
70

Received 16 December 2013, revised 19 December 2014, online published 27 February 2015

Defence Science Journal, Vol. 65, No. 1, January 2015, pp. 70-76, DOI : 10.14429/dsj.65.5474 
 2015, DESIDOC

1. IntroductIon
Two-dimensional (2-D) search radar networking, which is 

generally utilised in the first line of air defence, has been widely 
applied in modern airspace control1-3. This fact generally has 
two reasons: on one hand, 2-D radars are cheaper than three-
dimensional (3-D) radars; on the other, single 2-D radar can’t 
directly determine a target’s position since it is merely able to 
obtain the range and azimuth without the height of the target. 
Consequently, it is a valuable task-how to utilise the resources 
and measurements from multiple 2-D radars to estimate the 
position of a target. To simplify the description, all radars 
below denote two-dimensional search radars.

According to the type and working mode of sensors, the 
target localisation methods mainly form three categories: active 
localisation using range4-7, passive localisation using azimuth8-

11, and combined localisation using both range and azimuth12-15. 
Moreover, three factors are often taken into consideration in 
radar networking4,12: 
(a)  a radar possesses higher precision in range than in azimuth 

since its emission lobes approximating to spindles have 
certain widths in the horizontal plane; 

(b)  range error has less influence on localisation results than 
azimuth error in propagation; and 

(c)  a localisation dead area exists near the baseline between 
two radars while only two radars are employed to locate 

a target. For the above reasons, this research utilises three 
radars and their range for target localisation.
In the traditional localisation methods,  only one  

assumption is given for simplifying the design procedures 
as one such assumption is, all radars are placed in the same 
horizontal plane and their north direction is consistent or parallel 
to each other by ignoring the earth’s curvature. However, these 
assumptions are often unsatisfied in big scenes due to the wide 
coverage of radar networks15. The other important information 
such as the types, performances, working modes, number 
and geometric distribution of radars are omitted, which is the 
important consideration in real localisation process. In addition, 
the least squares estimator and its modified approaches are 
often applied in various applications for target localisation 
problems5,7,11,13. Based on the above facts, a range-only target 
localisation method is presented in this paper. In the proposed 
method, the localisation model is established using range from 
three radars in the real ellipsoidal earth model, and the target 
localisation problem is formulated as a nonlinear weighted 
least squares problem through a set of localisation equations 
driven on range error. Then Levenberg-Marquardt (LM) 
algorithm is applied to solve the localisation equations. At last, 
two simulation experiments and a real-date experiment were 
used to show both the validity and feasibility of the proposed 
method.
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2. tArGet LocAtIsAtIon modeL
As shown in Fig. 1, n radars iR ( 1, 2, , )i n=   are placed 

at the corresponding geographical coordinates ( , , )i i iB L H  
in the localisation model, where iB , iL  and iH  denote the 
longitude, latitude, and height coordinate respectively; and 
their observations ( , )i i ir= θz  are received simultaneously, 
where ir  and iθ  denote the range and azimuth of the target T. 
Theoretically, n range spheres with each corresponding radius 

ir  and its centre at the position iR  intersect at the point, the 
target’s position. Hence, at least three radars are required for 
range-only target localisation in this case. Therefore, three 
radars and their range information are applied to locate a target 
in this research.

Taking the earth curvature into consideration, the 
geographical coordinate ( , , )i i iB L H  of each radar should be 
converted into the geocentric coordinate ( , , )i i iX Y Z :

2

( ) cos cos
( )cos sin

(1 ) sin

i i i i i

i i i i i

i i i i

X N H L B
Y N H L B
Z N H L
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              (1)

where eR  and er  represent the long and short radii of the earth 

respectively, 
2

2= 1 e

e

r
R

ρ −  is the earth eccentricity ratio, and
 

2 2= 1 sini e iN R L−ρ
Under the assume of radars with range error, a set of 

geometrical equations are derived according to the geometrical 
relationships between the target and three radars in the 
localisation model as follow:

( ) ( ) ( )2 2 22 , 1, 2,3i i i ir X X Y Y Z Z i= − + − + − =           (2)
where ( , , )X Y Z=X  is the true geocentric coordinate of the 
target. In consideration of range error, Eqn (2) can be rewritten 
in the following formula:

