
1.  INTRODUCTION
In recent years, great development has been achieved 

in adaptive radar detection under Gaussian and compound-
Gaussian clutter environment1-5. Many detectors have been 
used in radar signal processing as powerful tools of moving 
target detection, and have a constant false alarm rate (CFAR) 
property under homogenous data assumption, such as the 
generalized likelihood ratio test (GLRT)1-2, the adaptive 
matched filter (AMF)1, and the normalized adaptive matched 
filter (NAMF)5, and so on. However, the heterogeneous data 
will result in performance degradation of these detectors in a real 
environment, since they cannot estimate the clutter covariance 
matrix accordingly such that greatly mitigates their CFAR 
properties4. To overcome these problems, robust algorithm 
design in improving the detection performance is practical for 
space-time adaptive processing (STAP) techniques6-9.

Classical principle component analysis (PCA) has been 
widely used in data analysis and compression as one of the 
most popular tools10-11. PCA mainly studies the exact recovery 
problem from a corrupted low-rank data owing to small errors 
and noise, and provides the optimal estimation of the lower-
dimensional subspace from the observed data. However, PCA 
cannot effectively deal with incomplete or missing real-world data 
under large corruption. Recently, a new theoretical framework, 
called the robust principle component analysis (RPCA), has 
been proposed for corrupted low-rank data recovery12-13, 
which can be applied in many engineering domains, such as 
background modeling, image processing, and face recognition, 
and so on. The variant of the Douglas-Rachford splitting 

method (VDRSM) is used to solve the recovery problem for 
object detection by exploiting the separable structure in both 
objective function and the constraint14. Principal component 
pursuit (PCP) is successfully applied to separate ground clutter 
and moving target in heterogeneous environments15. However, 
the velocity of moving target cannot be estimated due to the 
inexact extraction.

In this paper, authors find that the range-Doppler data 
matrix has low-rank property by analyzing its eigenvalue 
distribution, and consider to incorporate this property into 
STAP framework to further improve the performance of moving 
target detection. Therefore, authors extend the idea of the 
RPCA algorithm to space-time adaptive processing with sum 
and difference beams (ΣΔ-STAP)16, and propose an efficient 
ΣΔ-STAP detector based on the RPCA algorithm to detect 
moving targets, which meets the low-rank matrix recovery 
conditions. The proposed algorithm can accurately separate the 
sparse matrix of moving target from the range-Doppler data 
matrix after ΣΔ-STAP processing with the NAMF detector, 
which has the advantages in preserving the target signal during 
the process of clutter suppression. Simulation results show 
that the proposed algorithm greatly improves the performance 
of moving target detection in radar seeker, and also performs 
robustly in the case of low signal-to-noise ratio (SNR).

2.  PROblem STaTemeNT aND SIgNal mODel
Authors consider a radar seeker with the sum and 

difference beams that transmits a sequence of  M coherent 
pulses during the coherent processing interval (CPI) and 
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samples the radar returns on sum-channel and delta-channel. 
For each pulse, it collects K temporal samples from each 
channel, where each temporal sample corresponds to a range 
cell. The entire received data can therefore be organized in a 
three-dimensional data cube denoted as 1X=[ , , , ]Kx x L x , where 

2 1M ×∈x   represents the test data in the cell under test (CUT), 
2 1x M

k
×∈ , k =1, 2, ..., K, denotes the secondary samples, and 



 stands for the complex number field.
Sum-channel data xΣ  and delta-channel data x∆  can be 

expressed as follows

1x [ , , , , ]T
m Mx x xΣ Σ Σ Σ=                                               (1)

1x =[ , , , , ]T
m Mx x x∆ ∆ ∆ ∆                                               (2)

where mxΣ , mx∆  are the mth elements of the sum-channel data 
and delta-channel data, respectively, m = 1, 2,...,M, and ( )T

  
denotes the transpose.

