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ABSTRACT

This study proposes another computational approach to solve a
stochastic attrition model. The initial contact forces for both sides can
be treated as a random variable. The approach is manipulated in a
matrix form, and on account of the special form of its infinitesimal
generator, some recursive algorithms are derived to compute the
intended results. Numerical results to illustrate the differences between
the proposed model and the stochastic model with known initial contact
forces are presented.

1. INTRODUCTION

*1 order to understand mor¢ about the combat dynamics, several authors such
as Jennings'?, Bhat®, Weale*, Karmeshu and Jaiswal®, and Jaiswal® have paid attention
to the developing of a stochastic combat model recently. Although the stochastic
attrition is better in representing the reality of combat attrition phenomena, it is
considerably less convenient to handle and compute.

In this study, we propose another computational approach to solve the stochastic
attrition model. The approach is based upon defining a Markov attrition process and
applying the concept of matrix-geometric computational algorithms by Neuts’. Since
the stochastic model is manipulated in the matrix form and on account of the special
form of its infinitesimal generator, some efficient recursive algorithms can be derived.
Numerical results by taking the example from Jaiswal® are presented.

2. MARKOV ATTRITION PROCESS

Let us consider a homogeneous combat between two forces, Red and Blue (for
the heterogeneous case, a transforming model in Jaiswal® can be used to derive an
equivalent homogeneous model). We first define
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B, = the maximum possible number of Blue combatantsatt =20,
R,, = the maximum possible number of Red combatantsat t =0,
B, = thesurviving Blue combatants when'Blue surrenders, and
R. = thesurviving Red combatants when Red surrenders.

All of these are random variables for each t. The states of the Markov process are
denoted by (i,j), B, < i< B}, and R; < j < R,,. Let the state space of the Markov
process by E which can be regarded as a model of attrition in combat between a
homogeneous Blue side and a homogeneous Red side, provided that the paths ¢t —
R, be nonincreasing, where B, = number of surviving Blue combatants at time t and
R, = number of surviving Red combatants at time ¢.

For the purpose of simplicity, we let* B, = R, = m, and B, = R; = 0. We will
arrange the state space E in the lexicographic order, that is,
(m,m),...,(m,1),(m-1,m),...,(m-1,1),...,(1,m),...,(1,1),(0,0)**. The set of states
{(i,m),...,(i,1)}, 0 < i < m, will be called the level i. The infinitesimal generator of
the Markov attrition process can be constructed as

\TT°
00

where T is an m* square matrix, 7T° is an m? X 1 column vector, 0 is an 1 X n? row
vector, and o is a scaler.

Let T ..« denote the element of T in row (i,§) and column (I,k), and let T‘(’,.j)

denote the element of T° in row (i,j), then

Ty, =20,0<i<m0<j<m

Tapin < 0,0<i<m0O<j<m
Tapaxy 20,1 # 0,k # j

such as Te + T° = 0. The initial probability vector of Q is given by (a, a,,), as
ae + aqq = 1. _ .

In this modelling, the (a,T) representation satisfies the definition of phase-type
probability distribution (Neuts®). Then, we can decide the elements of T and T°
according to the combat situation by applying linear or square laws. To illustrate the
results, we assume that the initial contact forces are m = 3 for both sides and combat
behaviour can be described by square law (for example, both sides taking attack
strategy). Table 1 gives the infinitesimal generator with k, = k, = 0.5 where k, and
k, are the attrition rates of Blue and Red respectively.

* For practical application, By, and Ry, are not necessarily equal to each other, and B; and Rg can be any
predetermined integer values such that 0 < Bg < By, and 0 < Rg = R,,.

** (0,0) is an absorption state which stands for the ending condition of the process. If B; and R are not
equal to 0, then the state is a set of {(By, Rg), (By-1, Rg),....s(Bg+1, Rg), (Bg, Ry),.....(Bg, Rg+1)}

?

