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ABSTRACT

This paper presents a new method of feature extraction by combining principal component analysis and
genetic algorithm. Use of multiple pre-processors in combination with principal component analysis generates
alternate feature spaces for data representation. The present method works out the fusion of these multiple
spaces to create higher dimensionality feature vectors. The fused feature vectors are given chromosome
representation by taking feature components to be genes. Then these feature vectors are allowed to undergo
genetic evolution individually. For genetic algorithm, initial population is created by calculating probability
distance matrix, and by applying a probability distance metric such that all the genes which lie farther than
a defined threshold are tripped to zero. The genetic evolution of fused feature vector brings out most significant
feature components (genes) as survivours. A measure of significance is adapted on the basis of frequency of
occurrence of the surviving genes in the current population. Finally, the feature vector is obtained by weighting
the original feature components in proportion to their significance. The present algorithm is validated in
combination with a neural network classifier based on error backpropagation algorithm, and by analysing a
number of benchmark datasets available in the open sources.
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1. INTRODUCTION
Genetic algorithms are computational models of evolution

based on the natural selection, reproduction, and survival-
of-the-fittest principles. Originally invented by Holland,1

the genetic algorithms (GAs) have now grown into varied
forms to solve numerous stochastic optimisation problems
in domains ranging from the artificial intelligence and
machine learning to biology, economics, sociology,
and physics2-7. In pattern recognition domain, the genetic
algorithms are mostly used as methods of feature subset
selection within filter or wrapper approaches.8,9 The goal
in a feature selection process is to remove those features
which are not relevant to the pattern recognition task.
The resulting benefits are two fold: enhanced classification
accuracy, and reduced computational cost in high
dimensionality problems.

The filter methods evaluate relevance of features
using some intrinsic characteristics of the data and do
not involve induction algorithms (e.g., elimination of smallest
eigenvalue principal components, removal of noisy and
outlier components). The wrapper methods, on the other
hand, directly use induction algorithms, and the feature
subsets are evaluated by their influence on the classification
accuracy9,10. Numerous publications and references therein11-18

report most of the major developments on the genetic
approach to feature subset selection. It is noteworthy
that in these studies, the GAs have been used mainly
for feature selection (often also referred to as feature

extraction), and not for the feature generation from raw
data. The feature generation is usually done by the methods
like principal component analysis (PCA), linear discriminant
analysis (LDA) or their variants. The primary target in
most of the earlier works on genetic algorithm has been
to tackle the curse of dimensionality and to select features
that bring out better discrimination among classes in
high dimensionality problems such as microarray data
analysis17 biometric identification18, data mining19 and so
on11-19. In the development of classifiers, the GAs have
mostly been used as a wrapper method for features/
parameters optimisation20,21, and recently  for classifier
fusion22 as well.

In this paper, GA has been used in a novel way to
create feature vectors. The method is based on PCA-
generated features to define initial population for genetic
evolution. This is followed by the genetic evolution and
finding significance of individual feature components. The
feature vectors are then weighted according to their
significance. Additional generality to the method is brought
out by using multiple pre-processors to generate alternate
principal component representation, and combining them
to produce increased dimensionality feature representation.
The new method appears most appropriate for giving low
dimensionality problems accurate feature representation.
Though the present method increases problem dimensionality,
accruing benefits in terms of enhanced classification rate
might offset computational costs in many situations.
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2. ALGORITHM
2.1 Creation of Initial Population

Let m denote instances and n attributes in a pattern
recognition task. The raw data is given as a m ´ n data
matrix. Each row of the data matrix represents an instance
realised through n observations.  Mathematically, an instance
(or a sample) is represented as a vector in n-dimensional
data space whose directions are defined by the attributes.
The feature extraction is to map the data space into a
feature space where an instance is represented by a feature
vector. The goal of this transformation is to separate the
samples of different classes in feature space. The features
are the intrinsic variables of the problem latent in the data
matrix. The set of feature components must represent a
sample in unique manner to denote its identity (or class).
Let the data matrix be denoted as [ ]ijx  where an element

ijx  denotes j th observation of i th sample,  1,2,...,i m=  and
j=1, 2, ...n. The algorithm is presented here in two parts,
shown in Figs 1 and 2, respectively. The first part is for
creating the initial population for the genetic algorithm,
which makes the second part. In Fig. 1 the creation of

initial population is shown using two pre-processors and
a common PCA algorithm. The PCA generated feature sets
for a sample through both the pre-processors are combined
to make a bigger feature set representation, and their variances
are normalised (shown as �feature fusion� block). From the
fused feature vector [ ]ikz  corresponding to a sample, the
initial population is created using the probability distance
measure, as described by Zohdy23,24, et al., and assign
a fitness value to each individual. In brief, the probability
distance is defined by assuming that an individual component
(say, kth) is accurate (or reliable), then how accurate (or
reliable) the lth component is, is given by