( ) ( ) ( )2 2 22 22 , 1,2,3i i i i i i ir X X Y Y Z Z r v v i= − + − + − + − =     
                                                                                                (3)
where iv  is range error of the i th radar. Based on Eqn (3), the 
localisation equations are derived as follow:

( ) ( ) ( )2 2 2( ) , 1, 2,3i i i i id r X X Y Y Z Z i= − − + − + − =X   
                                                                                                (4)

Furthermore, one can define the objective function in 
consideration of different influence of each radar’s range error 
on localisation results as follow:

( )
3

2

1

( ) ( )i i
i

F d
=

= σ∑X X               (5)

where iσ  denotes the standard deviation of range error on the 
ith radar. As a result, the localisation task can be formulated 
as a nonlinear weighted least squares problem to provide the 
optimal estimate such as the minimum value for ( )F X .

3. ProPosed method And Its vALIdIty 
AnALysIs
To overcome a nonlinear least square problem, many 

methods have been developed such as the Newton, gauss-
Newton, and LM algorithm. The LM algorithm has the 
advantages on both the local convergence property of the 
gauss-Newton algorithm and the global convergence property 
of the gradient descent algorithm, and it is one of the most 
effective algorithms to solve a nonlinear least square problem 
with small margins13,16. As a result, the LM algorithm is applied 
to solve target localisation problems in the following.

3.1  Lm Algorithm and the Initial value of the 
target’s Position

3.1.1 The LM algorithm for Solving the Localisation 
Equations

The optimal estimate for the target’s position is the value 
X while F(X) obtains its minimum value. To minimise F(X), 
the vector is defined as:

( )T1 2 3( ) ( ), ( ), ( )d d d=d X X X X  (6)
Moreover, introducing the diagonal matrix Λ , whose 

main diagonal elements are 2
1σ , 2

2σ  and 2
3σ  respectively, the 

objective function (Eqn(5)) can be rewritten as:
T 1( ) ( ) ( )F −= ΛX d X d X               (7)

Then define the Jacobi matrix of ( )d X  at the point 
( , , )X Y Z′ ′ ′=X :
 

1 1 1
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              (8)

given ( ) ( )i i id= σf X X , 1,2,3i = , and 
T

1 2 3( ) ( ( ), ( ), ( ))f f f=f X X X X , the gradient vector for F(X) 
can be obtained as:

T( ) 2 ( ) ( )=g X J X f X
              (9)

The second derivative matrix (Hesse matrix) for F(X) is:
3

T 2

1

( ) 2 ( ) ( ) 2 ( ) ( )i i
i

f f
=

= + ∇∑G X J X J X X X             (10)

Setting
3

2

1

( ) ( ) ( )i i
i

f f
=

= ∇∑S X X X             (11)

Figure 1.  target localisation model.
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And substituting ( )S X  in Eqn (10), yields the following 
expression:

T( ) 2 ( ) ( ) 2 ( )= +G X J X J X S X             (12)
To solve Eqn (12) for X, the recursive formularies of the 

Newton algorithm11 is introduced: 

( )T T
k k k k k k+ δ = −J J S J f

            (13)

1k k k+ = + δX X             (14)

where kδ  is the k th iterative step length. Due to the large 
computational complexity on kS  and the possible singularity 
on T

k kJ J  in the Newton algorithm, Levenberg and Marquardt 
utilised the following Equ (15) to replace Eqn (13) for 
calculating kδ  14: 

( )T T
k k k k k k+µ δ = −J J I J f

,            (15)
where I stands for the unit matrix, and 0kµ ≥  refers to the 
control parameter in the iterative process. Consequently,         
Eqn (14) together with Eqn (15) is called the LM algorithm. The 
LM algorithm is applied in the proposed method to solve the 
localisation equations. As a result, the main design procedure 
of the proposed method is illustrated as Table 1.

where 0r  and 0θ  are the magnitude and angle of the vector 
OA  respectively. Consequently, the approximate geocentric 
coordinate 0X  can be given by transforming 0x  from the 
local coordinate system to the geocentric coordinate system.

3.2  validity Analysis of the Proposed method
The Cramer-Rao lower bound (CRLB)6,7,12 is the minimum 

mean square error (MMSE), which the unbiased estimators 
can reach, and it is normally used as a performance metric 
for localisation methods. In this paper, the localisation CRLB 
is driven, and the relative validity is defined as the ratio of 
MMSE of the proposed method to the CRLB for estimating its 
localisation results as below.