*
Gt
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3. ANALYSIS OF THE MARKOV ATTRITION PROCESS

As the Markov attrition model is defined in the previous section, we can proceed
to develop some useful computational algorithms. The a vector specifies the initial
contact forces for both sides. Thus, the confronting enemy forces can be viewed as a
random variable instead of a constant. Without loss of generality, we let a,,=0;
namely, the probability that either side surrenders without any engagement in the
beginning of combat is zero.

3.1 The Distribution of the Time Until Absorption (Combat Terminated)
From Neuts’, the distribution of the time until absorption in state (0,0) given the
initial probability vector (a,a ) is

Fx)=1—aexp(Tx)e,x=0

There are several approaches to evaluate exp (Tx). We use the methiod of spectrum
decomposition of an exponential matrix, by taking advantage of the special structure of
T, to develop the computational algorithm. By letting

Yo = Teiipy
i.j) @.)6.J)
xf"i,‘;.)) = the (/,k) element of the orthogonal right Eigen vector of T

corresponding to the Eigen value of ).(,.J),

(L ©) = the (I,k) element of the orthogonal left Eigen vectorof T

corresponding to the Eigen value of 4 ;,, we can express the F(x) as

m m m m i J
Fix)=1— Ig ?:2 {[ 23 “(p,a)'xff}?][zll 2 {('}:j}]-exp [T(f,f)(:'d)'x]}’

=1 j=1\Lp=1q=) s=1

forx =0 2)

The mathematical structure of the recursive formula is given in Appendix A.

3.2 The Expected Value and Variance

From Neuts!?, the expected value and variance of the time until absorption can
be computed as

#, = E(x) = — aT-le 3)
By, = E(x?) = 2laT 2% (4)
Var (x) = E(x?) — E(x)? (%)

To take advantage of the special structure of T, we develop two recursive formulae

for comPuting both E (x) and Var (x). The developing of the formula is given in
Appendix B. The results are

=m0 == E[EE con Tt | 0
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3.3 The Probability of Winning the Battle
Let W,(W,) be the probability of Blue (Red) wins, then

Wr = mg H(]d)-.il?_l'_ﬂ - nu,l)'P(i,l)(u,l) + j§ &o,n
Jl—

Taxnn
Ws =Y, Muy — T + Mg,y [l Pl)(on]+ 5 a,0) 9
| 31) * e o1)° = L(1,1)0, 150,
E Tu,n6,1) 'g ©)
where P, |, ,, is the transition probability from state (1,1) to state (0,1); for example,
Py oy ™ L_i]k'z insquarelaw,and P, . \, = c, jcz in linear law (¢, and c, are

the attrition rates for Blue and Red), /7, ;, is the probability that the process reaches
state (i,§). The mathematical structure of ;. is presented in Appendix C. If we
assume that both sides start at m combatants, i.e., a = 1, then the derived

(m,m)
probability of winning is the same as that of Jaiswal®.

3.4 The Expected Survivors when Red (Blue) Wins
Let S; (S;) be the expected survivors when Red (Blue) wins, then

Sp = [F My, - “” J + - Paixe,n + F “(o'n'jJ/WR
Ta.na.n -3

and

= [E H(f,n-__._lz‘.-ﬂ.- i+ H(I,I)‘[l — P(l.l)(o,u] + ; a{r,orf]/Ws
i=2 T, 10,1 =

If we let a,, . my = 1, then the expected number of survivors of Red force can be
expressed as Sp. Wy, + R_. W, which is the same as Jaiswal’s result.

