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ABSTRACT 

The flow of a viscous incompressible fluid embedded with a small 
spherical particle in the presence of a transverse magnetic field in a 
channel has been discussed. The cross-section of the channel is a porous 
regular hexagonal of side 4a and the walls are non-conducting. The 
analysis applied to the flows with pressure gradient which are arbitrary 
function of time. A few particular cases, flow for impulsive pressure 
gradient and for constant pressure gradient have been studied. The 
velocity of the fluid and particle decrease with increase in the intensity 
of the magnetic field. 

NOMENCLATURE 

H, = strength of the imposed magnetic field 

k = N@p density ratio of particles to fluid (per unit volume of flow field) 
r = Wv particle relaxation time 

No = the number density of particles 

rn = the mass of a particle 

K = the Stoke's resistance coefficient 

M = P: IfZdp 
t = time 

u = gasvelocity 

v = particlevelocity 

y = magnetic permeability of the gas 

y = kinematic viscosity of the gas 

o = electrical conductivity of the gas 

p = densityofthegas 

p = pressure 
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1. INTRODUCTION 

In recent years, a number of studies of fluid embedded with particles have been 
appeared in literature. The study of fluid or gas having uniform distribution of solid 
particles is of interest in a wide range of technical problems. These include fluidization, 
environmental pollution, combustion and more recently blood flow. 

~ a o ' . ~  has discussed the flow of a dusty gas in a circular cylinder under the 
influence of a pressure gradient which varies exponentially with time. Lu and Mille9 
have discussed the flow of the dusty gas under the influence of a constant pressure 
gradient in a channel with equitriangular cross-section. Singh and Pathak4 have 
considered the flow of the dusty viscous fluid in a tube with sector of a circle as 
cross-section under the influence of exponen-pressure gradient. Recently, Gupta and 
Gupta have studied the flow of the dusty gas in a rectangular channel with arbitrary 
time varying pressure gradient. Gupta has discussed the unsteady channel flow of a 
conducting fluid with suspended particles. 

Experimental law to study the flow through porous media was first of all given 
by Darcy.   rink man' generalized the Darcy's law to study the flow through highly 
porous media. Recently, Ahmadi and Manvi6 derived a general equation of motion 
for flow through porous media and applied the results obtained to solve some basic 
flow problems. Gulab Ram and Mishra7 have studied the MHD flow of a viscous fluid 
through porous circular tube. 

Here we are studying the flow of an incompressible viscous eIectrically conducting 
fluid, embedded with small inert particles in the presence of transverse magnetic field 
of a uniform intensity in a channel whose crass-section is an porous regular hexagonal 
duct with impermeable boundary and under time varying axial pressure gradient. 

Non-circular ducts are frequently used in automobile radiators, nuclear power 
plants, aerospace vehicles etc., as they can be fitted within the available space between 
compactly placed components. The flow fluid embedded with particles in such ducts 
is of great importance. One finds that the behaviour of oil or fuel inducts due to 
presence of particles is considerably changed and many new phenomena can be 
observed. 

2. FORMULATION OF THE PROBLEM 

The appropriate equations of motion for the problems (Fig. 1) are given by : 

The suspended particles are very small and the Reynolds number of the relative 
motion of particles and gas is smaller than unity8. The electromagnetic effect and the 
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l?igure 1. cross-section of the tube 

porous paraweter entering the problem in last term of Eqn. ( 1 )  is an approximation 
under the suspension of small electric conductivity. 

Now let, 

- 1 = any function of time = fTt) 
FZ 

Eliminating v from Eqns. ( 1 )  and @), we have 

Also let qt) = P + F(t) 

where P i s  the constant and F(t) is the function of time. 

where u, is the steady component and u2 is the unsteady component of velocity of 
the fluid. 

