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1. INTRODUCTION
Modelling varying length temporal data is important

in various domains such as speech recognition, handwritten
character recognition, and speaker recognition1,2. Temporal
data may be of discrete or continuous valued, uniformly
or non-uniformly sampled, univariate or multivariate, and
of fixed or varying length. Classification of temporal data
is a difficult task because the structure of the underlying
process has to be inferred and the varying length has to
be handled. Two paradigms for modelling the varying length
temporal data are: (i) modelling the sequences of vectors
and (ii) modelling the sets of vectors. Tasks such as speech
recognition need modelling both the temporal dynamics
and the correlations among the features in the temporal
patterns. In these tasks, production of an example utterance
belonging to a class has a fixed number of acoustic events.
Hidden Markov models (HMMs) are the commonly used
models for speech recognition and the states in an HMM
correspond to the acoustic events1,3. In tasks such as
speaker recognition, spoken language identification, audio
classification, music classification and speech emotion

recognition, the length of utterance is large and the local
temporal dynamics is not critical. Production of different
examples of a class may have different number of acoustic
events. Gaussian mixture model (GMM)-based approaches
that model the sets of feature vectors in the temporal data
are used for such tasks4-7.

Generative approaches1-3,7-10 and discriminative
approaches11-15  are two main approaches to design classifiers.
Generative approaches rely on a learned model of the joint
probability distribution of the observed data and the
corresponding class membership. These approaches are
not suitable for classifying the data of confusable classes16

because a model is built for each class using the data
belonging to that class only. Kernel methods to develop
discriminative methods for classification of varying length
temporal patterns has been considered. Building hidden
Markov models in the kernel feature space has been explored.
Kernel-based clustering method17 is used to perform vector
quantisation in the kernel feature space and obtain a sequence
of codebook indices from the sequence of vectors in a
temporal pattern. These sequences of codebook indices
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are used to build the discrete HMMs in the kernel feature
space. Classification of temporal patterns represented by
sequences of codebook indices using a string kernel-based
support vector machine (SVM) has also been explored.
For building continuous density HMMs in the kernel feature
space, the explicit kernels have been considered for which
the kernel feature space is explicitly defined.

In the second category of approaches to classification
of temporal patterns represented as sequence of vectors,
the authors explore the methods for obtaining a fixed-
length sequential pattern from a varying length temporal
data have been exploredand then classifying the fixed-
length sequential pattern using an SVM-based classifier.
For modelling sets of vectors based representation of
temporal data, two approaches in a hybrid framework are
considered. In these approaches, a generative model-based
method is used to obtain a fixed dimensional vector
representation for a varying-length temporal data and then
an SVM is used for classification.

2. KERNEL METHOD FOR CLASSIFICATION AND
CLUSTERING
A kernel method comprises two steps18: a nonlinear

transformation, that maps data points from a low-dimensional
input space to a high-dimensional feature space induced
by an innerproduct kernel or a Mercer kernel, and a learning
algorithm to find optimal linear solutions in that feature
space. For nonlinearly separable data of two classes in
the input space, the nonlinear transformation may lead to
linear separability or linear nonseparability of the data in
the kernel feature space.

2.1 Support Vector Machine
The SVM constructs an optimal hyperplane by finding

the maximum margin hyperplane as a decision surface to
separate the positive and negative examples of a class in
the kernel feature space. The margin is the distance of
the nearest example to a hyperplane. Two linearly separable
classes in the kernel feature space, as illustrated in Fig.1

are considered. A hyperplane is specified by ( , )w b  where

w  is the weight parameter vector and b is the bias.

The margin of a hyperplane is given by
1

w . Maximising

the margin is equivalent to minimising the Euclidean norm
of the weight vector.

Let the set of training examples and their class labels
be{( , )}, 1, 2,...,i ix y i N= .  The separating hyperplane must

satisfy the constraints:

( ) 1, 1, 2,...,T
i iy w z b i N+ ³ =

where iz  is the feature vector for the input space vector

ix  and { 1, 1}iy Î + -  is the corresponding class label. The
cost function is given by

1
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The objective function for the constrained optimisation
problem is given by:
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Substituting these optimality conditions gives the

dual form of the objective function as
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The Lagrange multipliers { }il maximise the above objective

function subject to the constraints
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With the Lagrangian optimisation done, the data points

for which Lagrange multipliers are not zero are the support
vectors. The support vectors are the small subset of training
data-set that lie on the margin as illustrated in Fig 1. For
the optimum Lagrange multipliers *{ }il , the optimum weight
vector w  is given by
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where N

s
 is the number of support vectors.

Figure 1. Linearly separable classes.
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Now we consider two linearly nonseparable classes
in the kernel feature space as illustrated in Fig. 2. It is
seen that some data points may fall inside the region of
separation or on the wrong side of separation. Let ix  is
a measure of the deviation for iz  from the ideal condition
of pattern separability. Here, the learning involves in finding
the values for w  and b such that they satisfy the following
constraints:

( ) 1 , 1, 2,...,T
i i iy w z b i Nx+ ³ - =

0, 1, 2,...,i i Nx ³ =
The cost function is given by

1

1
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T

i
i

w w w Cy x
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where C is the specified parameter that assigns a penalty
to the misclassification. Now, similar to the case of linearly
separable classes, the problem becomes finding the Lagrange

multipliers { }il  that maximise the following dual form of

objective function
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For the optimum Lagrange multipliers *{ }il , the optimum

weight vector  w  is given by

 
*

1

sN

i i i
i

w y zl
=

= å
where N

s
 is the number of support vectors. The discriminant

function for the optimal hyperplane in terms of the support
vectors is defined as
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The notion that is central to the construction of the

support vector learning algorithm is the innerproduct kernel
operation between a support vector ix  and an input
vector x .  Innerproduct kernel ( , )ix xK  is defined
as ( , ) T

i ix x z zK = . The various innerproduct kernel functions

used are polynomial, sigmoidal and Gaussian kernels.
In the statistical methods for pattern classification,

as the dimension of the pattern vector increases, the number
of parameters to be estimated also increases. For neural
networks, an increase in the dimension of the pattern
vector increases the number of input nodes, and hence,
it increases the number of weight parameters to be estimated.
So, they need a large number of examples for proper training.
The number of examples required to build an SVM is not
dependent on the dimension of pattern vector. Kernel
method for nonlinear separation of clusters of data is
discussed in the next section.

