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Oscillating Flow of a Viscous Liquid in a 
Porous Rectangular Duct 

A.K. Johri and Man Singh 
Agra College, Agra-282 002 

ABSTRACT 

The unsteady flow of vikous incompressible liquid in a long porous 
straight duct of rectangular cross-section, under the influence of 
periodic pressure gradient using the generalised momentum equation, 
has been studied. The finite cosine transforms have been employed to 
solve the problem. Expressions for velocity distribution, volume flow 
rate (flux) and drag in the duct have been derived. A few particular 
cases have been deduced. It is found that the classical Darcian effect 
is felt only in a core very near to the axis of the duct and the non-Darcian 
phenomenon is felt predominently, near the boundary of the duct. It 
is also found that the velocity, volume flow rate (flux) and drag increase 
with the increase in frequency of oscillations of liquid. Whereas the 
porosity of the medium reduces both the velocity and flux and increases 
the drag. 

1. INTRODUCTION 

Flow of a viscous liquid in a porous medium is of great and increasing importance 
in the study of percolation through soils in hydrology, petroleum industry and in 
agricultural engineering. Henry Darcy had observed while studying flow of water 
through sand filters that the flow rate of water is proportional to the difference in 
head of water across the filter and the cross-sectional area of bed. Subsequently, many 
experiments were conducted to study the flow of various fluids through different types 
of porous solids. 

Pattabhiramacharyulul has discussed the steady flow of viscous liquid in a porous 
circular tube using the generalised Darcy's law for flow through highly porous media : 
- - - - 
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as proposed by   rink man^ for steady flow, where 3 and P represent velocity and 
pressure fields, p is viscosity co-efficient of liquid and K is the permeability of the 
medium. Later Narasimhacharyulu and ~attabhiramacharyulu%xtended tkis problem 
to elliptic tube. ~ a r n ~  derived analytically the same equation to study the flow past 
spherical particles at low Reynold's number. ~ a m a m o t o ~ . ~  examined flow past porclls 
bodies applying the generalised law. ~ohr i '  has studied the unsteady flow of viscous 
liquid in a porous circular tube under the influence of periodic pressure gradient uiing 
the generalised momentum equation. 

In this paper, we have considered the flow of viscous incompressible liquid through 
a long porous straight rectangular duct under the influence of a periodic pressure 
gradient using the generalised momentum equation. 

2. FORMATION OF THE PROBLEM AND SOLUTION 

Consider the flow in a straight duct of rectangular cross-section in xy-plane. The 
z-axis is parallel to the length of the duct: with impermeable boundary B; x = - a, 
x = a; y = - b, y = 6.  The velocity components in x, y, z directions are taken to be 
0, 0, w (x, y, t)  respectively, where w (x, y, t )  is the axial velocity of the liquid. 

The equation of continuity 

div -$ = 0 (2) 

is satisfied with the choice of the velocity. The equation for unsteady motion, following 
generalised Darcy's law1, is given by 

Introducing the non-dimensional quantities, 

Eqn. (3) is reduced to 

9 
Where, - 

& 
is the axial pressure gradient. 

Initially, the liquid is at rest and we have used the fact that the momentum flux, 
the pressure gradient, the local velocity and the volume flow rate are all periodic in 
time with frequency G, 'periodic' means that the local fluid motion is Sinusoidal 
function of time. 
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Assuming 

Where, Q is flux and A is real, whkreas El and Q, are complex. Substituting for W 
from Eqn. (6) in Eqn. (9, we get. 

VVI - ($ + i a ) r~ l=  - A  (7) 

For symmetric consideration, the flow in region F 3 0, 3 0, is considered. 
Accordingly, the boundary conditions are : 

and 
W ( z , k  r) =o ,  0 c x c 1 

a ' 
- (9) 

s t y - 0  
a7 

3. SOLUTION OF THE PROBLEM 

To solve the problem, we choose the finite cosine transform defined by 

and - bla 
~ ( z ,  n, i )  = j w ( z , ~ ,  i) cos qnFdp, 

0 
(1 1) 

Where 

qm = 
(2m + 1 ) ~  

2 , q n =  
(2n + 1)sa 

2h 

Now, multiplying Eqn. (7) by Cos q,,,F.Cos q,,y and then integrating twice with 
respect to F and y' in the units from F = 0 to F = 1, and 7 = 0 to 7 = _b and using 
the boundary conditions (8) and (9), we get a 

