Integration of INS, GPS, Magnetometer and Barometer forImproving Accuracy Navigation of the Vehicle

This paper describes integrated navigation system that is based on a low cost inertial sensor, global positioning system (GPS) receiver, magnetometer and a barometer, in order to improve accuracy of complete attitude and navigation solution. The main advantage of integration consists in availability of reliable navigation parameters during the intervals of absence of GPS data. The magnetometer and the barometer are applied for the attitude calibration and vertical channel stabilization, respectively. The acceptable accuracy of inertial navigation system (INS) is achieved by the proper damping of INS errors. The integration is made by the implementation of an extended Kalman filter (EKF) with control signal that is designed appropriate for low accuracy sensors noise characteristics. The analysis of integrated navigation system performances is made experimentally and the results show that integrated navigation system provides continuous and reliable navigation solutions.


Keywords:  Navigationstrapdown inertial navigation systemglobal positioning systemextended Kalman filterBarometerMagnetometer 


Inertial navigation system is an autonomous system for determining the position and velocity of an object using three linear accelerometers and three rate gyroscopes1. In this paper ‘Strap-down’ INS (SDINS) is used for analyze and testing. The tradeoff for a low cost INS is its high noise and low accuracy2. Errors in SDINS have the character of slow variable oscillations and are not influenced by external factors2,3. Many papers had discussed the integration of navigation sensors4, Kalman filter (KF) for fusion of INS and GPS4,5 and fusion of different sensors6,7.


Recent research efforts have been focused on using a low-cost strap-down IMU. Farrell and Barth2 introduced a very general method to establish an error process model for the INS/GPS navigation system. Salychev3, et al. used external heading information to align the IMU. Some techniques for attitude determination are based on a blending of accelerometers and magnetometers to compute the attitude8. Although this method is particularly suitable for low-cost IMU’s whose gyroscopes are not sensitive to the Earth’s rotation. Ramalingam9, et al. presents error modeling and error analysis for a low-cost SDINS.


The mail goal of this research is to develop a module that can be customized for use in different applications and test different algorithms for increasing performance and to reducing cost by using low cost sensors and to improve accuracy of navigation system. Work in this innovation is the integration of GPS, INS, barometric altimeter and magnetometer using the EKF filter. The improvement of EKF estimation was achieved by a control signals with adaptive function.


In this paper has been applied the standard loosely coupled integration model. The integrated navigation system works in two regimes. During first regime, system starts GPS data transferring regarding to the geographical coordinates and velocity. The next step is the initialization of the blocks used for corrections of deterministic errors of inertial instruments (biases, scale factor errors, non-orthogonality, etc.). The next step is alignment in azimuth (using the magnetic compass), calibration of gyro drifts, horizontal and vertical alignment (using baro-altimeter), initial estimation of angular attitude, determination of quaternion parameters, and calculation of transform matrix (DCM) coefficients and determination of accelerometer biases. The last step consists in the initializations of Kalman filters matrices.


The whole alignment phase is done in stationary conditions and its duration was 6 min. The EKF is used for the estimation of INS errors. During the GPS unavailability (620 s - 625 s, 700 s - 705 s, 795 s - 800 s, 840 s - 850 s and 860 s - 885 s (injected for test only)) the EKF works in prediction mode.


The integrated INS/GPS/Barometer/Magnetometer system is based on usage of three mechanical rate gyros (Sfim I1426, of a range up to 20 °/s) and three linear accelerometers (Sfim JT211, of a range up to 20 m/s2). Sampling frequency of inertial sensor data is 100 Hz. Two additional angular sensors (Sfim JC30, _30,) are used for the initial alignment purposes. GPS receiver is of ‘µ-blox GPS-PS1E’ type (C/A code, working frequency L1, updating frequency 1 Hz, and declared accuracy of 5 m). Pressure sensor is BMP 180 with absolute accuracy pressure max 2 hPa in range of  300 hPa - 1100 hPa and temperature range of  0-65 °C. Magnetometer is TCM2-50 with accuracy of magnetic field ±0.2 μT and accuracy of heading when level ±1.0 ° RMS and when tilted ±1.5° RMS with resolution 0.1°.


The position is expressed in geodetic coordinates, where φ, λ and h represent the latitude, longitude and altitude are expressed in radians and altitude in meters. The velocities in the (NED) coordinates, computed in (m/s), are given by [vN, vE, vDs]. The motion of a vehicle can be described by equations that involve INS kinematics10. The vector Ω|ϕ,θ,ψ| MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCLaeyOeI0IaaiiFaiabew9aMjaacYcacqaH4oqCcaGGSaGaeqiYdKNaaiiFaaaa@411B@  consists of the Euler angles (Roll, Pitch and Yaw). The orientation angles are computed by exploiting the gyroscopes, accelerometers and magnetometer sensors and EKF estimations

In practical applications the accuracy of the INS, caused by the presence of errors depending on the sources of errors can be damping as present in follows.



3.1   Damping of Vertical Channel Errors in SDINS

Equation which describes the behavior of the vertical channels SDINS11, given in local NED coordinate system, can be written as:



V ˙ D = f D [ ( 2 ω e cosϕ+ V E R p +h ) V E ( V N R M +h ) V N ]+ g ϕ (h), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaca WaaSbaaSqaaiaadseaaeqaaOGaeyypa0JaamOzamaaBaaaleaacaWG ebaabeaakiabgkHiTmaadmaabaWaaeWaaeaacaaIYaGaeqyYdC3aaS baaSqaaiaadwgaaeqaaOGaci4yaiaac+gacaGGZbGaeqy1dyMaey4k aSYaaSaaaeaacaWGwbWaaSbaaSqaaiaadweaaeqaaaGcbaGaamOuam aaBaaaleaacaWGWbaabeaakiabgUcaRiaadIgaaaaacaGLOaGaayzk aaGaamOvamaaBaaaleaacaWGfbaabeaakiabgkHiTmaabmaabaGaey OeI0YaaSaaaeaacaWGwbWaaSbaaSqaaiaad6eaaeqaaaGcbaGaamOu amaaBaaaleaacaWGnbaabeaakiabgUcaRiaadIgaaaaacaGLOaGaay zkaaGaamOvamaaBaaaleaacaWGobaabeaaaOGaay5waiaaw2faaiab gUcaRiaadEgadaWgaaWcbaGaeqy1dygabeaakiaacIcacaWGObGaai ykaiaacYcaaaa@6199@ (1)

where  V ˙ D = d V D dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaca WaaSbaaSqaaiaadseaaeqaaOGaeyypa0ZaaSaaaeaacaWGKbGaamOv amaaBaaaleaacaWGebaabeaaaOqaaiaadsgacaWG0baaaaaa@3D94@ - vertical component of velocity changes in time, VN, VE – component speed toward the north and east, respectively, f D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGebaabeaaaaa@37D6@ - specific force along the vertical axis, φ, h - latitude and altitude, g ϕ (h) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacqaHvpGzaeqaaOGaaiikaiaadIgacaGGPaaaaa@3B26@ - vector of gravitational acceleration. The Eqn. (1), we can write in the form:



