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1. INTRODUCTION
Machine olfaction is a biomimetic approach to detect

and identify odourant chemicals in vapour phases1. It
comprises three parts: sniffer, sensor, and processor. The
sniffer samples the target gaseous ambient for collecting
the odour causing molecules (odourants) and directing
them to interact with the sensor. The sensor generates
electrical signal via change in some property of its material
(e.g. conductivity or mass density) upon exposure to odourants.
The processor usually consists of two parts: pre-processor
and pattern recognition. The pre-processing is to prepare
the data (that is, the record of sensor output) by applying
appropriate procedures of denoising, shifting, scaling,
normalisation, and transformation such that the influence
of all non-information bearing parameters are removed2,3.
The pattern recognition combines methods of feature extraction
and classification2. The features are mathematical descriptors
of odourants. The feature extraction is to determine a
suitable set of features that represents odour identity in
a unique manner. The classifier maps feature sets to class
identities. The set of features representing an odour are

usually referred to as odourprint or vapourprint or chemical
fingerprint. The machine olfaction is therefore chemical
fingerprinting implemented by electronic sensors and pattern
recognition1-5.

Polymer-coated surface acoustic wave (SAW) oscillators
make an important class of chemical sensors which have
been extensively experimented to develop odour detection
and identification instruments (popularly referred to as
electronic nose)6. The SAW electronic nose instruments
employ an array of sensors where each sensor is coated
with a different polymer7. The selection of polymer coatings
is optimised according to the application target. An effort
is made to employ broad selectivity sensors such that
individual sensors respond preferentially to different chemical
constituents in the target odour. This produces an array
response pattern in which the vapour identity information
is hidden. The feature extraction methods of pattern recognition
attempt to decipher this. This is done by creating a set
of mathematical descriptors (or features) using data
transformation and statistical estimation techniques such
that the representation of each vapour is unique. Different
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vapour classes occupy separate regions in feature space.
A suitable classifier can map these regions into class
identities, provided it is trained a priori with known samples6-9.

The sensor array-based vapour recognition system
depends most commonly on the steady-state responses
obtained after thermal equilibration between vapour molecules
and polymer matrix.2,9,10 In several studies11-17 however it
was pointed out that the sensor transients during sensing
or purge cycles (starting from the time the vapours are
coming in contact with sensor to the time taken to reach
equilibrium or from the equilibrated state to the return to
the base-level respectively) carry additional information
about molecular diffusion in polymer coatings. The transient
regions are therefore richer in information for vapour
discrimination. In some of the earlier works, it was suggested
that by analysing sensor transients, the vapour discrimination
can be achieved by a single sensor.12-14 In these works,
wavelet analysis-based set of wavelet expansion coefficients
are taken to be the features. In later studies,15-17 multiresolution
wavelet representation of transients has been employed
either to reduce data or to select a feature subset for
processing by a classifier. Recently, several interesting
variations of transient data generation and processing
methodologies have been reported that suggest more rigorous
exploitation of the transient features-based electronic nose
instrumentation17-23.

In this paper, a sensor array design consisted of single
polymer coatings of different thickness on different sensors
for transient response generation and a novel method of
feature extraction by PCA (principal component analysis)
processing of discrete wavelet transforms has been proposed.
The polymer thickness are selected in such a way that
the vapour in-diffusion is terminated at different stages
before completion of the equilibration process. The usefulness
of the method is demonstrated by analysing synthetic
data for six volatile organic compounds (VOCs) generated
by polymeric sensor array with three different thickness.