The test data at a range cell can be rearranged as
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(3)

In the line-of-sight (LOS) direction, the steering vector of 
the sum-channel and delta-channel can be written as
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(4)

where sΣ  is the steering vector of the sum-channel, and s∆  is 
the steering vector of the delta-channel. Note that the response 
of the delta-channel in a certain direction is usually null, so the 
steering vector s∆  can be assumed to be zero.

Now we address the detection problem, which can be 
formulated in terms of the following binary hypothesis test

0

1

H :x=c+n
H :x=d+c+n





                                                              (5)

where x, c, n, and d are the test data, clutter, noise and signal, 
respectively. The signal d can be modeled as d= sα , where s is 
the steering vector and α  is the unknown complex amplitude.

Assuming that the clutter covariance matrix R is known, 
the NAMF detector is given by

( )( )
1

0

2-1

-1 -1

s R x
= ¤

s R s x R x

H H

H H H
Λ η

                                            

(6)

where ( )H
  denotes the conjugate transpose, and η  is the 

detection threshold9. Then, the test statistic of the NAMF 
detector is compared with a corresponding threshold to 
determine whether a target is present or not.

The NAMF detector needs to estimate the clutter 
covariance matrix R in eqn. (6). However, the NAMF detector 
has a great loss in performance due to limited sample support, 
which results in inaccurate estimation of the clutter covariance 
matrix, especially in heterogeneous environment. In the 
conventional STAP algorithms, the clutter covariance matrix 
R can be obtained by the maximum likelihood (ML) estimator 
which makes use of secondary samples from adjacent range 

cells to estimate the unknown clutter covariance matrix6-7, and 
the sample covariance matrix R̂  is estimated by

1

1R̂
K

H

k

xx
K =

= ∑                                                               (7)

The NAMF detector has excellent capability of sidelobe 
clutter suppression but at the cost of low target sensitivity. 
Therefore, it is not sensitive to the influence of any signal 
mismatch where the actual signal is not aligned with the 
presumed steering vector. Since the sidelobe clutter spreads 
severely in range-Doppler plane, the NAMF detector is 
exploited to preprocess the sidelobe clutter.

3.  TaRgeT DeTeCTION baSeD ON RPCa 
PoST-PRoCESSing
Recently, the RPCA algorithm is proposed that can 

accurately recover the low-rank component and the sparse 
component of observed data corrupted by large errors and 
noise, and has obvious advantage over classical PCA algorithm 
in the exact recovery problem. After STAP processing with the 
NAMF detector, we can get a range-Doppler spectrum image 
as a data matrix, where moving target has the sparsity in the 
range-Doppler domain while sea clutter forms a relatively low-
rank property. Hence, the RPCA algorithm can be applied to 
detect moving targets in the range-Doppler plane by solving 
the convex optimization problem. Meanwhile, the recovery 
problem can be seen as a semi-definite programming (SDP) 
problem and solved by the accelerated proximal gradient 
(APG) algorithm13.

3.1 RPCA algorithm for STAP
After estimating the covariance matrix R̂  in equation 

(7), we can obtain the range-Doppler data matrix D using the 
test statistic Λ from Eqn. (6). For example, the (k,i) entry of 
matrix D is calculated by employing the steering vector s at the 
k-th frequency to the data x of the i-th range cell. The detailed 
process about how to produce range-Doppler data in the ΣΔ-
STAP can be found16,18.

The new matrix D M K×∈  formed by the range-Doppler 
data matrix can be decomposed into two matrices, named the 
low-rank matrix and the sparse matrix, which respectively 
correspond to the sea clutter component and the moving target 
one in our problem. Then the new matrix D has the form

D=L+S                                                                           (8)
where L M K×∈  is a low-rank matrix, and S M K×∈  is a 
sparse matrix.

Taking the singular value decomposition (SVD) of D, we 
have

D=U VHΣ                                                                        (9)
where U M M×∈  and V K K×∈  are the orthogonal matrices, 
and M K×Σ ∈  is the diagonal matrix.