3.2.1  The CRLB on Localisation Results
Express T= ( , , )X Y ZZ  as the estimate of the target’s 

position and ΛZ  as the likelihood function of the observation 
set = { , = 1,2,3}ir iZ , which is given as follow:

3

1
( | ) ( | )ii

p p r
=

Λ = = ΠZ Z X X             (17)

The CRLB on localisation results is determined in the 
following formula:

[ ] [ ]{ }T1 ln( ) ln( )
true

CRLB E−

=
= ∇ Λ ∇ ΛX X

X X
P Z Z          (18)

where trueX  is the true position of the target. The gaussian 
density of the range ir  is obtained by the following equation:

( )2
22

( )1 1( | ) exp
22

i i
i

ii

r f
p r

  −  = − 
 σπσ    

X
X            (19)

Then the logarithm likelihood function of the observation 
set Z  can be expressed as:

( )23
2

2
1

( )1ln( ) ln(2 )
2

i i
i

ii

r f

=

 −
 Λ = − πσ +
 σ 

∑ X
Z             (20)

By substitution of  Eqn. (20) into Eqn. (18), PCLRB(X) is 
simplified as:

Figure 2.  Approximate geometric relations of the target and 
two radars.

1: Input: Initialise the target’s position X0, the allowable error 
0ε > , the suitable control parameter µ .

2: output: the target’s position Xk at time 1,2,k =  .
3: Initialise the localisation model: the geocentric coordinate 

( , , )i i iX Y Z , range ir  and range error iσ  of each radar iR , 
the diagonal matrix Λ  , and the unit matrix  I.

4: while kδ < ε  do
5: Calculate the value of the functions k

id  and kf , and the 
Jacobi matrix kJ .

6: Solve kδ  according to Eqn (15).
7: Update k k k= + δX X and 1k k= + ;
8: end

table 1.  design procedure by the proposed method

3.1.2  The Initial Value of the Target’s Position
To avoid double value solutions16 and accelerate the 

convergence speed for the LM algorithm, the initial value X0 
for the proposed method, which is the approximate position of 
the target T, can be calculated according to the observations 

( , )i i ir θz =  of two radars selected from three radars. Referring 
to Fig. 2, a local Cartesian coordinate system was constructed, 
where the position of the radar R1 is as the origin O  and x axis 
is coincident or parallel to the north direction. The position 
of the radar R2 is denoted as A. In the coordinate system, T1  
is the projection of the target T  onto the plane xOy. Finally, 
the coordinate 0 0 0 0( , , )x y zx =  of the target T in the local 
Cartesian coordinate system can be calculated as:

0 0 2 0 1 2 1

0 0 2 0 1 2 1
1 22 2 2 2

0 1 0 2 0 2 1

sin( ) cos sin( )
sin( )sin sin( )

sin ( ) sin ( )

x r
y r

z r r


= θ − θ θ θ − θ

 = θ − θ θ θ − θ


  = − θ − θ θ − θ 

          (16)
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( ) 1T 1( )
true

CRLB
−−

=

 = Λ  X X
P X J J             (21)

Consequently, CLRB( )P X  is used to calculate the relative 
validity of the proposed method.

3.2.2  Relative Validity Analysis of the Proposed 
Method

The relative validity of the proposed method can be 
defined as:

2ˆ( ) ( )CE
CRLBRE E= −X X P X             (22)

Here, 2ˆ( )E −X X  acts as the mean square error of the proposed 
method, and it can be approximately expressed as:

2 2

1

1ˆ ˆ( ) ( )
N

true i true
i

E E
M =

− ≈ −∑X X X X             (23)

where M is the number of the Monte Carlo simulation runs, 
and ˆ

iX  is the estimate of the target’s position for the  ith 

simulation.

4.  exPerIment resuLts And AnALysIs
Two simulation experiments and a real-test experiment 

were carried to estimate the performance of the proposed 
method in comparison with the least squared target localisation 
(LSTL) method in the paper7. All experiments were conducted 
using a computer with a dual-core CPU of Intel Pentium 4 
2.93 gHz, 1 gB RAM. The program for each experiment was 
performed using the MathWorks MATLAB 2009a version 
software.