,
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where index i denotes the sample, ikz  and ilz  are kth and
lth feature components and ks  is the component variance
(eigenvalue). Thus, corresponding to each feature component
assumed accurate, there will be P nN=  probability distances
of all components of the fused feature vector. Here, N
denotes the number of pre-processors employed. Assuming

 

Create Initial Population

Step 1: Represent each feature component as a gene, associated feature variance as gene significance, 
and the feature vector as a chromosome (gene sequence) of length  2n. 

Step 2: Calculate a probability distance matrix of size 2n ´ 

 
2n by assuming each feature component 

(or gene) to be accurate in turn.  
Step 3: Create initial population by hol ding the original feature vector Zi against each row of the 

probability distance matrix, and by applying a probability distance threshold that if the 
probability distance exceed a predefined threshold the feature components (or genes) of those 
positions are tripped to zero. The feature vector modified in this way defines one member of 
initial population. Each row of the probability distance matrix thus yields a new  member, and  
an initial population of 2n members is created.  

Step 4: Assign each member of initial population (or chromosome) a fitness value equal to sum of normalized 
variances of all associated genes involved in its constitution.  
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: and   sample,      ng representi    , 2 1   ], [  vector feature   fused   a Consider th 
ik i i n ... k z Z = º 

Feature Fusion 
(combine feature sets of each sample and normalize variance)  

(features)    ... 1   (samples),   ... 1   ],   [ ] [ 2 1 n j m i y y z ij ij ik = = = 

features)    (combined   2 ... 1   , ) 2 / 1 /( 
2 

1 
2 2 2 n k n 

n 

k 
ik ik ik = å = 

= 
s s s 

Principal Component Analysis 
] [ 1 

ij y ] [ 2 
ij y 

Preprocessor 1 
] [ 1 

ij x 
Preprocessor 2 

] [ 2 
ij x 

Data 
(samples)   ... 1   , ] [ m i x ij = 

j=1..n (observation)    

Figure 1. Flow chart of algorithm to create initial population from two pre-processors and principal component analysis.
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feature component as being accurate in turn, and representing
the corresponding distances in a row generates a P P´
probability distance matrix
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It is obvious that all the diagonal elements in Eqn
(2) will be zero because (0) 0erf = . These are the distances
with self. This gives meaning to the probability distance�
closer a feature componant, more reliable it is. Therefore,
a distance threshold (say, cd ) can be defined beyond which
the feature components are not important in a row.  A
chromosome is created by holding the fused feature vector

[ ]i ikZ zº  against a row, and setting all those components
to be zero for which cd d> . The initial population of
chromosomes is thus created by repeating this procedure
with each row in iD . Thus, after distance thresholding,
each row in iD  represents a chromosome, and there are
P chromosomes in the initial population. The variances

ks  of fused feature components are normalised as

2 2 1 2
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These steps are elaborated in the �create initial population�
block in Fig. 1.

The distance threshold is defined empirically by examining

the probability distance matrix. If the probability distance
of a feature component is greater than this threshold, then
that feature component is eliminated by resetting its value
to zero. This creates a member of initial population; e.g.,

1 2 4 6[ , ,0, ,0, ]i i i iz z z z  represents a member whose 3rd and 5th

feature components have been reset to zero. Each row of
the probability distance matrix creates one member. The
resulting initial population will be of the size equal to the
product of number of pre-processors and the number of
original attributes in the data matrix. It is equal to 2n  in
Fig. 1. The fitness of a member is taken to be equal to
the sum of normalised variances of all the feature components
present in its constitution.  The population is then ranked
according to fitness value of the members.