V ˙ D = f D Δ f D c +δ g ϕ (h), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaca WaaSbaaSqaaiaadseaaeqaaOGaeyypa0JaamOzamaaBaaaleaacaWG ebaabeaakiabgkHiTiabfs5aejaadAgadaqhaaWcbaGaamiraaqaai aadogaaaGccqGHRaWkcqaH0oazcaWGNbWaaSbaaSqaaiabew9aMbqa baGccaGGOaGaamiAaiaacMcacaGGSaaaaa@4856@ (2)

where  Δ f D c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam OzamaaDaaaleaacaWGebaabaGaam4yaaaaaaa@3A25@ is the member indicated in the square brackets of Eqn. (1) and δ g ϕ (h) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaam 4zamaaBaaaleaacqaHvpGzaeqaaOGaaiikaiaadIgacaGGPaaaaa@3CCB@  is the gravitational acceleration, can be written in simplified form as:



δg=2 g 0 R 0 2 ( R 0 +h) 2 δh ( R 0 +h) = 2gδh ( R 0 +h) = 2gδh R =2 ω s 2 δh, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaam 4zaiabg2da9iabgkHiTiaaikdacaWGNbWaaSbaaSqaaiaaicdaaeqa aOWaaSaaaeaacaWGsbWaa0baaSqaaiaaicdaaeaacaaIYaaaaaGcba GaaiikaiaadkfadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGObGa aiykamaaCaaaleqabaGaaGOmaaaaaaGcdaWcaaqaaiabes7aKjaadI gaaeaacaGGOaGaamOuamaaBaaaleaacaaIWaaabeaakiabgUcaRiaa dIgacaGGPaaaaiabg2da9maalaaabaGaeyOeI0IaaGOmaiaadEgacq aH0oazcaWGObaabaGaaiikaiaadkfadaWgaaWcbaGaaGimaaqabaGc cqGHRaWkcaWGObGaaiykaaaacqGH9aqpdaWcaaqaaiabgkHiTiaaik dacaWGNbGaeqiTdqMaamiAaaqaaiaadkfaaaGaeyypa0JaeyOeI0Ia aGOmaiabeM8a3naaDaaaleaacaWGZbaabaGaaGOmaaaakiabes7aKj aadIgacaGGSaaaaa@6902@ (3)

where   ω s = g R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadohaaeqaaOGaeyypa0ZaaOaaaeaadaWcaaqaaiaadEga aeaacaWGsbaaaaWcbeaaaaa@3BE5@ is Schuler’s frequency. Based on the above equation to ensure the stability of the vertical channels used an external source of information about the altitude (barometric altimeter), which the measurements are independently filtered12.
Attenuation of errors in the vertical channel, by using of external information of the altitude, can be described as follows:



V ˙ D = f D Δ f D c + g ϕ (h)+ C 2 δh, h ˙ = C 1 δh V D, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaceWGwb GbaiaadaWgaaWcbaGaamiraaqabaGccqGH9aqpcaWGMbWaaSbaaSqa aiaadseaaeqaaOGaeyOeI0IaeuiLdqKaamOzamaaDaaaleaacaWGeb aabaGaam4yaaaakiabgUcaRiaadEgadaWgaaWcbaGaeqy1dygabeaa kiaacIcacaWGObGaaiykaiabgUcaRiaadoeadaWgaaWcbaGaaGOmaa qabaGccqaH0oazcaWGObGaaiilaaqaaiqadIgagaGaaiabg2da9iaa doeadaWgaaWcbaGaaGymaaqabaGccqaH0oazcaWGObGaeyOeI0Iaam OvamaaBaaaleaacaWGebGaaiilaaqabaaaaaa@559A@ (4)

where δh= h barometer h INS MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaam iAaiabg2da9iaadIgadaahaaWcbeqaaiaadkgacaWGHbGaamOCaiaa d+gacaWGTbGaamyzaiaadshacaWGLbGaamOCaaaakiabgkHiTiaadI gadaahaaWcbeqaaiaadMeacaWGobGaam4uaaaaaaa@47A0@ - a height difference between extern (barometric) altimeter and SDINS, h-height of which is calculated in INS, C1= 0.51, C2= 0.8, are constant coefficients

.

3.2   Damping of Horizontal Channel Errors in SDINS

For damping errors in the horizontal channel11, can be used outward speed information that we obtained from the GPS:



δ V ˙ E =g Φ N K 1N δ V E + B E , Φ ˙ N = δ V E R p + K 2N δ V E ω N dr , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqaH0o azceWGwbGbaiaadaWgaaWcbaGaamyraaqabaGccqGH9aqpcqGHsisl caWGNbGaeuOPdy0aaSbaaSqaaiaad6eaaeqaaOGaeyOeI0Iaam4sam aaBaaaleaacaaIXaGaamOtaaqabaGccqaH0oazcaWGwbWaaSbaaSqa aiaadweaaeqaaOGaey4kaSIaamOqamaaBaaaleaacaWGfbaabeaaki aacYcaaeaacuqHMoGrgaGaamaaBaaaleaacaWGobaabeaakiabg2da 9iabgkHiTmaalaaabaGaeqiTdqMaamOvamaaBaaaleaacaWGfbaabe aaaOqaaiaadkfadaWgaaWcbaGaamiCaaqabaaaaOGaey4kaSIaam4s amaaBaaaleaacaaIYaGaamOtaaqabaGccqaH0oazcaWGwbWaaSbaaS qaaiaadweaaeqaaOGaeyOeI0IaeqyYdC3aa0baaSqaaiaad6eaaeaa caWGKbGaamOCaaaakiaacYcaaaaa@609E@ (5)

where are coefficients K1N = K2N = 0.22, Rp- radius of the Earth,  ω N dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aa0 baaSqaaiaad6eaaeaacaWGKbGaamOCaaaaaaa@3AA3@ - gyro drift, B E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGfbaabeaaaaa@37B3@ - ‘bias” accelerometers. By analogy with the Eqn. (5), the correction coefficients K1E = K2E = 1.25e-5, are introduced for  δ V ˙ E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMabm OvayaacaWaaSbaaSqaaiaadweaaeqaaaaa@3975@ and Φ ˙ N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuOPdyKbai aadaWgaaWcbaGaamOtaaqabaaaaa@3878@ correction. The optimal choice of coefficients K is based on a compromise between the size of the system static errors and required system bandwidth relative to high-frequency components of gyro errors, on the other.