4. NUMERICAL RESULTS

To demonstrate the results, an example taking from Jaiswal® is considered to
show the computation. We divide the example into two different cases. In case 1, we
assume that the initial forces of both sides are certain at m = 15, i.e., Q5.5 = 1.
Figure 1 shows the same results as those of Jaiswal®. Some performance measures of
interest are summarized in Table 2. In case 2, we assume that the tactical decision
maker of Blue side knows their own starting force at m = 15. But the initial force of
the Red side is uncertain and is uniformly distributed between 11 and 15, i.e., Qs jy =
1/5, j=11,...,15. The computed results are shown in Table 3 and Figure 2.
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Tabie 1. The elements of the infinitesimal generator of the Markov attrition process by
using parameters (kl=k2=0.5, BU=RU=3, BE=RE=0) of
square law for both sides

(3 (32 GH]ExnE2 @ |a3) 1,2) (1,D)]0,0)
G3)l3o 15 o |is o oo o o]0
B2lo =25 15 1.0 0o 0
3.1 |o 0 -2.0 0 05 0 o015
23 |0 0 0 }25 10 o0 |15 0 O

Q= 22 |0 o o0 |0 20 10[0 10 0
@1 |o o o]lo o -15]0 o0 05|10
13 |0 o o|lo o o |20 05 o0]15
12 |0 o olo o o]o 15 05|10
(1,1 | o o oflo o o]o o -10]10
0,0) | 0 o o0Jo o o 0| o

Table 2. The computation results in case 1

Case 1: 6y545=1, B,=Ry=15, Rg=0, k;=k,;=¢,=¢;=0.5

Ending E(x) Var (x) Prob. of Red Sy Total CPU time*
condition victory 1 unit of (s)
Red survivors

Linear Square Linear Square Linear Square Linear Square Linear Square

Blue casualty level=20% ’ )
(Bg=12) 0.487989 0.034808 0.099854 0.000633 0.000915 0.001512 12.01558311.965897 232 231

Blue casualty level=40%
(B,=9) =~ 1.092066 0.099654 0.150965 0.001143 0.011089 0.005261 9.226476 9.861500 7.24  7.51

Blue casualty level=60%
(Bg=6) 1.705840 0.230298 1.100335 0.004987 0.038119 0.007672 6.979632 8.659484 15.70 16.26

Blue casualty level=80%
(Bg=3) 2265921 0.486774 2.511399 0.043831 0.066420 0.008323 5.393860 8.032256 27.66 28.57

Blue casualty level=100%
(Bg =0) 2783177 1.194916 4.153284 0.120960 0.074727 0.008368 4.333934 7.798670 43.18 44.60

*PC/AT, 80287 Coprocessor, Language C
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Figure 1. The probabilities of Red victory against Red survivors in case 1.

Table 3. The computation results in case 2

Case 2 : a4, ,=0.2, j=11,...,15, B,=15, R;=0, k;=k,=¢,=c,=0.5
Ending E(x) Var (x) Prob. of Red : Sq Total CPU time
condition victory 1 unit of C(s)

Red survivors
Linear Square Linear Square Linear Square - Linear Square Linear Square

Blue casualty level=20% :
(B.=12) 0.529375 0.037881 0.210648 0.001648 0.003622 0.004558 10.0560269.893386  2.30  2.35

Blue casualty level=40%
(B=9) 1.181039 0 111131 0.159432 0.005884 0.026037 0.008574 7.522074 8.260827 7.19

Blue casualty level=60%
(B,=6) 1.786854 0.256535 1.291746 0.004145 0.060449 0.008532 5.701286 7.446439 15.65 16.19

Blue casualty level=80%
(Bg=3) 2.293159 0.522514 2.748128 0.042264 0.077918 0.007446 4.505566 7.037412 27.52

Blue casualty level=100%
(Bg = 0) 2.738072 1.189266 4.298878 0.010185 0.069255 0.006886 3.724249 7.035674 43.00 44.39
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Figure 2. The probabilities of Red victory against Red survivors in case 2.

From the above two cases, we can see the corresponding probabilities of a Red
victory is affected by the uncertainty of the initial force of Red. The more uncertainty,
the less probability. As the percentage of casualty level of Blue increases, the expected
duration time increases, the expected survivors of Red victory decreases, and the
difference of expected survivors between linear and square law is gradually enlarged.
In general, the expected duration time of linear law is longer than that of square law.

