of reflected particle can be expressed in terms of velocity
of incident particle as

Vg =V, —2(V, -n) (104)
where, v, is the velocity of reflected particle, v, is the
velocity of incident particle, 7 - unit outward vector
normal to solid wall.

Consider a point ‘P” on the wall. Let (X', Y”) be the
local frame (Fig. 10) with X~ along tangent and Y’ along
normal to the solid wall at point P,. (X, ¥) is the standard
global frame. Further (v{,v})and (v;,v,) are particle velocity

components in respective frames.
The Maxwellian F at P, is defined by,

F,(w,vy) v, <0
F= , (105)
Fr(vi,vy) vy >0

Fand F, correspond to incident and reflected particles
respectively. Using specular reflection model, the reflected
Maxwellian I, can be expressed in terms of incident Maxwellian
by,

Fr =F(y =2n,(vV-),v, =2n, (v 1)) = F (v,})
for v; >0 (106)

Here, n,,n, are components of normal vector in the
global frame. The update scheme for incident part at Boltzmann

Figure 10. Local frame at a point on the wall.



DESHPANDE, et al.: LEAST SQUARES KINETIC UPWIND MESH-FREE METHOD

level is
S =R At (V{S—F,j +(v]’8—F,j +[v§ 8—F,j
& a(r) N ¥ear) T e,
(107)
. . . SF SF .
The discrete approximation e and 5 to spatial

derivatives are defined by

8F _ 2 A Y AAR, -3 AYAYY AVIAF,

™ YAy A (X Avay) (108)
oF _ XA Y AVINE — 3 AvAY Y AGAF,
v YAy Ay (X Aay) (109)

over substencils defined by

C(B)={P.Vie C(R)|x—x, <0}
G, (B) ={B.Vie C(R)|x,-x, >0}
Cy(B) ={B.Vie C(R)|y -y, >0}

The reflected part f, can be obtained from specular
reflection model and is given by

S =1 () (110)

Using the above definitions and taking ¥ moments
with suitable limits on integration we obtains the state
update for U,

(E,wafj +(i,c;x'~)
&x a(p) \& )

(111)
where
GXx'" :C]. (]. O].vl’\uF,dv]’dvédl
o
X =[ [ [vivFdvidvdi (112)
0 -0 -

7.2 Far-field Boundary Condition — Kinetic Outer

Boundary Condition

Kinetic outer boundary condition (KOBC) was developed
by Ramesh? to treat the far-field boundary. The far-field
boundary condition is derived in a similar fashion as the
wall boundary condition. The state update at any point
‘P’ on the outer boundary (Fig.11) is influenced by information
going out of computational domain and information coming
into the domain from free stream conditions. The outgoing

Figure 11. Neighbourhood stencil around a far-field boundary
point.

information corresponds to velocity space with v; >0 and
incoming information corresponds to v; <0.
Correspondingly the Maxwellian F can be written as

F, (vv2) vy <0
F= ;o , (113)
E.0' ) vy >0
where
F, =F, (114)
il By - At (V{S—F,j +(v]’8—F,j +[v§ S—F,j
e r) \ 3 ear) \ T Jeyr)
for vj; >0 (115)
. L 3F 3F '
The spatial derivatives > and 5, are defined by

Eqns (108) & (109) and substencil C, is defined by,
G (R) ={R.VieC(R)|y -y, <0}

Now taking ¥ moments with suitable limits on integration

we gets (note that F corresponding to free-stream remains
unchanged, i.e., free-stream condition),

(iGX'+_j +(iGX'"j
O G(r) \& o (R)

dy G(R)

(116)
The state vector Up is defined as
_ o 0 o 00
Tp = [ | [wEdvidvdl + [ [ [wF,,dvidvdl
0 —00 —o0 00-o
(117)

8. CONCLUSIONS

The study has covered the theoretical developments
in LSKUM, ¢-LSKUM, weighted LSKUM, defect correction
for achieving higher-order accuracy, and treatment of boundary
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conditions by KCBC and KOBC. This development which
began in 1989, is over a period of about twenty years and
is due to the work of six PhD students at the Indian
Institute of Science, Bangaluru. The present study does
not cover R&D work done in the development of LSKUM-
MN (LSKUM for moving nodes) method for computing
unsteady flows involving multiple moving boundaries.
The work has been supported by several research contracts
from AR&DB Delhi, ADA, Bangaluru, BARC, Mumbeai,
DRDL, Hyderabad and GTRE, Bangaluru. 2-D and 3-D
q-LSKUM based codes have been developed by DRDL,
Hyderabad and NAL, Bangaluru and these are routinely
being used for computation of subsonic, transonic, supersonic
and hypersonic flows past bodies at these laboratories.
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