In this paper the quaternion parameterization is being used. If qk-1 is the quaternion representing the prior value of attitude, Δq is the quaternion representing the change in attitude, and qk is the quaternion representing the updated value of attitude, than the update equation for quaternion representation of attitude13 is



q k =Δq× q k1 ×Δ q * , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaWGRbaabeaakiabg2da9iabfs5aejaadghacqGHxdaTcaWG XbWaaSbaaSqaaiaadUgacqGHsislcaaIXaaabeaakiabgEna0kabfs 5aejaadghadaahaaWcbeqaaiaacQcaaaGccaGGSaaaaa@4757@ (6)

where the postsuperscript * represents the conjugate of a quaternion.

For ‘coning correction’ we used rotation vector technique based on ‘Bortz’ model for attitude dynamics. For low accuracy gyro sensors we determined the damping coefficients for gyro output correction, Kg1=, Kg2=0.0124, Kg3=0.124, as:



ω b =[ k g1 ω x b k g2 ω y b k g3 ω z b ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW baaeqabaGaamOyaaaacqGH9aqpdaWadaqaaKqzagqbaeqabeWaaaGc baqcLbyacaWGRbGcdaWgaaqaaKqzagGaam4zaiaaigdaaOqabaqcLb yacqaHjpWDkmaaDaaajugGbeaacaWG4baabaGaamOyaaaaaOqaaKqz agGaam4AaOWaaSbaaeaajugGbiaadEgacaaIYaaakeqaaKqzagGaeq yYdCNcdaqhaaqcLbyabaGaamyEaaqaaiaadkgaaaaakeaajugGbiaa dUgakmaaBaaabaqcLbyacaWGNbGaaG4maaGcbeaaaaqcLbyacqaHjp WDkmaaDaaajugGbeaacaWG6baabaGaamOyaaaaaOGaay5waiaaw2fa aaaa@5C1F@ (7)

The values of coefficients Kg1, Kg2, Kg3 have been chosen experimentally, based on experience of lot of measurements in stationary and dynamics regime.



4.1   Magnetometer Approach

Integration of magnetic sensor and INS is performed based on Madgwick14 . Calibration technique for magnetometer is presented by Gebre-Egziabher15. In our solution we determine coefficients to control influence between outputs of gyro, acceleration and magnetic sensor, Kix= Kiy=1, Kiz=2, (integral gain governs rate of convergence of gyroscope biases) and Kpmx=Kpmy=5, Kpmz=15, (proportional gain governs rate of convergence to accelerometer/magnetometer).



Reference direction of magnetic flux is:



b x = h x 2 + h y 2 , b z = h z MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOyamaaBaaaleaacaWG4baabeaakiabg2da9maakaaabaGaamiAamaaDaaaleaacaWG4baabaGaaGOmaaaakiabgUcaRiaadIgadaqhaaWcbaGaamyEaaqaaiaaikdaaaaabeaakiaacYcacaWGIbWaaSbaaSqaaiaadQhaaeqaaOGaeyypa0JaamiAamaaBaaaleaacaWG6baabeaaaaa@4588@

h x,y,z =2 m [ 0.5 q 2 q 2 q 3 q 3 q 1 q 2 q 0 q 3 q 1 q 3 + q 0 q 2 q 1 q 2 + q 0 q 3 0.5 q 1 q 1 q 3 q 3 q 2 q 3 q 0 q 1 q 1 q 3 q 0 q 2 q 2 q 3 + q 0 q 1 0.5 q 1 q 1 q 2 q 2 ], MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAamaaBaaaleaacaWG4bGaaiilaiaadMhacaGGSaGaamOEaaqabaGccqGH9aqpcaaIYaGabmyBayaalaWaamWaaeaafaqabeWadaaabaGaaGimaiaac6cacaaI1aGaeyOeI0IaamyCamaaBaaaleaacaaIYaaabeaakiaadghadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGXbWaaSbaaSqaaiaaiodaaeqaaOGaamyCamaaBaaaleaacaaIZaaabeaaaOqaaiaadghadaWgaaWcbaGaaGymaaqabaGccaWGXbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyCamaaBaaaleaacaaIWaaabeaakiaadghadaWgaaWcbaGaaG4maaqabaaakeaacaWGXbWaaSbaaSqaaiaaigdaaeqaaOGaamyCamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadghadaWgaaWcbaGaaGimaaqabaGccaWGXbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamyCamaaBaaaleaacaaIXaaabeaakiaadghadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGXbWaaSbaaSqaaiaaicdaaeqaaOGaamyCamaaBaaaleaacaaIZaaabeaaaOqaaiaaicdacaGGUaGaaGynaiabgkHiTiaadghadaWgaaWcbaGaaGymaaqabaGccaWGXbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamyCamaaBaaaleaacaaIZaaabeaakiaadghadaWgaaWcbaGaaG4maaqabaaakeaacaWGXbWaaSbaaSqaaiaaikdaaeqaaOGaamyCamaaBaaaleaacaaIZaaabeaakiabgkHiTiaadghadaWgaaWcbaGaaGimaaqabaGccaWGXbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamyCamaaBaaaleaacaaIXaaabeaakiaadghadaWgaaWcbaGaaG4maaqabaGccqGHsislcaWGXbWaaSbaaSqaaiaaicdaaeqaaOGaamyCamaaBaaaleaacaaIYaaabeaaaOqaaiaadghadaWgaaWcbaGaaGOmaaqabaGccaWGXbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamyCamaaBaaaleaacaaIWaaabeaakiaadghadaWgaaWcbaGaaGymaaqabaaakeaacaaIWaGaaiOlaiaaiwdacqGHsislcaWGXbWaaSbaaSqaaiaaigdaaeqaaOGaamyCamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadghadaWgaaWcbaGaaGOmaaqabaGccaWGXbWaaSbaaSqaaiaaikdaaeqaaaaaaOGaay5waiaaw2faaiaacYcaaaa@96DD@ (8)

where m MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyBayaalaaaaa@36F8@ is vector of geomagnetic field. Estimated direction of gravity and flux (v and w) is:



v x =2( q 1 q 3 q 0 q 2 ), v y =2( q 0 q 1 q 2 q 3 ), v z = q 0 2 q 1 2 q 2 2 + q 3 2 , w x =2 b x (0.5 q 2 2 q 3 2 )+2 b z ( q 1 q 3 q 0 q 2 ), w y =2 b x ( q 1 q 2 q 0 q 3 )+2 b z ( q 0 q 1 + q 2 q 3 ), w z =2 b x ( q 0 q 2 + q 1 q 3 )+2 b z (0.5 q 1 2 q 2 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG2b WaaSbaaSqaaiaadIhaaeqaaOGaeyypa0JaaGOmaiaacIcacaWGXbWa aSbaaSqaaiaaigdaaeqaaOGaamyCamaaBaaaleaacaaIZaaabeaaki abgkHiTiaadghadaWgaaWcbaGaaGimaaqabaGccaWGXbWaaSbaaSqa aiaaikdaaeqaaOGaaiykaiaacYcaaeaacaWG2bWaaSbaaSqaaiaadM haaeqaaOGaeyypa0JaaGOmaiaacIcacaWGXbWaaSbaaSqaaiaaicda aeqaaOGaamyCamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadghada WgaaWcbaGaaGOmaaqabaGccaWGXbWaaSbaaSqaaiaaiodaaeqaaOGa aiykaiaacYcaaeaacaWG2bWaaSbaaSqaaiaadQhaaeqaaOGaeyypa0 JaamyCamaaDaaaleaacaaIWaaabaGaaGOmaaaakiabgkHiTiaadgha daqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHsislcaWGXbWaa0baaS qaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaamyCamaaDaaaleaacaaI ZaaabaGaaGOmaaaakiaacYcaaeaacaWG3bWaaSbaaSqaaiaadIhaae qaaOGaeyypa0JaaGOmaiaadkgadaWgaaWcbaGaamiEaaqabaGccaGG OaGaaGimaiaac6cacaaI1aGaeyOeI0IaamyCamaaDaaaleaacaaIYa aabaGaaGOmaaaakiabgkHiTiaadghadaqhaaWcbaGaaG4maaqaaiaa ikdaaaGccaGGPaGaey4kaSIaaGOmaiaadkgadaWgaaWcbaGaamOEaa qabaGccaGGOaGaamyCamaaBaaaleaacaaIXaaabeaakiaadghadaWg aaWcbaGaaG4maaqabaGccqGHsislcaWGXbWaaSbaaSqaaiaaicdaae qaaOGaamyCamaaBaaaleaacaaIYaaabeaakiaacMcacaGGSaaabaGa am4DamaaBaaaleaacaWG5baabeaakiabg2da9iaaikdacaWGIbWaaS baaSqaaiaadIhaaeqaaOGaaiikaiaadghadaWgaaWcbaGaaGymaaqa baGccaWGXbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyCamaaBa aaleaacaaIWaaabeaakiaadghadaWgaaWcbaGaaG4maaqabaGccaGG PaGaey4kaSIaaGOmaiaadkgadaWgaaWcbaGaamOEaaqabaGccaGGOa GaamyCamaaBaaaleaacaaIWaaabeaakiaadghadaWgaaWcbaGaaGym aaqabaGccqGHRaWkcaWGXbWaaSbaaSqaaiaaikdaaeqaaOGaamyCam aaBaaaleaacaaIZaaabeaakiaacMcacaGGSaaabaGaam4DamaaBaaa leaacaWG6baabeaakiabg2da9iaaikdacaWGIbWaaSbaaSqaaiaadI haaeqaaOGaaiikaiaadghadaWgaaWcbaGaaGimaaqabaGccaWGXbWa aSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyCamaaBaaaleaacaaIXa aabeaakiaadghadaWgaaWcbaGaaG4maaqabaGccaGGPaGaey4kaSIa aGOmaiaadkgadaWgaaWcbaGaamOEaaqabaGccaGGOaGaaGimaiaac6 cacaaI1aGaeyOeI0IaamyCamaaDaaaleaacaaIXaaabaGaaGOmaaaa kiabgkHiTiaadghadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaGGPa GaaiOlaaaaaa@C06C@ (9)

where bx and bz are magnetic fluxes in the horizontal and vertical planes, respectively. Error is sum of cross product between reference direction of fields and direction measured by sensors:



e x =( a y v z a z v y )+( m y w z m z w y ), e y =( a z v x a x v z )+( m z w x m x w z ), e z =( a x v y a y v x )+( m x w y m y w x ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGLb WaaSbaaSqaaiaadIhaaeqaaOGaeyypa0JaaiikaiaadggadaWgaaWc baGaamyEaaqabaGccaWG2bWaaSbaaSqaaiaadQhaaeqaaOGaeyOeI0 IaamyyamaaBaaaleaacaWG6baabeaakiaadAhadaWgaaWcbaGaamyE aaqabaGccaGGPaGaey4kaSIaaiikaiaad2gadaWgaaWcbaGaamyEaa qabaGccaWG3bWaaSbaaSqaaiaadQhaaeqaaOGaeyOeI0IaamyBamaa BaaaleaacaWG6baabeaakiaadEhadaWgaaWcbaGaamyEaaqabaGcca GGPaGaaiilaaqaaiaadwgadaWgaaWcbaGaamyEaaqabaGccqGH9aqp caGGOaGaamyyamaaBaaaleaacaWG6baabeaakiaadAhadaWgaaWcba GaamiEaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaadIhaaeqaaOGa amODamaaBaaaleaacaWG6baabeaakiaacMcacqGHRaWkcaGGOaGaam yBamaaBaaaleaacaWG6baabeaakiaadEhadaWgaaWcbaGaamiEaaqa baGccqGHsislcaWGTbWaaSbaaSqaaiaadIhaaeqaaOGaam4DamaaBa aaleaacaWG6baabeaakiaacMcacaGGSaaabaGaamyzamaaBaaaleaa caWG6baabeaakiabg2da9iaacIcacaWGHbWaaSbaaSqaaiaadIhaae qaaOGaamODamaaBaaaleaacaWG5baabeaakiabgkHiTiaadggadaWg aaWcbaGaamyEaaqabaGccaWG2bWaaSbaaSqaaiaadIhaaeqaaOGaai ykaiabgUcaRiaacIcacaWGTbWaaSbaaSqaaiaadIhaaeqaaOGaam4D amaaBaaaleaacaWG5baabeaakiabgkHiTiaad2gadaWgaaWcbaGaam yEaaqabaGccaWG3bWaaSbaaSqaaiaadIhaaeqaaOGaaiykaiaac6ca aaaa@8580@ (10)

where a?x,y,z – are the measurements of accelerometers. Adjusted gyroscope measurements are:



ω x = ω gyrox + K pmx e x + K ix e x + e xInt , ω y = ω gyroy + K pmy e y + K iy e y + e yInt , ω z = ω gyroz + K pmz e z + K iz e z + e zInt , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqaHjp WDdaWgaaWcbaGaamiEaaqabaGccqGH9aqpcqaHjpWDdaWgaaWcbaGa am4zaiaadMhacaWGYbGaam4BaiaadIhaaeqaaOGaey4kaSIaam4sam aaBaaaleaacaWGWbGaamyBaiaadIhaaeqaaOGaeyyXICTaamyzamaa BaaaleaacaWG4baabeaakiabgUcaRiaadUeadaWgaaWcbaGaamyAai aadIhaaeqaaOGaeyyXICTaamyzamaaBaaaleaacaWG4baabeaakiab gUcaRiaadwgadaWgaaWcbaGaamiEaiaadMeacaWGUbGaamiDaaqaba GccaGGSaaabaGaeqyYdC3aaSbaaSqaaiaadMhaaeqaaOGaeyypa0Ja eqyYdC3aaSbaaSqaaiaadEgacaWG5bGaamOCaiaad+gacaWG5baabe aakiabgUcaRiaadUeadaWgaaWcbaGaamiCaiaad2gacaWG5baabeaa kiabgwSixlaadwgadaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaWGlb WaaSbaaSqaaiaadMgacaWG5baabeaakiabgwSixlaadwgadaWgaaWc baGaamyEaaqabaGccqGHRaWkcaWGLbWaaSbaaSqaaiaadMhacaWGjb GaamOBaiaadshaaeqaaOGaaiilaaqaaiabeM8a3naaBaaaleaacaWG 6baabeaakiabg2da9iabeM8a3naaBaaaleaacaWGNbGaamyEaiaadk hacaWGVbGaamOEaaqabaGccqGHRaWkcaWGlbWaaSbaaSqaaiaadcha caWGTbGaamOEaaqabaGccqGHflY1caWGLbWaaSbaaSqaaiaadQhaae qaaOGaey4kaSIaam4samaaBaaaleaacaWGPbGaamOEaaqabaGccqGH flY1caWGLbWaaSbaaSqaaiaadQhaaeqaaOGaey4kaSIaamyzamaaBa aaleaacaWG6bGaamysaiaad6gacaWG0baabeaakiaacYcaaaaa@9E26@ (11)

where ex,y,z Int is integral of error in current iteration.
Corrected value of Δq as the quaternion representing the change of attitude,



Δq=[ q 1 ω x q 2 ω y q 3 ω z q 0 ω x + q 2 ω z q 3 ω y q 0 ω y q 1 ω z + q 3 ω x q 0 ω z + q 1 ω y q 2 ω x ]ΔT. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam yCaiabg2da9maadmaabaqbaeqabqqaaaaabaGaeyOeI0IaamyCamaa BaaaleaacaaIXaaabeaakiabeM8a3naaBaaaleaacaWG4baabeaaki abgkHiTiaadghadaWgaaWcbaGaaGOmaaqabaGccqaHjpWDdaWgaaWc baGaamyEaaqabaGccqGHsislcaWGXbWaaSbaaSqaaiaaiodaaeqaaO GaeqyYdC3aaSbaaSqaaiaadQhaaeqaaaGcbaGaamyCamaaBaaaleaa caaIWaaabeaakiabeM8a3naaBaaaleaacaWG4baabeaakiabgUcaRi aadghadaWgaaWcbaGaaGOmaaqabaGccqaHjpWDdaWgaaWcbaGaamOE aaqabaGccqGHsislcaWGXbWaaSbaaSqaaiaaiodaaeqaaOGaeqyYdC 3aaSbaaSqaaiaadMhaaeqaaaGcbaGaamyCamaaBaaaleaacaaIWaaa beaakiabeM8a3naaBaaaleaacaWG5baabeaakiabgkHiTiaadghada WgaaWcbaGaaGymaaqabaGccqaHjpWDdaWgaaWcbaGaamOEaaqabaGc cqGHRaWkcaWGXbWaaSbaaSqaaiaaiodaaeqaaOGaeqyYdC3aaSbaaS qaaiaadIhaaeqaaaGcbaGaamyCamaaBaaaleaacaaIWaaabeaakiab eM8a3naaBaaaleaacaWG6baabeaakiabgUcaRiaadghadaWgaaWcba GaaGymaaqabaGccqaHjpWDdaWgaaWcbaGaamyEaaqabaGccqGHsisl caWGXbWaaSbaaSqaaiaaikdaaeqaaOGaeqyYdC3aaSbaaSqaaiaadI haaeqaaaaaaOGaay5waiaaw2faaiabfs5aejaadsfacaGGUaaaaa@8166@ (12)

In this paper we used EKF where the error model given in Eqns. (1) to (5) has the form11:



x ˙ =Fx+Gw. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaca Gaeyypa0JaamOraiabgwSixlaadIhacqGHRaWkcaWGhbGaeyyXICTa am4Daiaac6caaaa@41BA@ (13)

where the state vector is defined as: 



           

x=[ δ r N δ r E δ r D δ V N δ V E δ V D δφ δθ δψ B N B E B D ω N dr ω E dr ω D dr ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9maadmaabaqbaeqabeWdaaaaaaqaaiabes7aKjaadkhadaWgaaWc baGaamOtaaqabaaakeaacqaH0oazcaWGYbWaaSbaaSqaaiaadweaae qaaaGcbaGaeqiTdqMaamOCamaaBaaaleaacaWGebaabeaaaOqaaiab es7aKjaadAfadaWgaaWcbaGaamOtaaqabaaakeaacqaH0oazcaWGwb WaaSbaaSqaaiaadweaaeqaaaGcbaGaeqiTdqMaamOvamaaBaaaleaa caWGebaabeaaaOqaaiabes7aKjabeA8aQbqaaiabes7aKjabeI7aXb qaaiabes7aKjabeI8a5bqaaiaadkeadaWgaaWcbaGaamOtaaqabaaa keaacaWGcbWaaSbaaSqaaiaadweaaeqaaaGcbaGaamOqamaaBaaale aacaWGebaabeaaaOqaaiabeM8a3naaDaaaleaacaWGobaabaGaamiz aiaadkhaaaaakeaacqaHjpWDdaqhaaWcbaGaamyraaqaaiaadsgaca WGYbaaaaGcbaGaeqyYdC3aa0baaSqaaiaadseaaeaacaWGKbGaamOC aaaaaaaakiaawUfacaGLDbaacaGGUaaaaa@6DC7@ (14)