Assume that land S can be represented as follows

1

r
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where min{ , }r M K≤  denotes the rank of L as ( )r rank L= , 
1

1, , M
ru u ×∈   and 1

1, , M
rv v ×∈   are two sets of the singular 

vectors of  U  and V, and 1, , 0rσ σ ≥  are the singular values 
of Σ ,  respectively.

Then, to separate the low-rank matrix and the sparse 
matrix, we can solve the following convex optimization 
problem

1,
min s.t.

L S
L S D L S

∗
+ δ = +

                            
(12)

where 
∗
  and 

1
  denote the nuclear norm and 1  norm, 

respectively. 0δ >  is the weighted parameter for balancing that 
scales as 1 N 12, and selection of the appropriate parameter is 
discussed in the later Section. Actually, the convex optimization 
algorithm addressed in eqn. (12) is usually intractable in theory 
and practice. Instead of directly solving the eqn. (12), we can 
solve the following dual problem equivalently:

2

1,

1min
2 FL S

L S M L S
∗

+ δ + − −
µ                             

(13)

where 
F
  denotes the Frobenius norm, and 0µ >  is the 

penalty parameter for the violation of the linear constraint.
The APG algorithm is a fast algorithm to solve this dual 

problem, and its MATLAB codes are available online17.

3.2 Algorithm description
The procedure of the proposed algorithm is described in 

detail as follows. We first divide the complex matrix into two 
matrices according to its real and imaginary parts, and then use 
the APG algorithm to solve these two dual problems formed by 
real and imaginary matrices, respectively. After the separation 
of the real and imaginary parts of the sparse matrix, we unite 
them into the complex sparse matrix of moving target. Then, 
we can detect moving targets in the range-Doppler plane.

Now the procedures of the proposed algorithm are given 
as :
Step (1)  Use the ML estimator in Eqn (7) to estimate the clutter 

covariance matrix R̂  from the secondary samples;
Step (2)  Generate a range-Doppler data matrix D by the 

NAMF detector in Eqn (6);
Step (3)  Divide the complex matrix D into real and imaginary 

matrices, DR , DI ;
Step (4)  Use the APg algorithm to solve the two dual problems 

in eqn (13), and obtain two sparse real matrices after low-
rank and sparse matrices separation, SR , SI ;

Step (5)  Unite the real and imaginary matrices into the sparse 
complex matrix, S S *SR Ii= + , and get the final moving 
target detection result.
Since the iterative process is involved in the APG 

algorithm, more computation is required in the proposed 
algorithm than that in the original ΣΔ-STAP detector. The 
details of computational performance regarding the APG 
algorithm are additionally discussed and compared17.

4.  exPeRImeNTal ReSUlTS
Authors used simulated sea clutter data to validate the 

performance of target detection in radar seekers. Simulation 
parameters are set as follows: PRF = 1 kHz, the platform 
velocity 2000v = m/s, the number of pulses in a CPI 32M = , 

the number of range cells 512K = , the antenna scanning angle 
is 2°, the shape parameter of the k-distributed sea clutter is 
set as 2.5ω = , the clutter-to-noise ratio (CNR) is 50dB, and 
the root mean square (RMS) of sea clutter velocity dispersion 

0.5seaσ = m/s. Meanwhile, there are two moving targets 
inserted into the simulated sea clutter data, and their parameters 
are listed in Table 1.

Figure 1. Eigenvalue distribution for the range-Doppler data 
matrix.

Table 1. Target parameters for numerical simulation

Range cell Radial 
velocity

Line-of-sight 
angle

SNR

Target I 100 -2.5 m/s 0° 30dB
Target II 300 3.0 m/s 0° 30dB

Firstly, we illustrate the low-rank matrix property of 
the range-Doppler data matrix. Fig. 1 shows the eigenvalue 
distribution of the observed range-Doppler data matrix. There 
are exactly 32 large eigenvalues corresponding to the inflexion 
of the eigenvalue distribution curve, and others are relatively 
small compared with 32 large eigenvalues. Therefore, it is 
reasonable that the proposed algorithm with sparse recovery 
can suppress the clutter properly in this scenario.