2. TRANSIENT RESPONSE OF POLYMER-COATED
SURFACE ACOUSTIC WAVE CHEMICAL
SENSOR

2.1 SAW Oscillator Sensor
Figure 1 shows schematic of a polymer-coated SAW

delay line oscillator sensor. The SAW device is used as
phase sensitive element in the feedback network of an
amplifier circuit. The circuit achieves stable resonance
oscillations when the Barkhausen�s criterion for the loop
gain 1Ab ³ and the loop phase shift 2nDj = p  are satisfied.
The amplifier gain A is usually adjusted to be a little more
than that needed to offset the insertion loss due to SAW
device b. The phase change around the loop is controlled
by the SAW device. The oscillations are set up at that
frequency in the passband of SAW device at which loop
phase becomes integer multiple of  2p. The SAW propagation
path between the input and output interdigital transducers
(IDTs) is coated with chemical selective polymer film. Under
exposure to vapour sample the polymer film sorbs chemical

constituents in vapour phase in selective manner. This
is accompanied by change in SAW velocity, hence the
propagation delay between the two IDTs. A change in

delay generates shifts in loop phase by 2 fp Dt . Therefore,

to satisfy the loop phase condition, the oscillations are
established at a different frequency. The shift in frequency
of oscillations under vapour loading defines the sensor
response (or signal)24-28.

2.2 Vapour Sorption Kinetics and Sensor Response
The vapour sorption refers to thermodynamic partitioning

of chemical molecules at the vapour-polymer
interface6-8,29,30. The moment molecules in vapour phase
come in contact with the polymer surface a fraction of
them gets adsorbed. This is immediately followed by diffusion
into the film. The rear interface between the polymer film
and SAW substrate is impermeable to diffusing gaseous
species. Therefore, when the gas molecules reach this
barrier, they start accumulating, consequently the diffusive
influx starts decreasing. Under continuous exposure to
vapour, this process continues till the entire film achieves
a uniform concentration level and no net diffusive flow
occurs. In this condition, the film is said to have reached
equilibrium or steady state. Figure 2 shows the evolution
of diffusion profile schematically. The equilibrium partitioning
is defined by the ratio of concentrations of analyte species
in the polymer phase C

p
 to that in the vapour phase C

v
,

and is referred to as the partition coefficient K = C
p
/C

v
.

The time taken to reach steady state depends on the
diffusion coefficient of the gaseous analytes in the polymer
material and the film thickness. Over the time scales from
start to steady-state, the analyte concentration varies with
depth below the film surface. The sensor loading at any
instant is determined by the integrated concentration profile
across the film thickness. Therefore, the time-dependence
of sensor loading is determined by the time-evolution of
diffusion profile which depends on three parameters: partition
coefficient K, analyte diffusion coefficient D, and film
thickness h29,30.

The sensor signal consists of contributions from vapour
loading-induced changes in the polymer mass density,

Figure 1. Schematic of a polymer-coated SAW delay line
oscillator sensor.
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swelling and viscoelastic coefficients. These effects are
described by the Martin-Frye-Senturia model of SAW velocity
perturbation.31,32 The model relates the changes in SAW
velocity Dn and attenuation Da due to polymer coating
through the following relation
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for 2=i , 2 fw = p  is the SAW angular frequency, h  is
the film thickness, r  is the film mass density, ' "
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is the film complex elastic modulus. The latter is related
to G  and K  as 1 2 3,   0,   and 4E G E E G= » » . In deriving
Eqn (1), the SAW propagation is taken to be in the z-
direction, the film thickness along the y-direction, and in-
plane normal along the x-direction. The 0v , 1c , 2c  and

3c  are constants specific to SAW substrate and propagation
direction. For SAW device on ST-X quartz substrate,

5
0 3.158 10v = ´  cms-1, and 7

1 0.013 10c -
= ´ , 7

2 1.142 10c -
= ´

and 7
3 0.615 10c -
= ´  in units of cm2sg-1.