Substituting Eqns. (4) and (5) in Eqn. (6) ,  and separating the steady and unsteady 
parts, we get 
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Boundary conditions are 

(i) u , = O a t t < O  (9) 

(ii) u, = O'at t > 0 on the boundary (10) 

u, = w at t > 0 on the boundary. 

3. TRANSFORMATION OF THE GOVERNING EQUATIONS AND 
BOUNDARY CONDITIONS IN TRILINEAR COORDINATES 

Let us consider a reference equilateral triangle of side 3a, so that the hexagonal 
cross-section has three alternative sides as the sides of the reference triangle and 
remaining three alternative sides will be given by constant perpendicular distances 
from the reference triangles, sides. Hence the hexagon will have its sides of length a 
expressing the equation of motion and boundary conditions in t e h s  of system of 
trilinear coordinates, we have 

with boundary conditions 
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where K" is the perpendicular distance from the vortex of reference triangle to its 
opposite side and the trilinear coordinates, a, /3, y of any point are related by 

a + P + y = K n  (15) 

a 2  82 a2 a 2  a 2  a 2  ---- and V L . r = - + - +  aP --a- a p n  aaa 

The other physical requirement is that u must be finite. 

4. SOLUTION OF THE PROBLEM 

To solve the problem, we shall use the following developed integral transform 
of function of trilinear coordinates : 

Ks Ka 
T [fi, 8 , ~ )  = f *(r) = If lo 0 f(a,  8, y) 

2rsrB 2mr (sin % + sin - Kn + sin -)da Kn dB 0 

where K, = K, = K, = il Kn, p, q and r being integers. 
P 

The transform has the inverse formula 

2ma 2mB 
f ( z ,  B. Y )  = f*(r)c,{sin + sin + sin - 

r o o  K" 

with the help of operational property 

where I # s and s # t and dn, are perpendicular distances to the sides of the reference 
triangle in the trilinear system of coordinates and the function u;is 

2raa , = {sin - 2rnB 
K" + sin - Kn + sin - K" 
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Now solution of Eqn. (11) satisfying the boundary conditions (13) is 

" 2 Kn 2rxa n = lr + c - (- ) ${sin + sin - 
r=t rn 2rr Kn K" 

This solution can be verified by in Eqn. (11) and using that 

" 2Kn 2rxa K" - 2a = - sin - 
r = l  rx Kn 

2Kn 2mP F - - 2 P = x  ,sin- 
r- I Kn 

" 2Kn 2mY Kn - 2Y = x-s in-  
r=l  In K" 

2ran ' 2rnP f, 2 {sin + sin - and r-1 w K" 
+sin- = 1. K" 2rnY) 

Again solution of Eqn. (12) w.r.t. boundary and initial conditions (14), we use Laplace 
transform for the time variable so that Eqn. (12) becomes, 

Applying the integral transform of trilinear co-ordinates as defined by Eqns. (16) to 
(21), we eliminate 2 operator from it, so as to obtain 

Hence we have 

where r, and r, are roots of the equation 
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To get the solution in terms of the original variables a, P, y and t ,  we make use of 
inversion theorem (17) and inverse Laplace transform, we get 

where 

Substituting Eqns. (20) and (26) in Eqn. (7), we get 

Substituting the values of u in Eqn. (I), we have 

Eqns. (27) and (28) give the general solution for u and v satisfying all the boundary 
dnd initial conditions. 

5. PARTICULAR CASES 

5.1 Flow under an Impulsive Pressure Gradient 

Let fft)  = A 6 ( t )  

where A is a positive constant and t is the Dirac delta function. Physically this represent 
the case when the impulsive pressure gradient of magnitude of A is suddenly increased 
on the fluid at t = Of 

The solution of Eqns. (2'7) and (28) comes out to 

* and 
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where 

5.2 Flow under Constant Pressure Gradient 

Let yt)  = A H(t) 

where A is constant and H(t) is the heavyside unit step function. 

Evidently, solutions (29), (30), (31) and (32) satisfy the boundary and initial conditions. 
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