2.2 Clustering in Kernel Feature Space
The commonly used K-means clustering method gives

a linear separation of data as illustrated in Fig. 3 and is
not suitable for separation of nonlinearly separable data.
In this subsection, the criterion for partitioning the data
into clusters in the input space using the K-means clustering
algorithm is first presented. Clustering in the kernel feature
space is then realised using the K-means clustering algorithm17,19.

Consider a set of  N data points in the input space,
, 1, 2,...,ix i N= . Let the number of clusters to be formed

is K. The commonly used criterion for partitioning of the
data into K clusters is to minimise the trace of the within-
cluster scatter matrix, wS , defined as follows17:

1 1
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where km  is the centre of the kth cluster, C

k
, and kig  is

the membership of data point ix  to the cluster Ck.  The
membership value 1kig =  if  i kx CÎ  and 0 otherwise. The
number of points in the kth cluster is given as N

k
 defined

by:
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The centre of the cluster C

k
 is given as km  defined

by:
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The optimal partitioning of the data points involves

determining the indicator matrix, G, with the elements as

kig , that minimises the trace of the matrix S
w
. This method

is used in the K-means clustering algorithm for linear
separation of the clusters. For nonlinear separation of
clusters of data points, the input space is transformedFigure 2.  Linearly nonseparable classes.
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into a high-dimensional feature space using a smooth and
continuous nonlinear mapping, f, and the clusters are
formed in the feature space. The optimal partitioning in
the feature space is based on the criterion of minimising
the trace of the within-cluster scatter matrix in the feature

space, wSf . The feature space scatter matrix is given by:

1 1

1
( ( ) )( ( ) )

K N
T

w ki i k i k
k i

S x m x m
N

f f fg f f
= =

= - -åå

where kmf , the centre of the kth cluster in the feature space

is given by
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The trace of  wSf  can be computed using the innerproduct

operations as given below:
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When the feature space is explicitly represented, as
in the case of mapping using polynomial kernels, the
K-means clustering algorithm can be used to minimise the
trace given in the above equation. However, for Mercer
kernels with implicit mapping used for transformation, it
is necessary to express the trace in terms of kernel function.
The Mercer kernel function in the input space corresponds
to the inner-product operation in the feature space, i.e.,

 ( , ) ( ) ( )T
ij i j i jx x x xf fK = K =

The trace of  wSf  can be rewritten as
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The term kiD  is the penalty associated with assigning

ix  to the kth cluster in the feature space. For explicit
mapping kernels such as the polynomial kernel function,
the feature space representation is explicitly known. Polynomial
kernel is given by ( , ) ( )T g

i ix x ax x cK = + , where a and c are
constants, and d is the degree of polynomial kernel. The
vector ( )xf in the feature space of the polynomial kernel
corresponding to the input space vector x  includes the
monomials upto order d of elements in x . For a polynomial
kernel, kiD  may take a negative value because the magnitude
of ijK  can be greater than that of iiK . To avoid kiD taking
negative values, ijK , in the equation for kiD is replaced
with the normalised value �

ijK defined as

� ij

ij

ii jj

K
K =

K K

From Cauchy-Schwarz inequality, ij ii jjK £ K K . It
follows that for the polynomial kernel � 1iiK =  and � �

ij iiK £ K ,
and D

ki
 is defined as:
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For implicit mapping kernels such as the Gaussian

kernel function, the explicit feature space representation
is not known. A Gaussian kernel is defined as

2

( , ) exp( )i
i

x x
x x

s

-
K = -  where s  is the kernel width parameter.

For Gaussian kernel, D
ki
 takes a nonnegative value because

1iiK =  and ij iiK £ K . Now, the optimisation problem is to
determine the indicator matrix such that

 * arg min ( )w
Tr SGG = f

(b)

(a)

Figure 3. (a) Scatter plot of  the data in clusters separable by
a circular shaped curve in a 2-dimensional space.
Inner cluster belongs to class 1 and the outer cluster
belongs to class 2. (b) Linear separation of data obtained
using K-means clustering in the input space.
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An iterative method for solving this optimisation problem
is given in17. The clusters obtained for the ring data using
the kernel based clustering method are shown in Fig. 4.
The kernel based clustering method is used for construction
of discrete HMMs in the kernel feature space as explained
in the next section.

being generated by that model. Then the class of the
model with the highest probability is assigned to the test
pattern. A discrete HMM is a finite state machine characterised
by the number of states in the model, the state-transition
probability distribution, the observation symbol probability
distribution for each state, and the initial state probability
distribution. Continuous density HMMs (CDHMMs) use
probability densities to represent the continuous observation
distributions of the states. The continuous observation
density for a state is estimated by assuming that it can
be represented by a mixture of Gaussian density functions.
Then the estimation of continuous density for a state
involves estimation of the mean vector and covariance
matrix of each component of the Gaussian mixture, and
the estimation of the mixture coefficients. Therefore,
construction of CDHMMs in the input space involves
probability density estimation in the input space. In a
discrete HMM, the observation symbols are discrete symbols
and a discrete probability distribution is used to represent
the observation symbol probability distribution of each
state. The continuous signal representation of temporal
data is converted into discrete symbols using vector
quantisation. The codebook used for vector quantisation
is built by clustering the data vectors of all the classes
and including the mean vectors of the clusters as codevectors
in the codebook. Construction of discrete HMMs in kernel
feature space where the confusable patterns are more easily
separable is proposed.

