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1. INTRODUCTION
Support vector machine (SVM) is most commonly used

classifier for its better performance in comparison to other
classifiers C4.5, artificial neural networks, bayesian classification
in data mining and pattern recognition community. SVM
based on statistical learning theory developed by Vapnik1

was originally designed for binary classification. Most of
the real-world applications, i.e., text categorisation2, optical
character recognition3, speech recognition4 are essentially
multi-class classification problems. How to effectively extend
SVM for multi-class classification is still an ongoing research
issue5. The most common way to build a multi-class SVM
is by constructing and combining several binary classifiers6.
To solve multi-class classification problems, the whole problem
is divided into a number of binary classification problems.
The two representative ensemble schemes are one against
all (OAA) and one versus one5 (OvO). In literature, it has
been stated that conventional OvO SVM approach has the
problem of unclassifiable region. To resolve unclassifiable
region for OvO SVM, Platt7, et al. proposed decision directed
acyclic graph (DDAG) scheme. Madzarov8, et al. proposed
support vector machine binary decision tree (SVM-BDT)
architecture that uses binary SVMs for making decisions at
each node of decision tree which takes advantage of both
the efficient computation of the tree architecture and high
accuracy of SVMs. The hierarchy of binary decision subtasks
using SVMs is designed with clustering algorithms which
employs Euclidean distance as similarity measure for creating

two disjoint groups of patterns. Euclidean similarity measure
does not take into account within class variability of patterns.
Hence, it may not be suitable for measuring class separability
between two different classes of patterns. In literature, other
than Euclidean distance, many similarity measures were used
to determine the class separability, each of them associates
with some advantages and disadvantages. Among them, few
more realistic and effective statistical measures used in literature
are information gain, gini index and chi-square for measuring
class separability.

In this paper, construction of OvO-ODT SVM has been
proposed, where class separability is determined using statistical
measures. The performance of the proposed method is evaluated
in terms of classification accuracy and computation time
required for training and testing. It is also shown theoretically
that OvO-ODT SVM is more efficient in terms of computation
time for both training and testing phases in comparison to
conventional OvO and SVM-BDT.

2. DECISION TREE  SUPPORT VECTOR MACHINE
The SVM is based on the idea of structural risk minimisation

which minimises the generalisation error1. It classifies data
by determining a set of support vectors which are members
of the set of training inputs that outline a hyperplane in
feature space9. Consider n training samples
{(  ,  ) |  1   } i ix y i n£ £
uur

, where ix
uur

 represents ith input feature
vector and iy  is the corresponding target class. Given
a set of n training instances, each represented as ( ,  )i ix y

uur
,
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the basic problem for training an SVM can be reformulated
as:

Maximise  
1 , 1

1
     (   ) 

2

n n
T

i i j i j i j
i i j

J y y x x
= =

= a -  a aå å             (1)
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a =å  and      0ia ³ , for 1 i n£ £

The computation of dot products between vectors
without explicitly mapping to another space is performed
by a kernel function K(x

i
, x

j
). Use of a kernel function10

enables the curse of dimensionality to be addressed and
the solution implicitly contains support vectors that provide
a description of the significant data for classification.
Substituting  ( ,  )i jK x x  for  (   )T

i jx x  in Eqn. (1) produces
a new optimisation problem:

Maximise
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C is trade-off variable.
Solving it for lagrangian multipliers ai gives a decision

function of the form

 ( )
1

( ) sgn  ( ,  )  
n

i i i j
i

f X y K x x b
=

=  a  +å                  (3)

Conventional OvO SVM has the problem of unclassifiable
region. To resolve unclassifiable region for OvO, Platt7,

et al. proposed DDAG approach. They have shown the
existence of unclassifiable regions for k-class problem
(k >2) which can lead to degradation of generalisation
ability of classifier. In DDAG7 scheme Vapnik Chernoff
(VC) dimension, leave one out (LOO) error estimator, and
Joachim�s îá LOO measures were used for estimating the
generalisation ability of pairwise classifier at each level
of decision tree. The measures used are computationally
extensive and does not take into consideration any statistical
information about the data. Madzarov8, et al. proposed
SVM-BDT architecture. The hierarchy of binary decision
subtasks using SVMs was designed with clustering algorithms.
In SVM-BDT scheme, the classes are divided in two disjoint
groups g

1
 and g

2
 using Euclidian distance as similarity

measure. The two disjoint groups so obtained were then
used to train a SVM classifier at the root node of the
decision tree. The classes from the first and second clustering
group were being assigned to left and right subtree, respectively.
This process was continued recursively until there was
only one class left in a group which defines a leaf in the
decision tree.