4.1  two simulation experiments
The detection area, its longitude ranging from 119.0° to 

120.0° and its latitude from 39.5° to 40.5°, is equally divided 
into 21*21 grids. Three radars locate at (119.0°, 39.5°, 0.0 km), 
(120.0°, 39.5°, 0.0 km) and (119.0°, 40.2°, 0.0 km) respectively. 
The standard deviation rσ  of each radar’s range error is 100 m. 
To intuitively reflect the localisation performance, geometrical 
dilution of precision (gDOP)17 was applied to describe the 3D 
geometric distribution of the localisation error :

2 2 2GDOP X Y Z= σ + σ + σ ,            (24)

where Xσ , Yσ  and Zσ  are the standard deviations of location 
errors in direction of X , Y  ,and Z  axes,  respectively in the 
geocentric coordinate system.

Figures 3(a) and 3(b) provide the gDOP of both the 
proposed method and the CRLB, respectively. Fig. 4 shows 
the relative validity CERE  of the proposed method according 
to Eqn. (22). As can be seen from Fig. 3, the gDOP of the 
proposed method is much closed to that of the CRLB. It can be 
seen from Fig. 4, the values of CERE  range from 0.9 to 1.1. 
Based on the above facts, it verified that, the proposed method 
can approximate the localisation accuracy of the CRLB.

To compare the proposed method with the LSTL method, 
six target positions were located at the same longitude 119.5° 
and latitude 40.0° but for different heights ranging from 6 

Figure 3.  GdoP contours by two methods: (a) the proposed 
method and (b) the crLb.

Figure 4.   relative validity RECE of the proposed method.

(a)

(b)



DEF. SCI. J., VOL. 65, NO. 1, JANUARy 2015

74

km to 16 km with equal intervals. Figure 5 shows the root 
mean-squared errors (RMSE) for the target’s position using 
two methods for 100 Monte Carlo simulation runs. As is seen 
from Fig. 5, the RMSE of the proposed method are smaller 
than the LSTL method. Therefore, due to range with higher 
precision than azimuth, the LM algorithm can provide good 
estimates for the target’s position through the establishment 
of the localisation equations using range in the real ellipsoidal 
earth model.

4.2  real-test experiment
The real-test experiment was evaluated using real-

tracking data, which is generated from of three radars (ID=RI, 
RII, and RIII) listed in Table 2. The radars are stationed at 
(119.5150°, 31.75428°, 0.0 km), (119.9560°, 31.96631°, 0.0 
km) and (119.5010°, 27.99498°, 0.0 km), respectively. Due to 
the restricted test condition, the true positions of the targets are Figure 5.  comparison of localisation error by two methods.

no. rI rII rIII Localisation results

r
ow

1

(127.4 km, 321.1º) (171.2 km, 295.8º) (142.2 km, 307.7º) (119.5975º, 30.10883º, 3555 m)
(122.0 km, 321.8º) (165.6 km, 295.5º) (136.5 km, 307.8º) (119.5999º, 30.12459º, 3553 m)
(119.3 km, 322.1º) (162.9 km, 295.2º) (133.8 km, 307.7º) (119.6010º, 30.13263º, 3551 m)
(116.6 km, 322.6º) (160.1 km, 295.0º) (131.0 km, 307.8º) (119.6021º, 30.14066º, 3549 m)
(113.9 km, 323.0º) (157.4 km, 294.8º) (128.3 km, 307.9º) (119.6031º, 30.14870º, 3547 m)
(111.2 km, 323.4º) (154.8 km, 294.6º) (125.3 km, 307.8º) (119.6038º, 30.15554º, 3545 m)
(108.6 km, 323.8º) (151.9 km, 294.4º) (122.6 km, 307.9º) (119.6050º, 30.16387º, 3543 m)
(105.9 km, 324.2º) (149.1 km, 294.1º) (129.9 km, 308.0º) (119.6064º, 30.20248º, 3522 m)
(103.2 km, 324.8º) (146.4 km, 293.9º) (116.9 km, 307.9º) (119.6068º, 30.17934º, 3538 m)
(100.6 km, 325.3º) (143.6 km, 293.7º) (114.3 km, 308.0º) (119.6078º, 30.18768º, 3534 m)