The change in SAW velocity due to polymer coating
is obtained from Eqn (1) by equating the imaginary parts
on both the sides. The associated shift in oscillator frequency
is related to the shift in SAW velocity as24,25

0 0/ /f f v vD = D                                             (3)

The Eqn (1) tells that the sensor signal due to vapour
sorption in polymer film will be generated through changes

in polymer mass density r , thickness h (swelling), and

viscoelastic coefficients M
i
. Therefore, to calculate vapour

induced sensor output, these changes must be modelled.
Here, it is assumed that the vapour-induced film swelling
and viscoelastic effects are much smaller than the mass
loading effect. Therefore, the sensor signal can be calculated
through a model of the change in polymer mass density.
That is, one needs to model the time-dependent vapour
sorption to calculate the transient response of the sensor.
At any instant t after the start of vapour exposure, the
variation in polymer mass density will be given as

0

1
( ) ( , )

h

pt c y t dy
h

r = r + ò                                 (4)

where pr  denotes the polymer mass density before vapour
sorption, and ( , )c y t as shown in Fig. 2 denotes the vapour-
concentration profile at time t . The vapour induced changes
in the frequency of the polymer-coated SAW sensor can
be obtained from the instantaneous frequency at time t
by subtracting from it the change due to polymer coating
before the onset of vapour sorption. Let ( )f tD denote the
frequency change with ( )tr = r as given by Eqn (4) and

pfD  the frequency change with pr = r , then the sensor

transient signal will be given as

( ) ( ) ps t f t f= D -D                                        (5)

2.3 Vapour Sorption-Desorption Model

The theory of sorption and desorption in thin films
has been developed on the basis of solution of one-dimensional
Fickian diffusion equation under the conditions of transient33.
Since the lateral dimensions of the film are much larger
than the film thickness, the diffusion of species only along
the y-axis is considered. The film is assumed to be initially
unloaded, therefore the concentration of vapour species
in the film is zero at 0t < . At time 0t = suppose the vapour
concentration is increased by step vC , the thermodynamic
partioning will set up a constant concentration p vC KC=

on polymer side of the vapour-polymer interface for all 0t > .
The surface concentration will be maintained while the
diffusion of vapour species progresses in depth. If tM
denotes the total amount of diffusing species which has
entered by time t , and M

¥
 denotes the corresponding

quantity after infinite time (practically, the time taken to
reach steady state) the theory yields33
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where D denotes the diffusion coefficient and h is as
before, the film thickness. It can be noted that the ratio

/tM M
¥

is the same as the ratio of thickness-averaged
concentration of sorbed vapour species introduced in Eqn (4)
at respective times. Therefore Eqn (6) can be used to
calculate the second term on the right hand side of Eqn
(4). Let ( )C t  denotes this term, then

Figure 2. Schematic of the vapour diffusion profile into the
polymer film at different times after the initial
exposure at time t = 0.
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( ) ( )pt C tr = r +                                          (7)

After steady state is reached, the concentration across
the film thickness becomes uniform and equal to the surface
concentration pC . Therefore, from ( ) / /p tC t C M M¥= , one
can obtain

( ) t
v

M
C t KC

M¥

=                                         (8)

Thus, using Eqns (6) through (7), the transient sensor
signal defined by Eqn (5) can be calculated.

To calculate the desorption transients, the same equations
are applicable with the initial conditions redefined according
to the film state at which the desorption starts. If the film
is exposed to vapour for duration t

d
 before the onset of

desorption, a new time variable dt t t¢ = -  can be redefined
to describe desorption transient. If the film has reached
steady state before the onset of desorption
then ( 0) vC t KC¢ = = . The concentration in the vapour phase
is set to be zero for all 0t¢ > . The desorption transient
is obtained with
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3. MACHINE OLFACTION BASED ON SENSOR
ARRAY TRANSIENTS
In electronic nose operation an array of sensors, in

which individual sensors possess range of selectivity
and sensitivity towards target group of chemicals, provide
variability in information generation. The information content
in both the transient and the steady-state data are used
for feature extraction and vapour classification. The major
developments, however, have taken place on the basis
of steady-state responses. The approach based on transient
responses started early,12-14 but real sophistication in
data processing picked up only recently15-18. The initial
developments were mostly based on modelling sensor
transients and estimating model parameters (e.g., rise
time or multi-exponential time constants) for being taken
as features for pattern recognition12,15.