3. PROPOSED OvO-ODT SVM FRAMEWORK
USING STATISTICAL MEASURES
Euclidean similarity measure used in SVM-BDT does

not take into account within class variability of patterns.
Hence, it may not be suitable for measuring class separability
between two different classes of patterns. To understand

better picture of the overlap of the subspaces occupied
by individual classes, statistical measure is used in pattern
recognition community which measures the overlap or
probabilistic distance between the two class probability
distribution functions (PDFs). Hence, it constitutes a natural
concept of measuring class separability. Among statistical
measures, information gain is one of the most commonly
used measures to measure class separability of patterns
in literature. Information Gain11 (IG) is a measure based
on entropy12 which indicates degree of disorder of a system.
It measures reduction in weighted average impurity of the
partitions compared with the impurity of the complete set
of samples when one knows the value of a specific attribute.
Thus, the value of IG signifies how the whole system is
related to an attribute. IG is calculated as

( | ) ( ) ( | )IG C E H C H C E= -                           (4)

where ( | )IG C E is the information gain of the label C for
a given attribute E, ( )H C represents the system�s entropy
and ( | )H C E is the system�s relative entropy when the
value of the attribute E is known. The system�s entropy
indicates its degree of disorder and is given by the following
formula:

1

( )  ( ) log ( )
m

i i
i

H C p C p C
=

= -å                           (5)

where ( )ip C  is the probability of class i. The relative

entropy is calculated as follows:

 | |

1 1

( | ) ( ) ( | ) log ( | )
E m

j i j i j
i i

H C E p e p C e p C e
= =

æ ö
= -ç ÷ç ÷è ø
å å     (6)

where p(e
j
) is the probability of value j for attribute e,

and ( | )i jp C e  is the probability of class label iC
 
with

regard to e
j.

In OvO-ODT SVM, k(k�1)/2 independent binary SVM�s
are constructed for k-class problem. The optimal SVM
model is selected on the basis of maximum value of
IG that signifies more separability between patterns
belonging to two different classes. IG for a given
independent binary OvO SVM for training data containing
n

i
 elements of class i and n

j
 elements of class j  can

be calculated as:

( , ) ( , ) ( ) ( , ) ( ) ( , )IG i j H i j prob i H t f prob j H f tp p n n= - +é ùë û     (7)

where 
 

( , ) log log
x y

H x y x y
x y x y

æ ö æ ö
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               (8)

 
( )

( )
i

i j

n
prob i

n n
=

+   and    
 

( )
( )

j

i j

n
prob j
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t
p
,  f

p
, t

n
 and f

n
 denote true positive, false positive, true

negative and false negative, respectively.
The Gini index is another popular measure for feature

selection proposed by Breiman13, et al. It measures the
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impurity of given set of training data D and can be calculated
as:

 
( )

2
2

1

( ) 1 ( )
i

Gini D prob i
=

=  - å                            (10)

For a binary split, a weighted sum of the impurity of
each resulting partition is computed. The reduction in
impurity that would be incurred by a particular binary
split is calculated as:

,( , ) ( ) ( )i jGini i j Gini D Gini DD = -                     (11)

where  [ ], ( ) ( ) ( ) ( ) ( )i jGini D prob i Gini L prob j Gini R= +     (12)

Gini(L) and Gini(R) are the Gini index on the left and
right side of the hyperplane. OvO SVM model (i

k
, j

k
) that

maximises the reduction in impurity i.e. Gini index is
selected as splitting node in decision tree SVM at a
particular level.

 Chi-square14 similarity measure is another criterion
used for binary split in data mining and machine learning.
It is a statistical hypothesis test in which the sampling
distribution of the test statistic is a chi-square distribution
when the null hypothesis is true. In this case, the null
hypothesis is that a random rule would place t

p
 patterns

from class i and f
p
 tuples from class j independently in

the left branch of decision tree and the remainder in the
right branch of decision tree. The candidate decision rule
would differ significantly from the random rule if the proportions
differed significantly from those given by the random
rule. The chi-square statistic 

2c will be given by

 ( )( ) ( )( )

( )( ) ( )( )

2 , ,

, ,

p p p pos n n n pos

p p p neg n n n neg

g t t f P g f f t P

g f t f P g t t f P

c = + + +

+ + + +                  (13)

where ( )
( )

2

,
count expect

g count expect
expect

-
= ,  posP  is the

probability of positive samples in left subtree and P
neg

is the probability of negative samples in right subtree.
The higher the value of 

2c , the less likely it is that
the null hypothesis is true. Thus, for a sufficiently high

2c , one can reject the null hypothesis and can consider
candidate rule is informative. Hence OvO SVM model
(i

k
, j

k
) that maximises 

2c is selected as splitting node
in decision tree SVM at a particular level.