r
ow

2

(207.0 km, 145.9º) (131.1 km, 178.2º) (169.7 km, 123.7º) (120.2639º, 30.33694º, 4466 m)
(204.4 km, 146.1º) (128.4 km, 177.9º) (166.7 km, 123.8º) (120.2172º, 30.34018º, 4409 m)
(199.1 km, 146.6º) (123.0 km, 177.2º) (161.1 km, 123.7º) (120.1298º, 30.34829º, 4289 m)
(196.5 km, 146.9º) (120.4 km, 176.9º) (158.3 km, 123.6º) (120.0927º, 30.35384º, 4233 m)
(193.8 km, 147.2º) (117.7 km, 176.6º) (155.5 km, 123.6º) (120.0565º, 30.36031º, 4178 m)
(191.2 km, 147.5º) (114.9 km, 176.2º) (152.7 km, 123.6º) (120.0256º, 30.36825º, 4128 m)
(188.6 km, 147.9º) (112.2 km, 175.8º) (149.9 km, 123.5º) (119.9952º, 30.37357º, 4079 m)
(186.1 km, 148.1º) (109.5 km, 175.3º) (147.1 km, 123.5º) (119.9723º, 30.37970º, 4034 m)
(183.5 km, 148.4º) (106.8 km, 174.9º) (144.4 km, 123.4º) (119.9498º, 30.38749º, 3993 m)
(180.8 km, 148.8º) (104.2 km, 174.4º) (141.5 km, 123.3º) (119.9308º, 30.39474º, 3954 m)

r
ow

3

(97.9 km, 295.3º) (139.8 km, 307.0º) (86.5 km, 320.9º) (119.6078º, 30.12378º, 3570 m)
(95.2 km, 294.7º) (137.0 km, 306.9º) (83.7 km, 321.1º) (119.6084º, 30.13151º, 3567 m)
(92.5 km, 294.2º) (134.1 km, 306.6º) (80.9 km, 321.4º) (119.6093º, 30.13901º, 3565 m)
(89.8 km, 293.5º) (131.4 km, 306.3º) (78.1 km, 321.7º) (119.6100º, 30.14754º, 3562 m)
(84.4 km, 292.3º) (125.8 km, 306.2º) (72.4 km, 322.3º) (119.6113º, 30.16232º, 3557 m)
(81.8 km, 291.8º) (122.9 km, 306.0º) (69.9 km, 322.9º) (119.6122º, 30.17198º, 3553 m)
(79.2 km, 291.2º) (120.1 km, 306.0º) (67.0 km, 323.4º) (119.6127º, 30.17870º, 3550 m)
(76.6 km, 290.5º) (117.4 km, 306.0º) (64.5 km, 324.0º) (119.6136º, 30.18804º, 3546 m)
(74.0 km, 289.9º) (114.7 km, 306.0º) (61.7 km, 324.6º) (119.6141º, 30.19589°, 3542 m)
(97.9 km, 295.3º) (139.8 km, 307.0º) (86.5 km, 320.9º) (119.6078º, 30.12378º, 3570 m)
(95.2 km, 294.7º) (137.0 km, 306.9º) (83.7 km, 321.1º) (119.6084º, 30.13151º, 3567 m)

table 2.  Localisation results by the proposed method



FAN, et al.: RANgE-ONLy TARgET LOCALISATION USINg gEOMETRICALLy CONSTRAINED OPTIMISATION

75

unknown. The radar performance parameters are represented 
as follow: the maximum detection distance 230.0 km, range 
error 200.0 m and azimuth error 1°. Table 2 lists the localisation 
results by the proposed method. As can be seen from Table.2, the 
propose method has good performance in estimate accuracy on 
the targets’ positions. Therefore, it is verified that the proposed 
method is feasible to locate a target in real case.

5. concLusIons
In this paper, the characteristics and shortcomings of the 

traditional target localisation methods in 2-D search radar 
networking have been analysed. Due to range with higher 
precision than azimuth for two-dimensional radars, a range-
only target localisation method is presented using synchronous 
measurements from three radars. Considering the real ellipsoid 
earth model, the equivalent geometric model is introduced in 
the proposed method. A set of localisation equations is derived 
on range error in such a scenario. Consequently, the target 
localisation problem is converted into a nonlinear weighted 
least squares problem. The LM algorithm is applied to solve 
the localisation equations and to estimate the target’s position. 
By giving the initial value approximately, the proposed 
method is able to avoid the value solutions and accelerate 
the convergence speed. Furthermore, it can approximate the 
localisation accuracy of the CRLB through the analysis of the 
relative validity defined. The simulation results show that the 
proposed method is effective and has high accuracy, while the 
real-test result illustrates that the proposed method is feasible.
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