Later, however, more advanced methods that include
wavelet analysis, principal component analysis in wavelet
space, support vector machine, and neural network
classification were employed16-23. It is widely recognised
that the transient parts of sensor responses are richer
in information content. The data processing methods
for efficient utilisation of this region are however still
in the stage of evolving21,23. The transient response
analysis also offers the possibility of using only a single
sensor for vapour identification because the kinetic
parameters such as diffusion coefficients, sorption affinities,
and relaxation processes, which determine the shape of
transients, may provide adequate variability from one
molecular species to the other for discrimination. Though,
in some previous studies this has been exploited12-15,
however, most of the works have utilised sensor arrays

with heterogeneous polymer functionalities. The different
polymers add to the selectivity variation in the transient
array data, provide richer data source to mine for robust
vapour identification.

3.1 Single Polymer Multiple Thickness SAW Sensor
Array�A Novel Approach
In the present work, a new approach based on using

only a single polymer-based sensor array, whose individual
sensing elements are coated with different film thicknesses,
is proposed. The variation in film thickness across the
sensor array will introduce different time scales of equilibration.
The latter is of the order of h2/D, that is equilibration times
vary in proportion to the square of film thickness29,30.
Therefore, the vapour sorption and desorption (or sensing
and purge) cycles can be adjusted to impart additional
vapour discriminating variability in transient response data.
Of several approaches to transient analysis, the methods
based on wavelet transform are perhaps the most efficient16-18.
In this approach, the wavelet expansion coefficients of
transients are taken to represent vapour samples, and
class discrimination is sought in the wavelet space. If a
single sensor is used, the different vapour classes will
be represented by different sets of expansion coefficients,
and discrimination can be achieved. However, if multiple
sensors are used, then a vapour sample will be represented
by a combined set of wavelet expansion coefficients of
all transients of the sensor array. In effect, a vapour sample
is represented by a wider set of features, though the
dimensionality is enormously increased. The latter can be
managed by applying dimensionality reduction algorithms
such as principal component analysis, and selecting only
a few largest eigenvalue components16,17.

It is worth clarifying the difference a traditional multiple-
polymer multiple (MPM)-sensor array and the proposed
single-polymer multiple (SPM)-thickness sensor array would
make in information content and its expected impact on
vapour classification. For brevity, we may refer to these
as MPM- and SPM-sensor array, respectively. In MPM
sensor array, the kinetic parameters of vapour species (K
and D) vary from sensor to sensor, therefore, the transient
features obtained from their wavelet analysis are alternate
representations of the vapour sample in terms of different
independent sets of wavelet coefficients. In SPM sensor
array, the values of the kinetic parameters K and D remain
the same for each sensor, however the thickness variation
forces different diffusion profiles to emerge for any sensing
and purge cycle duration. The sets of wavelet expansion
coefficients of individual sensors of the array are not
independent; rather, they are the alternate realisations of
the same feature set. The PCA of combined features would
thus be the reapportion of the vapour information over
the same set of independent principal components, hopefully
in reinforced manner. One can expect therefore a more
robust set of features in comparison to the MPM sensor
array as well as the single sensor transient cases. The
proposed methodology will effectively reduce uncertainty
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associated with variations in chemical interactions in polymer
matrix and accentuate vapour-specific features prominently.

3.2 Design of SPM Sensor Array and Transient
Response Generation
The validation of proposed sensor array architecture

has been done on the basis of simulated transient responses
of a multiple thickness SAW sensor array. The response
calculation was done as described in Section 2. The SAW
oscillators were assumed to be controlled by ST-X quartz
delay line devices operating at nominal frequency f

0
 = 100

MHz. The selected polymer was poly-isobutylene (PIB).
A 3-element sensor array coated with 100 nm, 500 nm, and
1000 nm thicknesses of PIB was considered. The transient
responses corresponding to seven VOCs exposure at 1
ppm concentration in vapour phase were calculated. The
seven vapours were: chloroform, chlorobenzene, o-
dichlorobenzene, n-heptane, toluene, n-hexane and n-octane
(representatives of). The selection of vapours was made
to represent typically the alkanes, aromatic, and halogenated
family of compounds, and also for which the partition
coefficient K and diffusion coefficient D are available from
the published sources. The other parameters needed for
the calculation are listed in Table 1.

with polymer matrix is removed by working with only one
polymer.