The outline for decision tree SVM using IG class separability
measure for k-class is given below:

Input: Training data 
 n

i
i

X x=  U . The following steps are

involved

Step 1. Generate the initial list {C
1
, �, C

k
)

Step 2. Calculate H(i ,  j) using Eqn (8) for i = 1, �, k  and
j > i

Step 3. Calculate, H(t
p
, f

p
), H(f

n
, t

n
), prob(i) and prob(j) using

Eqn (8) and Eqn (9), respectively.
Step 4. Compute IG(i, j) using Eqn (7).
Step 5. Determine class pair (C

i
, C

j
) for which IG(i, j) takes

maximum value from the list. If x
k
, k=1, .., n belongs

to class C
i 
then delete C

j
 from the list else delete

class C
i
.

Step 6. If the remaining classes are >2, repeat Steps 2-5
otherwise terminate the algorithm.

Similar computational steps are followed for other two
measures to determine the structure of OvO-ODT  SVM. To
compute the time complexity of training phase, assume without
loss of any generality that the number of samples in each
class is approximately the same, i.e., n/k. To solve k-class
problem using conventional OvO, k(k�1)/2  binary SVM
classifiers are developed. Assuming the time complexity of
building a SVM with n samples and d features is O(n2d), it
can be shown that training time of conventional OvO,  - -

train
con OvO SVMT ,

is O(n2d).
   
In worst case, the decision tree generated in SVM-

BDT is skewed if classes in two groups at every level are
divided into uneven size. Under the assumption that group
g

1
 contains only one class

 
and group g

2
 contains remaining

classes, the decision tree so generated will be of depth
(k�1) for k-class problem. Hence, the training time of SVM-
BDT will be given by

( )

2 2
2

- -

2

( -1) 2
  ...train

SVM BDT worst
n k n

T n d d d
k k

n dk

æ öæ ö æ ö= + + +ç ÷ç ÷ ç ÷ç ÷è ø è øè ø

     @

(14)
In SVM-BDT approach under best case, the class in

two groups at every level is divided into approximately
the same size. The decision tree so generated will be almost
height balanced of maximum depth [log(k)]. The number
of nodes in decision tree at depth i is 2i�1, each containing
n/2 i�1 samples. Hence, the training time for SVM-BDT in
best case is given by

 

( )

2 2
2
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2
log( )-1 2
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 2 4 ...
2 2

2
2

train
SVM BDT best

k
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n n
T n d d d

n
d n d
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          (15)

However in general, the structure of decision tree
generated using statistical measures is almost height balanced
of maximum depth [log(k)]. There are 2i�1nodes at i th level
and each node uses (2n/k) samples. Hence, the training
time for OvO-ODT SVM using statistical measure is given
b y

2log( )
1 2

- -
1

2
2

k
train i

OvO ODT SVM
i

n d
T d n

k k
-

=

æ ö æ ö@ @ç ÷ ç ÷
è ø è øå             (16)

During testing phase of the conventional OvO,
k(k�1)/2  decision functions are to be evaluated. Also,
the majority voting is computed with k(k�1)/2 operation.
Hence, the testing time -

test
Con OvOT  for each sample is given

by k(k�1)/2.  In worst case, the depth of SVM-BDT is
(k�1). The testing time - -

test
SVM BDT worstT  for each sample in
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worst case is k. However in best case the depth of  SVM-
BDT is [log(k)] which requires [log(k)] testing time - -

test
SVM BDT bestT

for each sample. Since, the maximum depth of OvO-ODT
SVM is [log(k)], the testing time requires [log(k)] operations.
According to the above analysis, it is evident that the
training and testing time for OvO-ODT SVM will always
require less computation time in comparison to conventional
OvO and SVM-BDT.