3.2 Discrete Hidden Markov Models in Kernel
Feature Space
Construction of discrete hidden Markov models (DHMM)

for classification of varying length patterns in a multidimensional
input space involves clustering and vector quantisation
of multidimensional vectors. Proper clustering of nonlinearly
separable data is important for clustering-based approaches
to pattern classification. The commonly used K-means
clustering method gives a linear separation of data and
is not suitable for separation of nonlinearly separable
data. The kernel-based clustering technique involves
transformation of nonlinearly separable data into a high-
dimensional feature space induced by the inner-product
kernels or Mercer kernels where the data is expected to
be linearly separable. Then, clustering is performed in the
high-dimensional kernel feature space. It is possible to
construct the discrete hidden Markov models (DHMMs)
in the polynomial kernel feature space, by clustering and
vector quantisation of the explicit feature vectors corresponding
to the input space vectors. However, for construction of
DHMMs in the feature spaces of kernels that perform
implicit mapping, it is necessary to perform clustering and
vector quantisation in the feature space using kernel functions
only. In the proposed method, we have employed a kernel
based clustering method proposed in17 and explained in

the previous section.
In vector quantisation, an input data vector x  is

assigned the index of the cluster whose center has the

3. CLASSIFICATION  OF  VARYING  LENGTH
TEMPORAL  PATTERNS  REPRESENTED  AS
SEQUENCES  OF  DISCRETE  SYMBOLS
One of the problems that arise in the temporal pattern

classification is the variation in the durations of sequences.
In case of tasks such as speech recognition, the durations
of two different utterances of a given word, uttered by
the same speaker, will be different. The variation in the
durations of sound units leads to variation in the length
of the sequence of feature vectors. The hidden Markov
models (HMMs) are successfully used for temporal data
classification. A method of construction of HMMs in the
kernel feature space, where the confusable patterns are
more easily separable, is proposed.

3.1 Hidden Markov Models in the Input Space
Hidden Markov models have been extensively used

for modelling of varying-length temporal data. In speech
recognition task, the HMM for a class is trained using
the varying length observation sequences corresponding
to the sequences of speech feature vectors extracted from
the speech signal data of multiple examples of the class.
The HMM for a class is trained to maximise the likelihood
of the model generating the observation sequences of
that class. During recognition, the observation sequence
of a test pattern is given as input to the HMM of each
class, to compute the probability of the test sequence

Figure 4. Nonlinear separation of data obtained using kernel-
based clustering in feature space for the data plotted
in Fig. 3
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highest similarity to x . For a codebook constructed in
the input space or in the polynomial kernel feature space,
the code vectors correspond to the mean vectors of the
clusters. For the clusters formed in the implicit kernel
feature space, there is no explicit representation of the
mean vector of a cluster. The similarity measure between
an input vector and the center of a cluster, C

k
 , in the

feature space can be computed as follows:

 1
( ) ( ) ( , )

i k

T
k k i

x Ck

s x x m x x
N

ff
Î

= = Kå

Computation of ( ), 1, 2,...,ks x k K=  involves performing

the kernel operation between x  and each of the N data
vectors used in formation of the clusters. Therefore vector
quantisation in the kernel feature space is computationally
intensive. To reduce the number of kernel operations,  a
method in which a cluster in the feature space is represented
by a subset of its vectors close to its center is proposed.
The similarity measure in the above equation is applied
to each vector in a cluster to compute its similarity to the
centre of the cluster. The vectors with high similarity are
considered to be close to the center of the cluster. Let
S be the size of the subset of vectors close to the centre
of a cluster used to represent the cluster. If the mean
vector of S vectors is approximately the same as the mean
vector of all the data vectors in a cluster, then the cluster
can be represented by the S vectors in the subset for the
purpose of vector quantisation. The similarity measures
 ( ), 1,2,...,ks x k K=  are expected to be close to the similarity
measures of  x   to the mean vectors of S vectors in each
cluster. For  

kS N= , this method leads to a significant
reduction in the computational complexity of vector
quantisation in kernel feature space. Figure 5 illustrates
the method for a cluster. The 10 close points to the centre
of the cluster are shown inside the inner circle and the
50 close points are shown inside the outer circle.

Generative models such as hidden Markov model
constructed in the kernel feature space still rely on a
learned model of the joint probability distribution of the
observed data and the corresponding class membership.
These approaches are not suitable for classifying the data
of confusable classes16 because a model is built for each
class using the data belonging to that class only. The
string kernel-based SVM for classification of sequence of
codebook indices representing a temporal pattern is discussed.

3.3 String Kernel-based SVM
The kernel-based classification using a sequence kernel

is a good choice to classify the temporal data of varying
length which can be represented in the form of sequences
of symbols. Shengfeng20, et al. have grouped the sequence
kernels into two categories based on the way the similarity
between two sequences is defined. One way to define a
sequence kernel is based on the distance between two
sequences. Edit distance kernel and modified edit distance
kernel belong to this category. The other way is based
on the number of common subsequences in the two input
sequences. String kernel21, mismatch kernel22 and their
variants fall into this  category. The string kernel is shown
to give a better performance than the polynomial kernel
or Gaussian kernel for text classification21.

In this work, we use the string kernel-based SVM
classifier for classification of a sequence of codebook
indices obtained using clustering and vector quantisation
in the kernel feature space. The string kernel computes
the similarity between two strings of symbols using the
subsequences present in the sequences and their positions.
The more the number of subsequences common to them,
the more similar the two strings are. A subsequence is
an ordered sequence of p symbols in a string. Symbols
in a subsequence do not need to be contiguous. To deal
with non-contiguous subsequences, a decay factor (0,1)l Î
is introduced. Let S be a finite alphabet of symbols and
a string is a finite sequence of symbols from S, including
the empty sequence. A string s is denoted by s

sss ,...,1=
where s  is the length of the string . Then, u is a subsequence
of s, if there exist indices 1( ,..., )ui i i= , with 11 ... ui i s£ £ £ £ ,
such that jj iu s= , for 1,...,j u= , or [ ]u s i=  for short.
The length l(i)of the subsequence in s is 1 1ui i- + . The
set of all subsequences of length n is denoted by Sn. The
feature mapping f for a string s is given by defining ( )u sf
for each nu Î S  as follows:

 å
=

=
][:

)()(
isui

il
u s lf

where 1£l . These features measure the number of occurrences
of subsequences in the string s weighting them according
to their lengths. The innerproduct of the feature vectors
of the two strings s and t gives a sum over all common
subsequences weighted according to their frequency of
occurrence and lengths as follows:

 å å å
SÎ = =

+=K
nu isui jtuj

jlilts
][: ][:

)()(),( lFigure 5. Illustration of representation of a cluster by S points
close to its centre for different values of S.
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where j is the index sequence for the symbol subsequence
u in string t. The values of n=3 and l=0.01 and are empirically
chosen in this study.