The Figure 4 shows all the transients from 3 SPM
sensors corresponding to 7 vapours listed in Table 1. The
data is generated at 0.01 s interval for 30 s sensing (sorption)
and 60 s purge (desorption) durations, and the x-axis indicates
data points instead of actual time. This has been done
keep data record in discrete time format suitable for discrete
wavelet transform (DWT) discussed in the following section.
The computed array response can therefore be denoted
as ( )pqs t n t= D  where 1,2,...,p P=  represents vapour sample
number, q = 1,2,�, M  represents sensor number, and n
= 1,2,�, N represents discrete time points spaced at tD
with N being the data length.  Alternatively, the discrete
time transient data can simply be denoted as s

p,q,n
. The

real continuous sensor transients are actually sampled at
data acquisition stage for DWT analysis. The real system
transients are acquired by data acquisition systems at a
specified rate (samples per unit time) for a specified duration.
The sampling rate is chosen to capture transients with

Figure 3. Calculated transient responses of PIB-coated 3-
element prototype SAW sensor array under exposure
to toluene vapours at 1ppm: (a) for sensing duration
10 s and purge duration 20 s, and (b) for sensing
duration 60 s and purge duration 120 s. H1, H2, and
H3 denote sensors corresponding to PIB film
thicknesses 10 nm, 50 nm, and 100 nm, respectively.
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Table 1. Material characteristics and the vapour-polymer
partition coefficient and diffusion coefficient available
from the mentioned references. In different papers
these values are reported for the temperature range
298-325 K

Vapour Partition  
coefficient 

K 

Diffusion 
coefficient 

D (´10-11 cm2s-1) 

Chloroform 200 ref. 34 260 ref. 38 

Chlorobenzene 4680 ref. 35 230 ref. 38 

o-Dichlorobenzene 22500 ref. 35 5.49 ref. 39 

n-Heptane 1200 ref. 36 48 ref. 40 

Toluene 1000 ref. 34 35 ref. 40 

n-Hexane 180 ref. 34 160 ref. 40 

n-Octane 955 ref. 37 38 ref. 40 

Figure 3 shows the calculated transient responses of
the sensor array for toluene vapours. For 10 s sensing
duration, all the sensors were in transient state, Fig. 3(a);
whereas, for 60 s sensing duration, at least one sensor
has still not reached steady state. In a given MPM type
sensor array, and for a chosen sensing and purge cycle,
it may be possible that all sensors do not reach steady
state for all vapours. Therefore, the data analysis assuming
steady-state response may lead sometimes to erroneous
conclusion. Moreover in making MPM sensor array, often
polymer coatings thicknesses are adjusted to be nearly
identical by keeping the coating-induced frequency shifts
to be nearly equal. This will inevitably introduce thickness
variation. In SPM sensor array, this uncertainty is made
to be a certainty by design, and the uncertainty associated
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adequate resolution so that characteristic features are not
missed; and the sampling duration is optimised by studying
the dynamics of processes involved. The output data
from each sensor is a discrete set of sample values.

3.3 Feature Extraction by Wavelet Decomposition
The theory of wavelet transform provides a powerful

mathematical tool to analyse time-varying finite energy
signals. A signal )(ts  is modelled as linear combination
of orthonormal basis functions which are created from a
mother wavelet by scaling and shifting operations. The
fundamentals of wavelet transforms can be found in several
books41-43. However, an excellent summary is given by
Distante16, et al. in their paper on feature extraction for
electronic nose. The paper16 describes a discrete wavelet
transform (DWT)-based method of feature extraction from
the transient responses of an array of tin-oxide gas sensors.
The shapes of individual transients are represented by
separate sets of DWT coefficients which are taken as
features. A vapour sample is then represented by the combined
set of features across the sensor array. The principal component
analysis can be used additionally to reduce the dimensionality
of feature space in a usual manner. In a recent paper17,
this approach is further extended for feature subset selection
based on genetic algorithm (GA). In another recent paper18,
this approach is supported by comparing the results with
more generalised method of feature extraction based on
wavelet packet analysis.