Finally, the individual members are given digital code
representation for implementing the genetic operations.
In most applications, binary coding scheme is used where
presence or absence of genes is denoted by a binary 1
or 0 bit.  In the present implementation, however, the
chromosomes were coded by strings of integers in decimal
format such that these denote the position of features in
the fused vector iZ . For example, if 10P = , and a chromosome
in the initial population is created by 1st, 3rd, 4th, 7th and
10th feature components, then its coded representation is
[ ]01.00.03.04.00.00.07.00.00.10 .

2.2 Genetic Evolution
The second part implements the standard genetic algorithm

to create a new population using genetic operators: selection,

No
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reached?

Elite Children
Step 1. Set elite count �x�

Step 2. Select � x� elite members by 
highest ranking

Crossover Children
Step 1. Set crossover fraction

Step 2. Rank based fitness scaling
Step 3. Selection by �remainder 

stochastic sampling without 
replacement�

Step 4. Generate crossover 
children y = f * 2n by �scattered 

crossover�

Mutation  Children
Step 1. Set mutation rate

Step 2. Generate mutation children 
z = 2n � (x + y) using randomly 
selected genes from gene pool

Create Next Generation
Size =  x +  y + z = 2n
Step 1. Rank by fitness

Step 2. Calculate average  
fitness = F1

Load 
Generation = 0

Size = 2n
Average  fitness = F0

Initial Population
Size = 2n

Step 1. Rank by fitness
Step 2. Calculate average  

fitness = F0

Figure 2. Flow chart of genetic algorithm for evolution through generations till a population of stable average fitness is reached.



SOMVANSHI & YADAVA: BOOSTING PRINCIPAL COMPONENT ANALYSIS BY GENETIC ALGORITHM

395

crossover, and mutation. Figure 2 shows the details. Starting
with the initial population, the next generation members
are created in three categories. The latter are elite, crossover
and mutation. The elite children are the highest ranking
individuals in the initial population that are taken to the
next generation without any alteration. This is done because
while creating the next generation members by crossover
and mutation, some members with best fitness values may
be lost, which otherwise would have been very helpful
in pattern discrimination. The number of elite members
that will go to the next generation is chosen empirically
by monitoring the overall performance of the system with
training data. The crossover   children are generated by
pairwise selection of chromosomes and crossover operation
on genes about a crossover point. The total number of
crossover children in a population is limited by the amount
of crossover fraction. The crossover steps shown in
Fig. 2 are implemented using the functions in the Matlab
GA tool box. The mutation operator randomly modifies the
genes of population with a probability equal to their mutation
rate. The number of mutation children is kept to be such
that after summing up with the elite and crossover children
the new population size becomes equal to the initial population
size. This is implemented using the Matlab mutation function
�mutation uniform�. In this method, the individual members
from the initial population were selected one by one, and
a random number between (0, 1) was generated for each
gene position. If this number was less than the mutation
rate then that particular gene was replaced by a gene
randomly selected from the original gene pool. The next
generation consisted of conglomerate of these types of
children ranked by fitness.

The current generation was evaluated by its average
fitness. The average fitness is defined as the sum of individual�s
fitness averaged over population size. If the current generation
average fitness was larger than the preceding generation,
the current generation was loaded for further evolution.

The process was stopped when the fitness value in the
successive generations do not change, that is, the population
is stabilised. The convergence of GA in a typical run is
shown in Fig. 3.

2.3 Boosting Principal Component Analysis
The stabilised population obtained after stopping the

process of genetic evolution was used to boost the values
of feature components (genes) in the gene pool. Recall
that the features in gene pool are the PCA-generated features,
and the fused feature vector represents sample. On the
basis of GA-generated population, the values of these
feature components were calculated as

 2(1 / )ij ij j
z z n P= +                                      (4)

where, n
j
 denotes the frequency (or the number of times

jth gene occurs in GA population of a sample) and P denotes
the feature vector length (number of genes). The latter
is equal to 2n for the two pre-processor algorithm. The
P2 therefore represents the number feature elements in the
final population.

3. VALIDATION
The proposed method was validated by analysing

some benchmark data available from open sources. The
data used are briefly summarised in Table 1. All the data
sets except the coffee data are taken from UCI Repository26.
The coffee data was provided by  Pardo and Sberveglieri27.
The two pre-processors that were used in this analysis
are the �vector autoscaling� and the �dimensional autoscaling�
as defined by Osuna and Nagle25, and also available in
Matlab. The classifier used was a neural network with
error-backpropagation algorithm ing Matlab NN tools. The
network architecture consisted of input nodes equal to
the number of features and output nodes equal to the
number of classes. Only one hidden layer was used in
which the number of nodes were empirically adjusted by
monitoring the classification results. In most cases, the
number of hidden layer neurons a few less than the number
of input nodes yields best results. In cases where data
was not divided into training and test sets, the division
was made in the ratio of 3:2 of the total samples. The entire
program was developed in Matlab.