3.4 Classification of Temporal Patterns Represented
as Sequences of Symbols

3.4.1  Description of Database
The performance of the proposed approaches for a

task in speech recognition has been studied. The task
involves recognition of spoken utterances of a highly
confusable subset of letters in English alphabet, namely,
E-set. The E-set includes the following 9 letters: {B, C,
D, E, G, P, T, V, Z} . The OGI spoken letter database23 is
used in the study on recognition of E-set. The training
data set consists of 240 utterances for each letter, and
the test data set consists of 60 utterances per letter. For
the speech signal of each utterance, short-time analysis
of speech is performed using a frame size of 25 ms with
a shift of 10 ms resulting in a sequence of data vectors.
Each data vector consists of 12 Mel-frequency cepstral
coefficients (MFCC), energy, their first-order derivatives
(delta coefficients) and their second-order derivatives
(acceleration coefficients) resulting in a dimension of 39.
The number of data vectors in the training data set of each
class is about 12,000.

3.4.2  DHMMs in the Kernel Feature Space
Recognition of E-set, a 5-state, left-to-right, discrete

HMM is constructed for each class (letter) in this study.
For input space DHMMs, a codebook of size 64 is constructed
in the 39-dimensional space by clustering the data vectors
of all the classes into 64 clusters using K-means clustering
algorithm. For construction of DHMMs in the feature space
of polynomial kernel, the explicit clustering method and
the implicit clustering method have been considered. In
the explicit clustering method, a codebook of size 64 is
constructed in the explicitly represented feature space of
polynomial kernel of degree 2. The feature vector includes
the monomials of order 0,1 and 2 derived from the 39-
dimensional input space vector. Therefore the dimension
of the feature space is 820. The K-means clustering algorithm
is used for explicit clustering. In the implicit clustering
method, the stochastic method is used for determining the
elements of the indicator matrix.

In the all-class-data clustering method, the clustering
is done for the data of all the classes. However, only the
data vectors of 30 utterances in the training set of a letter
are used in clustering. This is mainly to ensure that the
stochastic method converges and that the computational
complexity of clustering does not become high. A codebook
of size 64 is constructed from the data of all the classes.
In the class-wise-data clustering method, the data vectors
belonging to the total training set of a letter are used in
building a codebook of size 8, i.e., 8 clusters are formed
from the data vectors of a class. The total number of
clusters for all the 9 letters in the E-set is 72. Implicit
clustering using the all-class-data clustering and the class-

wise-data clustering methods is carried out for the polynomial
kernel of degree 2 and for the Gaussian kernel with a s
value of 500. After the codebook is constructed using a
particular method, the DHMMs are built by performing
vector quantisation using the codebook. For the codebooks
constructed using the explicit clustering method, vector
quantisation is done using all the data points of a cluster
in computing the similarity of a data vector with the mean
of the cluster, i.e., kNS =  is used.

The classification performance on the test data set
for DHMMs built using different methods of kernel-based
clustering and for different kernels is given in Table 1.
The performance is compared with that of the input space
DHMMs. It is seen that the explicit clustering in the feature
space of polynomial kernel gives a marginally better
performance. The poorer performance of the all-class-data
clustering method may be because only a subset of training
data set is used in building the codebook. The performance
of class-wise-data clustering method for Gaussian kernel
gives a significantly better performance compared to the
input space HMMs. It is interesting to note that the performance

Models Clustering method 
Accuracy  
(per cent) 

DHMMs in the 
input space 

K -means clustering 65.1 

Explicit, all-class-data 
clustering 

67.96 

Implicit, all-class-data 
clustering 

66.11 
DHMMs in 
polynomial 
kernel space 

Implicit, class-wise-data 
clustering 

63.15 

Implicit, all-class-data 
clustering 

65.19 DHMMs in 
Gaussian 
kernel space Implicit, class-wise-data 

clustering 
70.74 

Table 1. Classification accuracy of DHMMs in the input space
and the kernel feature space for E-set recognition
task

of the implicit clustering method for Gaussian kernel is
better than that of the implicit clustering method for the
polynomial kernel.

3.4.3 Studies on String Kernel-based SVM Classifier
The performance of the string kernel-based SVMs

using the sequence of codebook indices obtained by performing
VQ in kernel feature space is shown in Table 2. The performance
of the string kernel-based SVM using the sequence of
codebook indices obtained by performing VQ in the Gaussian
kernel feature space is higher by about 13 per cent compared
to the performance of DHMMs using the sequence of
codebook indices obtained by performing VQ in the input
space.

These studies demonstrate that discrete HMMs in
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high, construction of CDHMMs in the feature space would
have a significantly higher computational complexity and
would need larger training data sets for proper estimation
of the parameters of the HMMs.

4.2. Conversion of Varying-length Sequences of
Feature Vectors to Fixed-length Sequential
Patterns
Generally, in acoustic modelling using SVMs, the varying-

length sequence of feature vectors is mapped to a fixed-
length pattern. In the split and average method, the speech
signal can be assumed to be homogeneous in nature for
context independent subword units such as monophones.
Hence the segment of a monophone is divided into a fixed
number of parts, and each part is represented by the central
frame of that part or by the average of frames in that
part24,25. This method is not suitable for context-dependent
units such as diphones, triphones, syllables and words
that are not homogeneous in nature. One of the methods
considered for context-dependent units is the deletion
and replication of least varying frames. In this method26,
the frame in a segment that has the minimum distance from
its adjacent frames is identified. Depending on whether
the segment length is greater than the chosen pattern
length, the frame with the minimum distance is removed
from the segment or replicated in the segment. This process
is continued until the length of the segment is the same
as the chosen length of the pattern. The performance of
this method depends on the distance measure used to
identify the least varying frames. For SVM-based classifiers,
we consider four approaches to obtain the fixed-length
patterns namely, the linear compaction and elongation
method, anchor point-based method, outerproduct matrix
method and the varying frame-shift method.