For analysing the synthetic data in the present paper
using the wavelet toolbox in Matlab, DWT has been
implemented. The function �wavedec� using db1 wavelet
was employed for the multilevel 1-D wave decomposition.
The function implements Mallat algorithm44.  The scales

and shifts at every level of decomposition in this algorithm
are selected on the basis of power of 2. That is, at jth level,
the scale factor is 2 j. This is referred to as dyadic scale.
Starting from s

pq,n 
input data set for each (p, q) transient

containing n = 1, 2, .. N data points, the algorithm in the
first level of decomposition produces two sets of coefficients
cA1 and cD1 called the �approximation� and �detail� coefficients,
respectively. These coefficients are obtained by convolving
signal s

pq,n  
with low-pass and high-pass digital filters of

length  N followed by dyadic decimation. The approximation
coefficients cA1 follow from the low-pass filter and the
detail coefficients cD1 from the high-pass filter. At the
next level, the detailed coefficients cD1 are rejected and
the approximation coefficients cA1 replace s

pq,n  
with the

limit on n redefined according to the number of cA1 coefficients.
The same procedure is repeated to produce cA2 and cD2
coefficients of level 2 decomposition. The process is continued
till the desired level of decomposition is reached. The
final set of approximation coefficients cAj represents the
transient features. Figure 5 shows wavelet decomposition
of transient responses shown in Fig. 4.

Suppose each sensor transient produces a set of

N ¢ features after wavelet decomposition.  Then, a vapour
sample will be represented by the total MN ¢  features after
combining the features produced by each of the M sensors
in the array. The original 3-dimensional P M N´ ´  data
matrix will thus be represented by 2-dimensional P MN ¢´
feature matrix wherein a row defines a feature vector
[ ,  1,2,..., ]cAj j MN ¢=  corresponding to a vapour sample.
As mentioned before, in past two works, PCA has been
used for next level feature generation and dimensionality
reduction16, and GA has been used for feature subset
selection17 based on the feature matrix [cAj]. In the present

Figure 4. Calculated transient responses of the PIB coated 3-
element SPM SAW sensor array with thicknesses 10
nm, 50 nm, and 100 nm when exposed to 1ppm
concentration of seven vapours (1: chloroform, 2:
chlorobenzene, 3: o-dichlorobenzene, 4: n-heptane,
5: toluene, 6: n-hexane, 7: n-octane).
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Figure 5. Approximation coefficients at 6th level of discrete
wavelet decomposition of the SAW sensor array
transients shown in Fig. 4. Each colour denotes a
separate sensor.
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work, an alternate approach for the next level feature generation
by PCA has been explored, and the results have been
compared with the earlier approach. In the new approach,
the feature set across the sensor array at each data point
after the wavelet decomposition is taken to represent an
instance or a realisation of the vapour sample.  Thus, a
vapour sample can be represented by any of the N ¢  alternate
realisations each containing M components. All possible
realisations can be represented by N M¢´  feature matrix
wherein each row corresponds to a data point after wavelet
decomposition. This is unlike the row vector in the earlier
method. Stacking these N M¢´  feature matrices corresponding
to all vapour samples vertically in  a tower matrix, one
would obtain PN M¢´ feature matrix for the whole data
set. Doing PCA on this matrix produces PN M¢´ matrix
of principal components wherein each vapour sample is
represented by a block N ¢  rows with M new extracted
feature components.

Based on these new feature vectors, two approaches
can be adapted for classification. In one, the best among
N ¢ alternate representations of a sample is chosen for
input to the classifier. This, however, requires some criterion
for defining the best. A possible way could be to link the
goodness of the feature vector to the performance of a
classifier, for example, the output of a neural network. In
the latter, the feature set no. which yields maximum output
for the true class in training phase of the network can
be selected.   In the second approach, the classifier output
for each alternate feature vector is processed in some way
for the class prediction. For example, maximum of a probabilistic
neural network output for all alternate representation can
be made the basis for class prediction.