4. EXPERIMENTAL  RESULTS
To evaluate the performance of the proposed OvO-

ODT SVM framework using information gain, gini index
and chi-square. They have performed experiments on publically
available UCI15 benchmark datasets. Table 1 describes the
datasets used in the experiments. All the experiments were
performed on a computer having Pentium 4 dual-core processor
with 1GB RAM. The kernel functions used in experiments
are given in Table 2.

The classification accuracy is determined using ten
cross-validations. The authors have used g = [2-11, 2-10, 2-

9� 20] and trade-off variable C=1000. For a given kernel
function, the authors determined the value of g for which
the maximum classification accuracy was achieved. Table 3
shows the comparison of maximum classification accuracy
between conventional OvO SVM and SVM-BDT with the

Kernel  Function ( ), iK x x
 
for  0g >  

Gaussian 2
iexp | x x |æ ö- g -ç ÷

è ø
 

Laplace iexp - | x- x |æ ögç ÷
è ø

 

Cauchy 21 1 i| x x |æ öæ ö+ g -ç ÷ç ÷è øè ø
 

Hypersecant 2 i iexp | x x | exp | x x |
æ öæ ö æ ög - + -g -ç ÷ ç ÷ç è ø è øè ø

Square sync 2 2
i isin | x x | | x x |æ ö æ ög - g -ç ÷ ç ÷

è ø è ø
 

 

Table 2.  Kernel functions

Problem #Train_data # Class #Attributes 

Wine 178 3 13 

Vehicle 846 4 18 

Glass 214 6 9 

Segmentation  210 7 19 

Ecoli 336 8 7 

 

Table 1. Description of datasets

OvO-ODT SVM Dataset Kernel Choice OvO SVM-
BDT 

c
2 Gini IG 

Gaussian 82.58 81.88 82.58 82.58 83.15 
Laplace 82.58 81.76 82.58 82.58 82.58 

Cauchy 82.02 81.76 82.02 82.02 82.02 
Hypersecant 93.26 92.63 93.26 93.26 92.13 

Wine 

Square sync 75.28 75.46 76.97 76.97 75.28 

Gaussian 76.83 75.24 76.60 76.60 76.60 
Laplace 77.42 76.24 77.42 77.42 77.42 

Cauchy 76.48 74.65 76.48 76.48 76.48 

Hypersecant 83.33 82.98 83.22 83.33 83.33 

Vehicle 

Square sync 71.51 71.08 70.922 70.80 70.8 

Gaussian 72.43 65.42 70.56 72.90 71.03 
Laplace 75.70 68.69 76.17 76.17 75.24 

Cauchy 72.90 69.42 71.03 73.36 71.03 

Hypersecant 71.96 69.47 71.09 71.96 70.09 

Glass 

Square sync 66.36 58.41 62.62 58.13 62.62 

Gaussian 84.76 82.89 85.24 85.24 84.29 
Laplace 87.14 87.05 87.62 87.62 87.14 

Cauchy 86.19 85.05 86.19 86.19 85.71 

Hypersecant 90 90 90.95 90.95 89.05 

Segmentation 

Square sync 81.9 73.80 79.52 79.05 80.95 

Gaussian 85.42 81.34 85.42 85.42 85.42 
Laplace 87.20 85.78 87.20 87.20 86.91 

Cauchy 85.42 79.90 85.42 85.42 84.82 

Hypersecant 85.42 83.89 83.33 85.42 84.82 

Ecoli 

Square sync 85.12 82.78 87.20 82.85 85.12 

Table 3. Comparison of classification accuracy (per cent)
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proposed OvO-ODT SVM using all the three statistical
measures. The best classification accuracy for each dataset
is shown in bold. From Table 3 it can be observed that the
classification accuracy of the proposed OvO-ODT SVM
method is better or equivalent to conventional OvO SVM
and SVM-BDT for different choices of kernel functions for
most of datasets using all three statistical measures. Among
the three measures used for determining the structure of
decision tree, neither of them is clear winner over the others.

Table 4 shows the computation time for training and
testing phase for all kernels with g = 2-11 and trade-off
variable C=1000. The minimum training and testing time
for each dataset is shown in bold. It can be observed from
Table 4 that time required for training OvO-ODT SVM
using all the three statistical measures is less in comparison
to conventional OvO and SVM-BDT. Among the three
measures used for building OvO-ODT SVM, neither of
them is a clear winner over the other measures. It can also
be observed that the proposed OvO-ODT SVM is also
computationally better than conventional OvO and SVM-
BDT in terms of testing time for all the three measures.