4.2.1 Linear Compaction and Elongation
In this method27, if the number of frames in a segment

is greater than the fixed length, a few frames are omitted.
If the number of frames in a segment is smaller than the
fixed length, a few frames are repeated. Consider a segment
with L

s
 frames in it. For a chosen pattern length L

p 
, the

linear relationship between the index s of a frame in the
segment and the index p of a frame in the pattern is given
b y

)
*

(
p

s

L

Lp
s =

A limitation of this method is that omission of frames
may result in abrupt discontinuities and loss of frames
that may be important for pattern analysis.

4.2.2 Anchor Point-based Method
For Consonant-Vowel (CV) units of speech, the important

information necessary for pattern analysis is present in
the region around the vowel onset point. The point at
which the consonant ends and the vowel begins in a CV
segment is defined as the vowel onset point (VOP). A

the kernel feature space give an improved performance
over the discrete HMMs in the input space. Classification
of sequence of codebook indices obtained using VQ in
the kernel feature space, with a string kernel based SVM
gives a significantly better performance than the discrete
HMMs in the kernel feature space.

4. CLASSIFICATION OF VARYING LENGTH
TEMPORAL PATTERNS REPRESENTED AS
SEQUENCES OF FEATURE VECTORS

4.1 CDHMMs in the Explicit Kernel Feature Space
It is important to note that the performance of DHMMs

in the kernel feature space is not expected to be as good
as the performance of the CDHMMs in the input space.
This is mainly due to the significant loss of information
incurred in discretisation of continuous signal representations
using vector quantisation in construction of the DHMMs.
Performance of the CDHMMs in the kernel feature space
is expected to be better than that of the CDHMMs in the
input space. Construction of a CDHMM in the input space
involves estimation of initial state probabilities, state transition
probabilities, and continuous observation probability density
functions for each state in the CDHMM. For construction
of CDHMMs in the feature space of an explicit mapping
kernel, the methods used for construction of the CDHMMs
in the input space can be used. For explicit mapping kernels
such as the polynomial kernel function, the feature space
representation is explicitly known. The polynomial kernel
is defined by:

g
j

T
ijiij cxxaxx )(),( +=K=K

where g is the degree of the polynomial kernel and a and

c are constants. The vector )(xf  in the feature space
of the polynomial kernel corresponding to the input space
vector x  includes the monomials upto order g of
elements in x . For a d-dimensional input space vector,
the dimension  D of the vector in the feature space of
polynomial kernel of degree g is given by:

!!

)!(

gd

gd
D

+
=

However, as the dimension of the feature space is

Method for 
vector quantisation 

Classification 
model 

Accuracy  
(per cent) 

DHMMs 65.19 VQ in the 
Input space SVM using string kernel 82.41 

DHMMs 67.96 VQ in polynomial 
kernel feature space SVM using string kernel 88.89 

DHMMs 70.74 VQ in the Gaussian 
kernel feature space SVM using string kernel 95.55 

Table 2. Classification accuracy (in per cent) of string kernel-
based SVM models using the sequence of codebook
indices for E-set recognition task
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multilayer perceptron can be trained to detect the VOPs
in CV utterances automatically28. Then a fixed-length region
around the VOP is considered for analysis29. This segment
is analysed to obtain a fixed-length pattern. In this method,
no crucial frame will be lost, but it is not suitable for
context-dependent units of other types.

4.2.3 Outerproduct Matrix Method
In this method30, a fixed dimensional pattern vector

is derived from a sequence of multidimensional vectors
(trajectory) by considering it as a matrix and then by
carrying out the outerproduct operation on the trajectory
matrix. Short-time analysis of a speech segment gives a
sequence of l-dimensional vectors that is considered as
a trajectory in the l-dimensional space. Let m be the
number of frames for a given segment. The trajectory
matrix for the segment consists of the m frames, mxxx ,...,, 21 ,
as its columns. The trajectory matrix of  l-by-m trajectory
matrix,  X, is given as :

 ],...,,[ 21 mxxxX =

The value of m will be different for speech segments
of different durations. The outerproduct matrix, Z, of a
trajectory matrix X is given by:

 TZ XX=
The outerproduct matrix Z is an l-by-l matrix. The

dimension of the outerproduct matrix is independent of
the number of frames in the trajectory. The outerproduct
matrix is vectorized to obtain a fixed dimension pattern
that can be used as input to SVM based classifier. However,
for an utterance consisting of multiple sounds, the outerproduct
operation on the trajectory matrix of its speech segment
leads to an averaging operation over non-homogeneous
segments of different sounds resulting in the possible
loss of important discriminatory information necessary
for recognition of sounds.

A variant of this method, named multiple outerproduct
matrices method, is proposed in which the outerproduct
matrix is computed for the trajectory matrix of the segment
of each sound in an utterance, and then the fixed dimension
pattern is derived from the outerproduct matrices of the
different sounds in the utterance as shown in Fig. 6. This
method requires segmentation of the speech signal of an
utterance into the regions of different sounds in it. A
pattern extracted using the outerproduct matrix method
captures only the correlation. Another variant of outerproduct
matrix method, namely the augmented pattern extraction
method has been proposed in which the outerproduct
matrix is computed for the trajectory matrix of the segment
of each sound in an utterance, and then the fixed dimension
pattern is derived from the outerproduct matrices of the
different sounds in the utterance augmented with a fixed
number of frames around the VOP.