5. CONCLUSION

In this paper, we propose an approach to compute the expected and variance of
duration time, expected survivors, and probability of victory. Since the approach is
manipulated in the matrix form, the difficulties of the feasibility of numerical
implementation for the Markov attrition process can be resolved. Another important
feature of this approach is that it can treat the initial contact forces as random variable-.
Thus, we can have a more realistic stochastic model to study the combat phenomena.

Future research can be extended to the optimization of combat model and optimal
strategy for using tactical reserves. Then, a decision support system may be able to
help the tactical decision maker.
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APPENDIX A

Since T is an upper triangular square matrix, the Eigen values are exactly equal
to its diagonal elements. By using the spectrum decomposition of an exponential
matrix, we can write

” "
Fix)= —a [E ,§ X Yoy €XP (Aiypy ) ]e’ x>0
With the speciai structure of T, the elements of x, ., and y, ., can be detived as
(5

X5

T sk )isk—13 , ,

(LK) — KMy J L y(Lk—1) k ]' 2 m

Xi; = X == + + . e e 3
& Tnistion— Tk &) 0 J J ’ ’ (3)

- (l ) - e Y

(i.]) — 7 1 )I-15ji3 =1, ] =i . “ .
X3 = 3 xy =74+ 1,i+2,...,m {(4)

D Tagp.iy — Tugpaspy = W9 ’ ’ ;

- Lk—1
XA = Taupya-1,0.4 71 + T(I,k)(l,k—-l)‘x{f'j) ),
® Tenin — Tusmwkh

l=i+1,i+2,...,m and k=j+1L,j+2...,m



- all other elements of X;j = 0, and

ih = ! 0)
’k=j—l,j‘—2,...,l (7)
YD) = Ta+1,00s0) L) J =i 1i—2 ,
@)~ Tanwpn — Tupesn ° D , ey

i = Ta+t,00.0° y}{*,‘ o)+ Ty,ke 13,0 }’8 ,',‘{“’
S TG — Tk

l=i—1,i—2,...,1 and k=j—1,j-2,..,,1

all other elements of y, ., = 0.

To combine the above formulae, we have

p=i q=j re={ s=1

m m m i i
F(x) =1 — :_1_:1, };{[E E %psg) x(fﬁ)][z 2 V‘J}; ]'exp [T{M)(r‘s;)'x]}'

forx =20

APPENDIX B

The element of T can be computed as

1

Y il = =—i=1,2,...,m j =
DD = Ty e s 2y , and j=1,2, , m

~1 _ = Tanu-1n-T;
Tuneyn = [ > > (i— U)(:j)]
Ta,pap

=23...,m j=1L,2,...,m

and s=i—1i—2,...,1

— —[Tane-0-Th_1yini
Taspiispy

Tghan =

i=12....,m j=112,.

and =12 ...,j—1
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l=1,2,...,j @)

all other elements of T = 0. Thus,
By o= B} =~ {?;'1 1;! [;‘g ?;.:'; “("”'T(_s.'nu.n]} 5)

m

w=Ex) =2 %

-] jm

Ms

m m ¢ i J
[ E “{s,:)'T(_:.n(u)] : [E E T{I}J{pc) ] (6)

J=l (=] p=1 g=I

APPENDIX C
Let IT; i be the probability that the process reaches state (i,j), then

Hm,m) =%(mym) (D

— T(i+1,m)(ism)

i m—1m—2,...,1
Ta+1,m)+1,m) ’ ’ '

H(l,m) %(i,my + H(H-hm)'

— T(moj+1)(ms))

_ i=m I,bm—2,...,1
T(mpjst)imyj+1)’ J ? ’ ’

Hmp = %myp + Hmye1):

— Tsj+1)0s) i

+ vJ

Hf':il; + j)“— =
(%) (D Tti+1,)G+15) , |

i=m I,bm 2,. .,1 and j=m 1m 2,..., 4