Applying the inversion formula for the finite cosine transform defined by 

2 2 a2 
Where am,n = q m  + qn- 
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Therefore, 
ii.'(%,Y, i )  = Re.fVr (2, Y) e+lar 

=- OD OD (- f)m+n(am,n cos 5f i- (-j sin G f )  X COS qmX 
4aA z x b u o  qnrqn(a;,, + r jZ)  

cos qnY ( 1 4 )  

Now 

Hence 
Q e Re. Qo e+iGt- 

16va2A  OD " [a,,,,, cos -I- a sin dl 
= 7 F F (qmqn)2(a i ,n  + $) 

The drag D per unit length of the duct is given by 

D = J Tms ds, 

Where 

T, is the stress and a is the outward drawn normal and C is the contour of 
cross-section area S (= 4 ab). By Green's theorem, we have from Eqn. (3) that 

1 6 p A  OD OD (am,, cos a€ + G sin a € ) ( -  l)"+m = - C C  b o u  ( q m ~ n ) ~ ( a i , ,  + a2J 
Where q,,,, q, and a,,,, are given by Eqns. (12) and (13) respectiyely. 

4. DEDUCTIONS 

(I) When K is very small, i.e., the medium is highly porous. 

In that case the velocity, flux and drag are given by 

[a2 cos r j f  -i- K ( e  sin ti? ' 
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16vA " 
Q=- [a2 cos sf + K { s  sin r ~ f  - (q: + q:) cos @ill (18) 

o'b F F -  
16pvA " - m+n 

D = - c ( ' :[a2 cos + K{G sin 
a4b 0 u (qmqn) 

respectively. 

(11) When K-too, i.e., when no resistance is offered by the medium 

In that case v, Q and D are reduced to 

X COS qmX. COS qny (20) 

16vo2A 5 5 [(q; 4- q:) CQS Gf 4- s sin Gi] Q=- 
b u o (qn,qn)2[(qk + q:J2 + &I 

D=- (- l)m+n[(qf + 42) cos 5f + a sin sf] 5 (qmqnI3l(qi + 92)= + 
\ 

(111) The case of steady flow (G = 0,) 

For K to be very small, W, Q and D are given by 

W=- 4 a A K ,  , (- l)m+n[$ + ,q; + , w s  qmz cos , 
ba4 u u qmqn 

For K+ a, we have 

" " (- COS q m X ~ 0 ~  ~ L F  f;S=-- 44A F F. (qmqn)(q; + 4:) 
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(IV) When F = 0, = 0, the velocity W(F, f') in the case, when K is very small 
is given by 

4AR " * (- l)m+n[a2 cos mf + K { a  sin ~f - (q; + q;) cos at)] W = ~ p ?  4m9n (29) 

5. DISCUSSION AND CONCLUSION 

Expressions (14), (15) and (16) have been derived the express velocity of flow, 
volume flow rate and drag on the walls of the ducts. Eqns. (17), (18) and (19) have 
been computed numerically verses i3 for different values of 'the permeability of the 
medium K (= 0.01,0.05,0.10) and have been shown in Figs. 1 ,2  and 3. From these 
figures it is evident that the velocity, volume flow rate and drag increase with increasing 
frequency of oscillations of the liquid whereas the porosity of the medium reduces 
both the velocity and flux and increases the drag. 

Eqn. (29) is same as may be obtained under the classical Darcy's law (~ushakat)'. 

Figure 1. Velocity profiles (w vs. i3) for ? = 0 .1 .8  = 2 and y = 5. 
a 

Figure 2. Variations of volume flow rate Q vs. i3 

when ? = 0.1, K = 2 and p = g. 
a 
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Figure 3. Drag (D) per unit length on the walls of the duct, 

when 7 = 0.1, Z = 2 and y = 2. 
a 

Hence the classical Darcian effect is felt only in a core very near to the axis of 
the duct and the non-Darcian phenomenon is felt predominently near the boundary 
of the duct. 

Eqns. (20), (21) and (22) expresses velocity, flux and drag when no resistance is 
offered by the medium, i.e., when rectangular duct is not porous. Eqns. (23) to (28) 
expressing velocity flux and drag when the flow is steady. 
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