4.2.4 Varying-frame Rate Method
In the varying frame rate method, the frame rate is

varied for each utterance to obtain a predefined number
of frames from the speech signal of an utterance. The
frame shift for each utterance is chosen based on the
duration of the utterance. For an utterance consisting of
multiple sounds (phonemes), the varying-frame rate method
may lead to loss of important discriminatory information
necessary for recognition of sounds. Therefore, we the
multiple varying frame rates method has been proposed,
in which the varying-frame rate method is used independently
for each sound unit in an utterance. This method requires
segmentation of the speech signal of an utterance into
the regions of different sounds in it. In this study,  only
the consonant-vowel (CV) type units were considered.
For deriving the fixed-dimension pattern vector using the
multiple varying frame rates method, the vowel onset point
(VOP) was detected using the approach given in28. The
segment of the utterance before the VOP corresponds to

Figure 6. Block diagram for multiple outerproduct matrices method.
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the consonant, and the segment after the VOP corresponds
to vowel. The varying frame rate method extracts cN  frames
for the consonant region and vN  frames for the vowel
region. The value of the frame shift for the consonant
region of duration cT  is determined as /c cT N . The value
of the frame shift for the vowel region of duration vT  is
determined as /v vT N . Thus the frame shift may be different
for different sounds in an utterance. Using the multiple
varying frame rates method, a fixed length pattern for a
speech utterance is obtained by concatenating the N

c
 and

N
v
 frames.

4.3 Classification of Temporal Patterns Represented
as Sequences of Feature Vectors

4.3.1 CDHMM in Polynomial Kernel Feature Space
The polynomial kernel of degree 2 is used in this study.

The 820 dimensional feature vector includes the monomials
of order 0, 1 and 2 derived from the 39-dimensional input
space data vector. A 5-state, left-to-right HMM is constructed
for each class. The CDHMMs in the input space use two
mixtures per state. The CDHMMs in the polynomial kernel
feature space use one mixture per state. The performance
of different approaches to build HMMs is given in Table
3. The performance of DHMMs in the input space and in
the polynomial kernel feature space is inferior (by 15 per
cent) to that of the performance of the CDHMMs in the
input space. However, the performance of the CDHMMs
in the kernel feature space is better than that of the CDHMMs
in the input space (by about 10 per cent).

rate method is poorer (by about 1 per cent) than that
of the models trained with patterns extracted using the
linear compaction and elongation method. The multiple
varying frame rates method gives a better performance
(by about 11 per cent) than that of the linear compaction
and elongation method. The multiple varying frame rates
method improves the classification accuracy (by about
12 per cent) compared to the varying-frame rate method,
since the duration of each phoneme in an utterance is
taken into account to determine the value of frame shift
for each phoneme in the utterance. The multiple varying
frame rates method gives a comparable performance to
that of the CDHMM-based classifiers. The multiple
outerproduct matrices method performs better than the
single outerproduct matrix method and the linear compaction
and elongation method for mapping the varying length
patterns to fixed length patterns. It is also seen that
the augmented pattern extraction method gives a better
performance than all other proposed methods.

Classification  model Accuracy   
(per cent) 

DHMMs  in  the  input  space 65.19 

DHMMs  in  the  polynomial  
kernel  feature  space 67.96 

CDHMMs  in  the  input  space 82.96 

CDHMMs  in  the  polynomial  
kernel  feature  space 93.24 

Table 3. Classification accuracy of DHMMs and CDHMMs
in the input space and in the polynomial kernel feature
space for E-set recognition task

4.3.2 Classification of Fixed Length Patterns Derived
from Varying Length Sequences

The performance of the SVM models built using the
fixed length patterns based on the  proposed approaches
is given in Table 4. For linear compaction and elongation
method, a frame shift of 10 milliseconds is used. The
number of frames is chosen as 58 (obtained from the
average duration of all utterances) for the linear compaction
and elongation method, 40 for the varying frame rate
method, and 15 frames in the consonant region and 25
frames in the vowel region for the multiple varying frame
rates methods respectively. The performance of models
trained with patterns extracted using the varying frame

Method  for  extraction 
of  fixed-length  patterns 

Accuracy  
(per cent) 

Linear  compaction  and  elongation  method 71.67 

Single  outerproduct  matrix  method 81.48 

Multiple  outerproduct  matrices  method 84.44 

Augmented  pattern  extraction  method 86.90 

Varying  frame  shift  method 70.56 

Multiple  varying  frame  shift  method 82.63 

Table 4. Classification accuracy of SVM models built using
the fixed-length patterns based on the proposed
approaches for E-set recognition task

The continuous density HMMs in the explicit kernel
feature space give a better performance compared to
the discrete HMMs in the kernel feature space is
demonstrated. However, as the dimensionality of the
kernel  feature space representat ion is  high,  i t  is
computationally intensive. Additionally, the continuous
density HMMs cannot be constructed in the implicit
kernel feature space as the method for density estimation
in the kernel feature space using kernel functions on
the data does not exist. However, it is interesting to
note from studies in Section III and IV that the string
kernel based SVMs for classification of sequence of
codebook indices obtained using kernel-based clustering
give a better performance than the continuous density
HMMs in the kernel feature space.

5. CLASSIFICATION  OF  VARYING- LENGTH
TEMPORAL  PATTERNS  REPRESENTED  AS
SETS  OF  FEATURE  VECTORS
Modelling sets of vectors involve tasks such as speaker

recognition, spoken language identification, audio
classification, music classification and speech emotion
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recognition7,31,32. In these tasks, the duration of examples
is large and the local temporal dynamics is not critical.
Production of different examples of the same class may
have a different number of acoustic events. Classification
of set of vectors can be done using parametric methods
such as GMMs, or nonparametric methods such as nearest
neighbour approach and vector quantisation-based approach.
The nearest neighbour approach is used for speaker
identification task33. In this work, the feature vectors of
the registered speakers are stored as reference vectors.
During testing, the feature vectors of the test utterance
are compared with the feature vectors of each of the registered
speakers. The speaker of the test utterance is the speaker
of the feature vector set that gives the lowest distance.
Vector quantisation (VQ)-based approach34 is similar to
nearest neighbour approach, except that the distance is
measured to the nearest centroid that represents a cluster
of feature vectors.  Better approach is to model the feature
vectors by a set of mean and covariance parameters. This
technique is employed in models such as GMM and is
commonly used in modelling sets of vectors7. The number
of components of GMM is chosen empirically and the
choice of optimal number of components is critical.