Based on matrix F, state transition matrix Φ is:



Φ k =I+FΔt+ 1 2 F 2 (Δt) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaaiaadUgaaeqaaOGaeyypa0JaamysaiabgUcaRiaadAeacqqH uoarcaWG0bGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGgb WaaWbaaSqabeaacaaIYaaaaOGaaiikaiabfs5aejaadshacaGGPaWa aWbaaSqabeaacaaIYaaaaOGaaiilaaaa@47F8@ (15)

where Δt is a sampling interval. Measurement model is defined as:



z k = H k x k + v k , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaWGRbaabeaakiabg2da9iaadIeadaWgaaWcbaGaam4Aaaqa baGccqGHflY1caWG4bWaaSbaaSqaaiaadUgaaeqaaOGaey4kaSIaam ODamaaBaaaleaacaWGRbaabeaakiaacYcaaaa@4334@ (16)

with values ones and zeroes of terms in Hk, while vector νk represents Gaussian measurement noise with zero mean value and covariance matrix R.



Estimated values of error states are obtained by EKF with control signals in the form:



x ^ k + = Φ k x ^ k1 + + K k ( z k H k Φ k x ^ k1 + H k L u k ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaja Waa0baaSqaaiaadUgaaeaacqGHRaWkaaGccqGH9aqpcqqHMoGrdaWg aaWcbaGaam4AaaqabaGcceWG4bGbaKaadaqhaaWcbaGaam4Aaiabgk HiTiaaigdaaeaacqGHRaWkaaGccqGHRaWkcaWGlbWaaSbaaSqaaiaa dUgaaeqaaOGaaiikaiaadQhadaWgaaWcbaGaam4AaaqabaGccqGHsi slcaWGibWaaSbaaSqaaiaadUgaaeqaaOGaeuOPdy0aaSbaaSqaaiaa dUgaaeqaaOGabmiEayaajaWaa0baaSqaaiaadUgacqGHsislcaaIXa aabaGaey4kaScaaOGaeyOeI0IaamisamaaBaaaleaacaWGRbaabeaa kiaadYeacaWG1bWaaSbaaSqaaiaadUgaaeqaaOGaaiykaiaacYcaaa a@5885@ (17)

where L is a matrix consisting from zeroes and ones, multiplying vector of control signals  u k1 =[ 0 0 0 u N ν u E ν u D ν u N φ u E φ 0 ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGRbGaeyOeI0IaaGymaaqabaGccqGH9aqpdaWadaqaauaa beqabKaaaaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaamyDam aaDaaaleaacaWGobaabaGaeqyVd4gaaaGcbaGaamyDamaaDaaaleaa caWGfbaabaGaeqyVd4gaaaGcbaGaamyDamaaDaaaleaacaWGebaaba GaeqyVd4gaaaGcbaGaamyDamaaDaaaleaacaWGobaabaGaeqOXdOga aaGcbaGaamyDamaaDaaaleaacaWGfbaabaGaeqOXdOgaaaGcbaGaaG imaaaaaiaawUfacaGLDbaacaGGSaaaaa@5303@ and Kk is a matrix of Kalman gains as , K k = P k H T [ H P k H T + R k ] 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaWGRbaabeaakiabg2da9iaadcfadaqhaaWcbaGaam4Aaaqa aiabgkHiTaaakiaadIeadaahaaWcbeqaaiaadsfaaaGcdaWadaqaai aadIeacaWGqbWaa0baaSqaaiaadUgaaeaacqGHsislaaGccaWGibWa aWbaaSqabeaacaWGubaaaOGaey4kaSIaamOuamaaBaaaleaacaWGRb aabeaaaOGaay5waiaaw2faamaaCaaaleqabaGaeyOeI0IaaGymaaaa aaa@49F1@ obtained in a standard recursive procedure using prior and posterior state covariance matrices P k = Φ k P k1 + Φ k T + G k Q k G k T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaWGRbaabaGaeyOeI0caaOGaeyypa0JaeuOPdy0aaSbaaSqa aiaadUgaaeqaaOGaamiuamaaDaaaleaacaWGRbGaeyOeI0IaaGymaa qaaiabgUcaRaaakiabfA6agnaaDaaaleaacaWGRbaabaGaamivaaaa kiabgUcaRiaadEeadaWgaaWcbaGaam4AaaqabaGccaWGrbWaaSbaaS qaaiaadUgaaeqaaOGaam4ramaaDaaaleaacaWGRbaabaGaamivaaaa aaa@4C17@   and P k + =(I K k H) P k , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaWGRbaabaGaey4kaScaaOGaeyypa0JaaiikaiaadMeacqGH sislcaWGlbWaaSbaaSqaaiaadUgaaeqaaOGaamisaiaacMcacaWGqb Waa0baaSqaaiaadUgaaeaacqGHsislaaGccaGGSaaaaa@434A@ while  Q k =E[ w k w k T ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaWGRbaabeaakiabg2da9iaadweadaWadaqaaiaadEhadaWg aaWcbaGaam4AaaqabaGccaWG3bWaa0baaSqaaiaadUgaaeaacaWGub aaaaGccaGLBbGaayzxaaGaaiilaaaa@4182@ is a covariance matrix of system noise.



Control signals uare defined as:



u N ν = k 1NKF tanh(δ V ^ N ), u E ν = k 1EKF tanh(δ V ^ E ), u D ν = k DKF tanh(δ h ), u N φ = k 2NKF tanh(δ V ^ E ), u E φ = k 2EKF tanh(δ V ^ N ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG1b Waa0baaSqaaiaad6eaaeaacqaH9oGBaaGccqGH9aqpcqGHsislcaWG RbWaa0baaSqaaiaaigdacaWGobGaam4saiaadAeaaeaaaaGcciGG0b Gaaiyyaiaac6gacaGGObGaaiikaiabes7aKjqadAfagaqcamaaBaaa leaacaWGobaabeaakiaacMcacaGGSaGaamyDamaaDaaaleaacaWGfb aabaGaeqyVd4gaaOGaeyypa0JaeyOeI0Iaam4AamaaDaaaleaacaaI XaGaamyraiaadUeacaWGgbaabaaaaOGaciiDaiaacggacaGGUbGaai iAaiaacIcacqaH0oazceWGwbGbaKaadaWgaaWcbaGaamyraaqabaGc caGGPaGaaiilaiaadwhadaqhaaWcbaGaamiraaqaaiabe27aUbaaki abg2da9iabgkHiTiaadUgadaWgaaWcbaGaamiraiaadUeacaWGgbaa beaakiGacshacaGGHbGaaiOBaiaacIgacaGGOaGaeqiTdqMaamiAam aaBaaaleaaaeqaaOGaaiykaiaacYcaaeaacaWG1bWaa0baaSqaaiaa d6eaaeaacqaHgpGAaaGccqGH9aqpcqGHsislcaWGRbWaa0baaSqaai aaikdacaWGobGaam4saiaadAeaaeaaaaGcciGG0bGaaiyyaiaac6ga caGGObGaaiikaiabes7aKjqadAfagaqcamaaBaaaleaacaWGfbaabe aakiaacMcacaGGSaGaamyDamaaDaaaleaacaWGfbaabaGaeqOXdOga aOGaeyypa0JaeyOeI0Iaam4AamaaDaaaleaacaaIYaGaamyraiaadU eacaWGgbaabaaaaOGaciiDaiaacggacaGGUbGaaiiAaiaacIcacqaH 0oazceWGwbGbaKaadaWgaaWcbaGaamOtaaqabaGccaGGPaGaaiilaa aaaa@9508@ (18)

where  k 1NKF = k 2NKF =0.15, k 1EKF = k 2EKF =0.125, k DKF =0.005. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaaIXaGaamOtaiaadUeacaWGgbaabeaakiabg2da9iaadUga daWgaaWcbaGaaGOmaiaad6eacaWGlbGaamOraaqabaGccqGH9aqpca aIWaGaaiOlaiaaigdacaaI1aGaaiilaiaadUgadaWgaaWcbaGaaGym aiaadweacaWGlbGaamOraaqabaGccqGH9aqpcaWGRbWaaSbaaSqaai aaikdacaWGfbGaam4saiaadAeaaeqaaOGaeyypa0JaaGimaiaac6ca caaIXaGaaGOmaiaaiwdacaGGSaGaam4AamaaBaaaleaacaWGebGaam 4saiaadAeaaeqaaOGaeyypa0JaaGimaiaac6cacaaIWaGaaGimaiaa iwdacaGGUaaaaa@5C03@ Velocity components are corrected using the estimates of velocity errors:



V N c = V N INS δ V ^ N , V E c = V E INS δ V ^ E , V D c = V D INS δ V ^ D , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaDa aaleaacaWGobaabaGaam4yaaaakiabg2da9iaadAfadaqhaaWcbaGa amOtaaqaaiaadMeacaWGobGaam4uaaaakiabgkHiTiabes7aKjqadA fagaqcamaaBaaaleaacaWGobaabeaakiaacYcacaWGwbWaa0baaSqa aiaadweaaeaacaWGJbaaaOGaeyypa0JaamOvamaaDaaaleaacaWGfb aabaGaamysaiaad6eacaWGtbaaaOGaeyOeI0IaeqiTdqMabmOvayaa jaWaaSbaaSqaaiaadweaaeqaaOGaaiilaiaadAfadaqhaaWcbaGaam iraaqaaiaadogaaaGccqGH9aqpcaWGwbWaa0baaSqaaiaadseaaeaa caWGjbGaamOtaiaadofaaaGccqGHsislcqaH0oazceWGwbGbaKaada WgaaWcbaGaamiraaqabaGccaGGSaaaaa@5DF2@ (19)

where δ V ^ N ,δ V ^ E ,δ V ^ D , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMabm OvayaajaWaaSbaaSqaaiaad6eaaeqaaOGaaiilaiabes7aKjqadAfa gaqcamaaBaaaleaacaWGfbaabeaakiaacYcacqaH0oazceWGwbGbaK aadaWgaaWcbaGaamiraaqabaGccaGGSaaaaa@42BE@ are velocity error estimates as EKF outputs. Corrections of position components are done as:



ϕ c = ϕ INS δ ϕ ^ , λ c = λ INS δ λ ^ , h c = h INS δ h ^ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dy2aaW baaSqabeaacaWGJbaaaOGaeyypa0Jaeqy1dy2aaWbaaSqabeaacaWG jbGaamOtaiaadofaaaGccqGHsislcqaH0oazcuaHvpGzgaqcaiaacY cacqaH7oaBdaahaaWcbeqaaiaadogaaaGccqGH9aqpcqaH7oaBdaah aaWcbeqaaiaadMeacaWGobGaam4uaaaakiabgkHiTiabes7aKjqbeU 7aSzaajaGaaiilaiaadIgadaahaaWcbeqaaiaadogaaaGccqGH9aqp caWGObWaaWbaaSqabeaacaWGjbGaamOtaiaadofaaaGccqGHsislcq aH0oazceWGObGbaKaacaGGSaaaaa@5BA6@ (20)

where δ ϕ ^ ,δ λ ^ ,δ h ^ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMafq y1dyMbaKaacaGGSaGaeqiTdqMafq4UdWMbaKaacaGGSaGaeqiTdqMa bmiAayaajaGaaiilaaaa@418E@ are the estimates of errors of geographical latitude, longitude, and height, obtained as the outputs of EKF. Attitude corrections are made as:



C B N = C P N C B P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4qamaaDa aaleaacaWGcbaabaGaamOtaaaakiabg2da9iaadoeadaqhaaWcbaGa amiuaaqaaiaad6eaaaGccaWGdbWaa0baaSqaaiaadkeaaeaacaWGqb aaaaaa@3ECB@ (21)

where estimated orientation errors are used to form transformation matrix, C P N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaDa aaleaacaWGqbaabaGaamOtaaaaaaa@3893@ the transformation matrix  C B P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaDa aaleaacaWGcbaabaGaamiuaaaaaaa@3887@ is obtained as the output of INS, and is C B N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaDa aaleaacaWGcbaabaGaamOtaaaaaaa@3885@ the resultant transform matrix relating body fixed and navigation coordinate frames, after correction.


Adaptation the values of KN,KF, KE,KF and KD,KF during the intervals of GPS signal absence is done according to the changes of appropriate kinematic parameters sensed by inertial instruments. Therefore, on this step in algorithm, the separation and adaptation of these gain coefficients has been made, introducing KN1,2, KE1,2, and C1,2 as the coefficients for INS correction purpose, and KN,KF, KE,KF and KD,KF for the EKF implementation purpose. This separation becomes effective when there are no available measurements from GPS.