Table 2 shows the average classification results obtained
after several runs. The last column of the table also shows
the best results reported in other publications. These results
show the efficiency of the present algorithm. It can be
seen that in most cases, the results were at least as good
as the best reported by some other more complicated
advanced methods. Only in cases of protein location sites
data of E-coli and yeast, the results were inferior. However,
even in these cases, the results were as good as or better
than many earlier reports. For example, in case of yeast
data, the classification rate reported by the data donors
Horton and Nakai is 55 per cent and by Fan and Poh, it
is (53±3) per cent. Moreover, selection and design of classifier
itself could play a substantial role in determining the

Figure 3. Convergence of the mean fitness value through
successive generations during GA evolution.
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classification rate. At present, only a simple neural network
model has been used. The full implications of the present
algorithm will probably be known only after rigorous testing
with other classifiers and with more data.

4. CONCLUSIONS
The fusion of feature spaces created by alternate pre-

processor/PCA combinations produces extended dispersion
of intrinsic dimensionalities (or information content) in
the data. The genetic evolution of the fused set of features
(taken as chromosome) facilitates survival of only the
most important feature components. The strongest genes
(most significant features) are passed more frequently in
the successive generations. This brings out the identity
and the relative importance of different feature components.

By taking the frequency of occurrence in current generation
as some measure of importance, the final feature vector
is calculated by giving additional weight to those features
in proportion to their frequency in the final stabilised
population. This algorithm of feature extraction in combination
with a neural network classifier produces as good classification
results as best reported for most of the benchmark data
analysed in this paper.
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Table 1. Benchmark datasets used in the present study

Data set No. of 
samples 

No. of 
attributes 

No. of 
classes 

Remark 

Iris 150 4 3 The Iris data is a record of 150 samples measured for 4 variables. 
The dataset contains 50 samples each from 3 different classes of 
Iris plants.   

Yeast 1484 8 10 Originally this data is given as 9-variable and 10-class dataset. 
The different classes are protein-localisation sites (non-numeric) 
in eukaryotic cells of yeast. One of the variables is the name of 
sequence. The dataset for the present analysis was therefore taken 
to be an 8-variable/10-class problem by dropping the sequence 
name from the variables list.  

Wine 178 13 3 These data are the results of a chemical analysis of wines grown 
in the same region in Italy but derived from three different 
cultivars. 

Pima Indian 
(diabetes) 

768 8 2 This dataset contains total 768 samples (468 training, 300 test) of 
diabetes test. All patients here were females at least 21 years old 
of Pima Indian heritage. The classes represent whether patients 
tested positive or negative.   

Haberman  
(breast-cancer) 

306 3 2 The dataset contains cases from a study conducted between 1958 
and 1970 at the University of Chicago�s Billings Hospital on the 
survival of patients who had undergone surgery for breast cancer. 
Of the total 306 samples, 225 survived beyond 5 years and 81 
died within 5 years.  

Glass 
Identification 

214 9 6 This dataset is a 7 class problem but samples of 4 class are zero 
so it was dropped the data was treated as  a 6 class problem. The 
types of glasses were of forensic interest defined in terms of their 
oxide content. 

E-coli 336 7 8 The data contains protein-localisation sites. One of the attributes 
was the name of sequence, and dropped from variable list. 

Auto-mpg 
(automobile)  

336 7 3 The data concerns city-cycle fuel consumption in miles per 
gallon, to be predicted in terms of 3 multivalued discrete and 5 
continuous attributes. The original dataset contains total 398 
samples. For the present analysis, missing variable data were 
removed.  

Coffee  
(blend) 
 

249 5 7 

Coffee 
(monovariety) 

210 4 7 

This data is aroma record of two groups (blend and monovariety) 
of coffees measured by tin-oxide gas sensor array. Each group 
contained 7 types of coffees. Measurements were made on two 
groups of coffees referred to as the monovariety and the blend. In 
each group there were 7 types of coffees.  
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