The motivation for the proposed approaches is to
incorporate the advantages of generative models for the
representation of the temporal data and the discriminatory
approach for classification. The similarity-based paradigm
is shown effective for classification tasks35. Two approaches
in a hybrid framework, that first uses a generative model-
based method to represent a varying-length sequence of
feature vectors as a fixed-length pattern and then uses
a discriminative model for classification, have been proposed.
In the score vector-based approach, each temporal data
in the training data set is modelled by a GMM. In tasks
that involve modelling sets of vectors, the duration of the
temporal data is large and hence a GMM can be built for
each temporal data. The log-likelihood of a temporal data
for a given GMM model is used as a score. A score vector
is obtained by applying a temporal data to the GMM
models of temporal data in the training set. A test temporal
data is also represented using a score vector. An SVM-
based classifier is then used for classification of the score
vector representation of temporal data. In tasks that involve
modelling, the set of vectors of a temporal data, though
the local temporal dynamics is not critical, the sequence
information present at the gross level needs to be modelled.
In the score vector-based representation, the temporal
dynamics in the temporal data is not modelled and the
dimension of the fixed-length score vector depends on
the cardinality of the training data set. To address these
issues, a segment modelling-based approach is proposed.
In this approach, a temporal data is segmented into a fixed
number of segments. Each segment is modelled by a
multivariate Gaussian model or a GMM. The model parameters
of segments are concatenated in the order of the segments
to form a parametric vector. Then, an SVM-based classifier
is used to classify the parametric vector representation

of temporal data. The proposed approaches are studied
for the speech emotion recognition task.

5.1 Gaussian Mixture Model Score  Vector-based
Approach to  Modelling  Sets  of  Vectors
Gaussian mixture model is a linear superposition of

Gaussian components. For a d-dimensional feature vector
x , the likelihood of x for a GMM with K components is
defined as follows:
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The parameters of the GMM are collectively denoted
as follows:

{ , , }, 1, 2,...,k k kw C k Kl m= =
The commonly used method for estimation of GMM

parameters is the maximum likelihood (ML) method. The
ML method suffers from the over-fitting if the model complexity
is too high. Let a multivariate temporal data be denoted
by a set of feature vectors 1 2{ , , ..., , ..., }

ii i i ij inX x x x x= , where
X

i
 is a d-dimensional feature vector and n

i
 is the number

of feature vectors. Let 1 2{ , , ..., }MD X X X=  be the training
data set. For a temporal data, X

i 
, the likelihood score

using a GMM with l as the set of model parameters is
defined as follows:
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The log-likelihood is given by
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In the proposed score vector-based approach, a GMM

il  is built for each temporal data iX  in the training data
set D. Then the log-likelihood score is computed for each
of the M  temporal data in D, by applying each of the
models. A temporal data is now represented by an M-
dimensional score vector that consists of M scores. Each
score in a score vector is given by
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The  steps  of  the  proposed  GMM  score  vector-
based  method  for  classification  of  temporal  data  are
as  follows:
� Build  a  GMM  for  each  temporal  data  in  the

training  data  set.
� Apply  each  temporal  data  to  all  the  M  models
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and  form  a  score  vector  using  the  log  likelihood
scores.

� Normalise  each  score  by  dividing  it  with  the
length  of  the  temporal  data.  An  entry  in  the
score  vector  for X

i
 is given  by

 1
ln ( / )ij i j

i

S p X
n

l=

Score vector S
i
 for X

i
  is given by  1 2[ , ,..., ]T

i i i iMS S S S= .
Such score vectors are the fixed-length patterns. Since
the scores are log likelihood values, each score vector
S

i
 is again normalised by  ( * )ia Se  where a is a constant that

is chosen empirically.
� Build an SVM-based classifier using the GMM score

vector-based representation of temporal data.
� Apply the test temporal data to all the M GMMs and

get the score vector.
� Use the SVM-based classifier to classify the test temporal

data represented using the GMM score vector.
The generation of GMM score vector is shown in

Fig.7. The dimension of the fixed-length score vector depends
on M, the cardinality of  training data set. Methods to
mitigate the problem of higher dimensionality in case of
similarity-based classifiers have been suggested35.

data set. Let the fixed number of segments in each temporal
data be L. For a temporal data, iX , the fixed-dimensional
parameter vector iZ , of *( ( *( 1) / 2))L d d d+ +  dimension
is formed by

1 2{ , ,..., }LZ z z z=

where [ , ], 1, 2,...,l l lz C l Lm= =  and 
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where lN  is the number of feature vectors in the lth segment.
Each lz  is of dimension ( *( 1) / 2)d d d+ + . For GMM based
segment modelling, each segment is modelled using K
mixtures. The parameters of the GMM for the  lth segment
are

{ , , }, 1, 2,...,l lk lk lkw C k Kl m= =

The Expectation-Maximisation (EM) algorithm was used
to find the maximum likelihood estimates of the model
parameters. In the case of GMM-based segment modelling,
each lz  is of dimension K( ( *( 1) / 2)d d d+ + ). The parameter

Figure 7. Score vector generation for a temporal data using
GMMs.

5.2 Segment  Modelling-based  Approach  to
Modelling  Sets  of  Vectors
In this approach, a temporal data is split into a fixed

number of segments. Each segment is modelled by a
multivariate Gaussian model or a Gaussian mixture model.
The model parameters are concatenated in the order of
the segments in a temporal data to form a fixed-dimensional
parameter vector. The number of segments and length of
each segment depends on the application. Figure 8 shows
the sequence of steps in the segment modelling based

approach.
Let a temporal data be denoted

by 1 2{ , ,..., , ..., }
ii i i ij inX x x x x= , where ijx  is a d-dimensional

feature vector and in  is the number of feature vectors.
Let a set of temporal data, 1 2{ , ,..., }MD X X X= , be the training

Figure 8. Block diagram of the segment modelling-based
approach for varying-length temporal data
classification.
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vector is formed by concatenating the mean vectors of
K mixtures and the upper triangular parts including the
diagonal elements of the full covariance matrices of K
mixtures corresponding to the lth segment. Now, the temporal
data, X

i 
, is represented as a fixed-dimensional parameter

vector by concatenating all lz �s in the order of the segments
in the temporal data. This helps to maintain the temporal
ordering of the segments in a temporal data.