4. VALIDATION
Figures 6 and 7 show the PC score plots of the data

shown in Fig. 4 after 6th level of wavelet decomposition.
Figure 6 displays the projection of feature space created
by the new method, and Fig. 7 by the old method (that
is, PCA by combining all features from all transients). In
Fig. 6, all the alternate representations of the vapour sample
are shown by one symbol in the same colour. It is interesting
to note that each vapour class traces a separate path in
the new feature space. These traces comprise two branches,
the upper branch starting from rarer-to-denser points in
clockwise direction is associated with the sorption transient,
and the lower branch in the same manner is associated
with the desorption transient. It can be noted that the
class separation in the initial part of the sorption transients
and in the later portion of the desorption transient is poor.
The later part of the sorption and the initial part of desorption
transients produce substantially enhanced separation. The
present method of analysis may therefore provide a basis
for choosing those portions of the sensor transients that
produce best discrimination among classes.

Another interesting observation is made by examining

the eigenvalues associated with both the methods of analyses.
These are shown in Table 2. It can be seen that the first
two components carry 99 per cent of the total variance
of the data in both methods, however, apportioning of the
variance values are more contrasting in the new method
than in the old method. That is, the new method concentrates
information over fewer independent variables, therefore,
can lead to more compact class formation in the feature
space than the old method. It was noted however that the
old method results in only first 5 eigenvalues having finite
values; the eigenvalues of all components beyond 5 are
zero. This was found to be true for all levels of wavelet
decomposition. This implies that the old method can reveal
intrinsic dimensionality of the problem. The two methods
therefore appear to reveal complimentary information in

Figure 6. Score plots of the principal components obtained by
the new method after 6th level wavelet decomposition
of the data shown in Fig. 4.  The results shown here
are obtained by PCA of the results in Fig.  5.
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Figure 7. Score plots of the principal components obtained by
the old method after 6th level of wavelet decomposition
of the data shown in Figs 4 and 5.
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some way. For example, the old method can be used to
analyse number of hidden variables, and the new method
can be used to optimise class separation by focussing
on most potent parts of transients.

It may be noted that the new method produces several
alternate feature sets for each vapour sample. The point
is then, how to use them for classification. A strategy for
this has been outlined in the last para of the preceding
section. However, without going into any specific method,
the consistency of these feature sets for each vapour, by
using a fraction of them for training and the rest for testing
a neural network classifier, has been examined. Alternate
data points at 6th level of decomposition of the sorption
transient were divided into training and test sets. A
3 x 2 x 7 neural network architecture using �newff� function
in Matlab with �logsig� activation and �trainlm� training
algorithm was used for this purpose. It was seen that 100
per cent correct vapour identity could be predicted for
all the vapour samples.  That means all the alternate
representations are equally good. However, it may be premature
to conclude this because the present data set is simulated
one, and it does not include noisy components that are
always present in real data. Further effort would be made
to fully explore the advantages of the present method.

5. CONCLUSIONS
Using single polymer multiple thickness coatings on

individual sensors in SAW sensor array brings variability
in transient patterns that are specific to vapour species.
The present work explored this for extraction of vapourprints
(or signatures) by doing principal component analysis of
the wavelet approximation coefficients. Validation is done
by considering a prototype 3-element polyisobutylene (PIB)-
coated SAW sensor array under exposure to 7 volatile
organic compounds.  The model calculation to generate
synthetic transient responses is based on well-established
SAW perturbation theory due to vapour partitioning and
diffusion in polymer films. A new approach to sensor array
design based on single polymer is defined and validated.
A new method for transient feature extraction is proposed
that enhances class separability. In brief, the present analysis
defines a new approach for design and development of

efficient odour-sensing system based on SAW sensor
array and pattern recognition.
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