Then, we compare the performance of moving target 
detection in terms of different SNRs and weighted parameters 
according to the Monte Carlo simulations13. Figure 2 displays 
the test statistic of two moving targets with the parameter N  for 
different SNRs, where 21N = δ  ranges from 32 to 512. As the 
value of N becomes larger, the test statistic of moving target 
I keeps invariant at approximately the same rate for different 
SNRs in Fig. 2(a). While the case in Fig. 2(b) is different from 
that in Fig. 2(a), the test statistic of moving target II increases 
with N, and gradually to the extreme point 1. The reason of 
this phenomenon is that the strong clutter has influence on the 
result of targets detection.

Some moving targets may not be detected if N  is too small 
( δ  too large)15. Also, some clutter residue still exists, meaning 
that the setting of weighted parameter δ  is very important 
for the performance of moving target detection. Hence, we 
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can make a trade off between clutter suppression and target 
detection. However, in our simulation, the parameter N  has little 
influence on moving target with positive Doppler frequency 
in range-Doppler area, and a bit influence on moving target 
with negative Doppler frequency. That is to say, the parameter 

N  selection has little effect on the detection performance, so 
it is almost negligible, where 1 32δ =  ( min{ , }N M L= ) is 
selected in the simulation.

Next, the sea clutter range-Doppler spectrum with the 
scanning angle 2° in radar seeker is shown in Fig. 3(a), and 

Figure 2.  Performance of target detection with the proposed algorithm: (a) Simulation results of target i and (b) Simulation results 
of target ii.

Figure 3. Simulation results with the nAMF detector and the proposed algorithm. (a) Range-Doppler spectrum for sea clutter data,  
(b) Test statistic of the nAMF detector, (c) Test statistic of target component with the proposed algorithm, and (d) Test 
statistic of clutter component with the proposed algorithm.
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the phenomenon analysis can be referred in18. Because the 
sea clutter spectrum severely spreads in a large part of the 
range-Doppler plane, two moving targets easily fall into strong 
clutter. In this case, radar seeker can difficultly detect moving 
targets. Meanwhile, we plot the curves of test statistic using the 
NAMF detector and the proposed algorithm in Figs. 3(b), 3(c) 
and 3(d). Figure 3(b) shows that the NAMF detector can detect 
two moving targets, but cannot effectively suppress the strong 
sea clutter, which may lead to high probability of false alarm 
and the failure of detecting moving targets with a small RCS. 
The proposed algorithm can also effectively detect two moving 
targets accompanied with clutter suppression from Figs. 3(c) 
and 3(d), and have a better performance in suppressing clutter 
than the NAMF detector. Therefore, the simulation results in 
Fig. 3 demonstrate the effectiveness and advantages of the 
proposed algorithm.

Finally, we compare two algorithms in terms of detection 
performance using 100 snapshots as the secondary samples 
with 200 faP  Monte Carlo trials. To reduce the computational 
burden, the probability of false alarm (Pfa) is set as 310faP −=  
and the corresponding threshold is evaluated. For the sake of 
convenient simulation, the number of moving targets added 
in the simulated sea clutter is 20, where half of them are set 
as the parameters of target I listed in Table 1, and others are 
set as the parameters of target II. The probability of detection 
(Pd) is computed as the ratio between the number of detectable 
targets and the total number of targets. Figure 4 presents the 
performance of moving target detection. It can be clearly 
observed that the proposed algorithm outperforms the NAMF 
detector about 10 dB in improving the performance of moving 
target detection at 0.5dP = .
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5. CONClUSIONS
In this paper, an efficient ΣΔ-STAP detector based on 

the low-rank matrix recovery for moving target detection was 
proposed in radar seeker. Compared with ΣΔ-STAP processing 
with NAMF detector, the proposed algorithm can compensate 
the deficiency of insufficient clutter suppression, and effectively 
detect moving targets in the range-Doppler plane. Meanwhile, 
the proposed algorithm can avoid the application of lots of 
homogeneous samples for STAP training, which is practical 
in application.
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