5.3 Speech  Emotion  Recognition
The proposed approaches were studied for the task

of speech emotion recognition. The Berlin emotional speech
database36 was used in our studies. Five female and five
male actors uttered ten sentences in German that had little
emotional content textually. The database includes a total
of 494 utterances from seven emotional classes: Fear(F),
Disgust(D), Happiness(H), Boredom(B), Neutral(N), Sadness(S)
and Anger(A). The duration of the utterances varied from
one to two seconds. 80 per cent of the utterances were
used for training and the remaining utterances were used
for testing. Short-time spectral analysis was carried out
to extract the sequence of feature vectors from an utterance.
A frame size of 20 ms and a shift of 10 ms were used for
feature extraction. The Mel frequency cepstral coefficient
(MFCC) vector representing a given frame is a 39-dimensional
vector, where the first 12 components are Mel frequency
components and the 13th component is log energy. Remaining
26 components are delta and acceleration coefficients that
capture the dynamics. The effectiveness of the MFCC
features for speech emotion recognition is shown in37. A
39-dimensional MFCC feature vector was chosen to represent
a frame in an utterance in all the studies. Table 5 shows
the performance of the GMM score vector-based approach
for different number of mixtures with full covariance matrices.
Singularity problem could arise if the number of mixtures
as 5 or above was assumed. The results show that the
performance depends on the number of mixtures. The best
performance was obtained for 3 mixtures.

correlations among features were not modelled in the case
of the temporal data representation that uses the diagonal
covariance parameters, the performance was poor compared
to that of the full covariance counterpart.

No.  of  

segments 
Diagonal  covariance Full  covariance 

 
Dimension Accuracy 

(per cent) 

Dimension Accuracy 

(per cent) 

1 78 60.00 819 63.81 

2 156 56.19 1638 66.67 

3 234 60.00 2457 64.76 

4 312 58.10 3276 71.43 

5 390 58.10 4095 72.38 

6 468 49.52 4914 65.71 

Table 6. Classification accuracy using the segment modelling-
based approach with single Gaussian model for each
segment for speech emotion recognition

No. of segments Dimension Classification accuracy 

(per cent) 

1 1638 53.33 

2 3276 57.14 

3 4914 54.29 

4 6552 62.86 

Table 7. Classification accuracy for the segment modeling
based approach using GMM with 2 mixtures per
segment for speech emotion recognition

No. of mixtures Classification accuracy 
(per cent) 

2 66.67 

3 70.48 

4 53.33 

Table 5. Classification accuracy using the GMM score vector-
based approach for speech emotion recognition

The performance of the segment modelling-based approach
to speech emotion recognition is given in Table 6. A multivariate
Gaussian model was used to model each segment in a
temporal data. Experiments were carried out separately for
both the full covariance matrix and diagonal covariance
matrix parameters, and for different number of segments.
The best performance was obtained for 5 segments per
utterance with full covariance matrix parameters. Since the

A GMM with 2 mixtures and full covariance matrices
was also used to model each segment. The performance
is given in Table 7. Singularity problem arises if the number
of mixtures was 5 or above. The performance is better
compared to that of the representation that uses a single
Gaussian model with the diagonal covariance parameters,
but less compared to that of the representation that uses
a single Gaussian model per segment with full covariance
method. In Table 8, the performance of the score vector-
based approach, the segment modelling-based approach
and two other methods evaluated on the Berlin emotional
speech data set is given.

The first method is the GMM-based classifier with
the maximum likelihood method used for parameter estimation.
The GMM-based classifier gives the best performance for
25 mixtures. Choosing optimal number of mixtures is critical
in the GMM-based classifier. In the second method, the
variational Bayesian approach is used for parameter estimation
in GMM (VBGMM). Using the variational Bayes framework
to GMMs helps in training models with less amount of
data and in determining the optimal number of components.
It is free from the singularity problem that arises frequently
in GMMs38. The number of mixture components of seven
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emotion classes(Fear(F), Disgust(D), Happiness(H),
Boredom(B), Neutral(N), Sadness(S) and Anger(A)) chosen
by the VBGMM models were 13,12,14,16,12,10 and 14
respectively. The VBGMM-based classifier performs better
than the GMM-based classifier.

In the proposed score vector-based approach, the
effective discriminative ability of the similarity-based
representation and the discriminative approach for classification
helps in achieving a better performance than that of the
GMM-based classifiers. In case of speech emotion data
set, though the local temporal dynamics is not critical,
some kind of sequence information is present at the gross
level in the temporal data that needs to be modeled. In
the proposed segment modelling-based approach that uses
a single Gaussian with full covariance matrix parameters,
the temporal dynamics of the segments in a temporal data
is maintained to some extent and the correlations among
the features within a segment are also modelled. Hence,
this method performs better than the score vector-based
approach and it outperforms all other methods used for
comparison.

6. CONCLUSIONS
We have proposed approaches for classification of

varying length temporal data that involves modelling sequences
using DHMMs in the kernel feature space, string kernel-
based SVMs and CDHMMs in the kernel feature space.
Approaches for modelling sequences using fixed-length
patterns derived from varying-length sequences of feature
vectors, namely, linear compaction and elongation method,
anchor point-based method, varying-frame shift method
and outerproduct matrix-based method have also been
proposed. The performance of proposed methods were
studied for recognition of spoken utterances of letters in
E-set. String kernel-based SVM classifier with the sequences
of codebook indices obtained using clustering and vector
quantisation in the Gaussian kernel feature space gives
a better performance than all other proposed approaches.
In case of approaches that involve modelling sets of vectors,
a hybrid framework that uses a generative front-end for
temporal data representation and a discriminative model
for classification has been proposed. In this framework,
two different approaches, namely, the GMM score vector-
based approach and the segment modelling-based approach

are proposed. These approaches are studied for the tasks
of speech emotion recognition. Incorporating the temporal
ordering of the segments in the temporal data in case of
the segment modelling-based approach helps in achieving
a better performance for the task of speech emotion recognition,
compared to all other methods used for comparison. The
segment modelling-based approach is suitable for temporal
data classification tasks in which the temporal order of
segments needs to be maintained.
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