5. CONCLUSIONS
In this paper, OvO-ODT SVM framework is proposed

to solve multi-class problems where the optimal structure
of decision tree is determined using statistical measures,
i.e., information gain, gini index, and chi-square. It has
also been shown theoretically that the computation time
of training and testing of OvO-ODT SVM using statistical
measures is better in comparison to conventional OvO
SVM and SVM-BDT. The performance of the proposed
framework is evaluated in terms of classification accuracy
and computation time of training and testing phases.
Experimental results on UCI repository dataset demonstrate
better or equivalent performance of the proposed OvO-
ODT  SVM scheme in comparison to conventional OvO
SVM and SVM-BDT in terms of classification accuracy
for most of the datasets using all the three measures
employed for construction of decision tree. The experimental
results obtained also demonstrate that the training and
testing time of proposed OvO-ODT SVM takes less
computation time in comparison to conventional OvO SVM
and SVM-BDT.

Training time (s) Testing time (s) 

OvO-ODT SVM  OvO-ODT SVM  

Dataset Kernel 
choice OvO SVM-

BDT 
c

2 Gini IG 

OvO SVM-
BDT 

c
2 Gini IG 

Gaussian 2.15 2.15 2.05 2.13 2.11 0.08 0.04 0.03 0.03 0.03 

Laplace 2.98 2.83 2.67 2.18 1.48 0.07 0.04 0.03 0.03 0.03 

Cauchy 2.89 1.98 1.69 1.34 1.54 0.08 0.08 0.06 0.07 0.03 

Hypersecant 3.55 3.22 2.15 2.13 2.29 0.06 0.05 0.03 0.06 0.02 

Wine 

Square sync 3.13 2.93 2.27 2.18 2.60 0.07 0.03 0.03 0.02 0.03 

Gaussian 189.96 185.45 155.43 170.92 155.79 1.85 0.56 0.46 0.53 0.46 

Laplace 188.68 187.55 134.34 134.54 134.54 1.45 0.57 0.56 0.35 0.57 

Cauchy 186.44 186.57 144.34 144.54 144.23 1.73 0.73 0.46 0.45 0.73 

Hypersecant 198.69 181.75 145.45 148.78 145.75 1.64 0.76 0.56 0.46 0.76 

Vehicle 

Square sync 189.75 189.57 159.72 159.65 149.77 1.63 0.66 0.53 0.59 0.66 

Gaussian 12.31 11.88 8.99 10.06 9.05 1.20 0.32 0.22 0.28 0.22 

Laplace 11.90 10.53 9.84 5.45 4.80 1.21 0.66 0.14 0.18 0.18 

Cauchy 13.62 11.78 7.62 9.56 10.71 1.43 0.89 0.15 0.17 0.17 

Hypersecant 8.36 7.35 6.36 7.46 5.93 1.21 0.79 0.15 0.18 0.19 

Glass 

Square sync 8.93 8.04 5.93 4.92 5.42 1.25 0.99 0.11 0.14 0.19 

Gaussian 3.00 2.98 2.39 2.45 2.49 1.40 0.55 0.42 0.54 0.44 

Laplace 3.15 2.90 2.34 2.52 2.42 1.35 0.89 0.53 0.43 0.33 

Cauchy 3.10 2.89 2.13 2.12 2.10 1.78 0.76 0.34 0.32 0.33 

Hypersecant 4.91 4.89 4.57 4.56 4.21 1.24 0.54 0.36 0.31 0.31 

Segmentation 

Square sync 3.99 3.81 3.61 3.21 3.03 1.54 0.64 0.38 0.32 0.35 

Gaussian 26.48 25.99 17.55 21.97 20.07 1.55 0.88 0.54 0.60 0.96 

Laplace 24.38 23.45 17.34 16.87 17.34 1.82 1.78 1.05 1.12 1.02 

Cauchy 27.85 25.83 21.85 19.85 24.85 2.31 1.20 0.99 0.98 0.92 

Hypersecant 20.98 20.23 19.78 16.78 19.78 1.82 1.15 1.03 1.10 1.04 

Ecoli 

Square sync 23.65 21.94 20.85 20.35 20.85 1.88 1.33 1.04 1.09 1.03 

 

Table 4. Comparison of training and testing time (Seconds)
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