For estimation of sensor’s stochastic models using Allan dispersion and autocorrelation function, test platform ‘CARCO T-922’ was used. Tables 1 and Table 2 summarised the results of error parameters of accelerometers and gyros, respectively. The second experiment consisted in tests where the sensors were mounted on the car moving along accurately pre-specified trajectory. During the overall 11 min interval, the system worked 6 min in the initialization regime while the remaining 5 min worked in navigation regime. There were 4 check points (CP1-CP4) along the trajectory where geographical coordinates had been previously determined via DGPS. The number of available satellites was more than four.



Table 1. Accelerometer error parameterisation



Table 2. Gyro error parameterisation


Figure 1 illustrates the results obtained when we integrated magnetometer and INS. In case INS measurements one can see that the attitude angles deviate with sudden changes, because of sensors that have low accuracy class. The dashed line represents the vehicle orientation angles. At some points in time, appear sudden deviation angles of orientation, which represent measurement error, caused by vibration and imprecise sensors themselves, which is especially expressed in the roll angle and pitch angles. Yaw angle does not follow the trajectory of the vehicle. In a solution of the integrated system, the orientation angles are not changed suddenly. Azimuth of the vehicle is in accordance with the planned trajectory of the vehicle, as shown by a solid line.



Figure 1. Attitude orientation of vehicle.


Figure 2 shows the trajectory of the vehicle in geographic coordinates. As can be seen the integrated system successfully follows the trajectory of the vehicle and in the absence of GPS data, which is the main goal, and there are no deviations from the control points. In the absence of GPS information prediction of the EKF is with a margin of error, so that the rms of North position error is 1.31 m and East position error is 1.66 m, under conditions when the vehicle maneuver.


Figure 3 illustrates the results of the altitude along the path of the vehicle. The vehicle is initially went down and then climbed to the highest point and then went back down to the starting position. During the absence of GPS data, the EKF correctly predict the path of movement using barometer.



Figure 2. Car trajectory (given in geodetic coordinates) and check points.



Figure 3. Altitude (in meters, wrt a start position) and velocity down component.


Vertical position error is 0.635 m (rms). This example shows damping of vertical channel errors in SDINS (solid line) using a barometric altimeter and control signal uD. Root-mean-square error of vertical velocity in integrated system (bold line) respect to the GPS velocity (dotted line) is 0.023 m/s. Root-mean-square errors of vehicle velocity in north and east direction are 0.046 m/s and 0.042 m/s, respectively.


The main goal of this research was to develop a module that can be customized for use in different applications and to improve accuracy of navigation system which has been confirmed by experiment. By integrating magnetometer, reduction in attitude error has been confirmed. There we determine error dumping coefficients for low accuracy gyro sensors error correction and proportional gain coefficients governs rate of convergence to accelerometer/magnetometer. Experiments have shown that the proposed method can improve the attitude and navigation accuracy performance of low-cost sensors. For error dumping in vertical and horizontal channel, we defined gain coefficients that are different from the coefficients in EKF control signal. In that way we get very well measurements in GPS data absence. Also we develop software in Matlab environment for integrated system that can be used in real applications.


1.     Zhang, P.; Gu, Jason; Milios, E. E. & Huynh, P. Navigation with IMU/GPS/Digital Compass with unscented kalman filter. In Proceedings of the IEEE International Conference on Mechatronics & Automation Niagara Falls, Canada, 2005.

2.     Farrell, J. A. & Barth, M. The global positioning system and inertial navigation. McGraw-Hill, 1998.

3.     Salychev, O.S.; Voronov, V.V.; Cannon, M.E. & Lachapelle, G. Low cost INS/GPS integration: Concepts and testing. In Proceeding of the Institute of Navigation National Technical Meeting, Anaheim, CA, 2000. pp. 98-105.

4.     Allerton, D.J. & Jia, H. A review of multisensor fusion methodologies for aircraft navigation systems. Journal Navigation, 2005, 58(3), 405-417. [Full text via CrossRef]

5.     Seraji, H. & Serrano, N. A multisensor decision fusion system for terrain safety assessment. IEEE Trans.  Robotics, 2009, 25(1), 99-108. [Full text via CrossRef]

6.     Babu, R. & Wang, J. Ultra-tight GPS/INS/PL integration: a system concept and performance analysis. GPS Solutions, 2009, 13(1), 75-82. [Full text via CrossRef]

7.     Reddy, G.S. & Saraswat, V.K. Advanced navigation system for aircraft applications. Def. Sci. J., 2013, 63(2), 131-137. [Full text PDF]

8.     Knedlik, S.; Zhou, J.; Dai, Z.; Ezzaldeen, E. & Loffeld, O. Analysis of low-cost GPS/INS for bistatic SAR experiments. In Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008), Savannah, USA, September 2008; pp. 2115–2122.

9.     Ramalingam, R.; Anitha, G. & Shanmugam, J. Microelectromechanical systems inertial measurement unit error modeling and error analysis for low-cost strapdown inertial navigation system. Def. Sci. J., 2009, 59(6), 650-658. [Full text PDF]

10.   Falco, G.; Einicke, G.A.; Malos, J.T. & Dovis, F. Performance analysis of constrained loosely coupled GPS/INS integration solutions. Sensors, 2012, 12(11), 15983-16007. [Full text via CrossRef]

11.   Stancic, R. & Graovac, S. The integration of strap-down INS and GPS based on adaptive error damping. Robotics Autonomous Syst., 2010, 58(10), 1117-1129. [Full text via CrossRef]

12.   Daduc, V.; Reddya, B.V.; Sitaraa, B.; Chandrasekhara, R.S. & Reddya, G.S. Baro-INS integration with kalman filter. In Proceedings of National conference on Advances in Sensors for Aerospace applications, Hyderabad, December 2007.

13.   Titerton, D.H. & Weston, J.L. Strapdown inertial navigation technology. Ed 2. The Institution of Electrical Engineers, Herts UK, 2004.

14.   Madgwick, S.O.H.; Vaidyanathan, R. & Harrison, A. J.L. An efficient orientation filter for IMU and MARG sensor arrays. Department of Mechanical Engineering, University of Bristol, 2010.

15.   Gebre-Egziabher, D.; Elkaim, G.H.; David Powell, J. & Parkinson, B. W. Calibration of strapdown magnetometers in magnetic field domain. J. Aerospace Eng., 2006, 19(2), 87–102. [Full text via CrossRef]

Mr Vlada Sokolovićreceived his BSc (Radar systems engineering) from Military Academy in Belgrade and MSc (Telecommunication engineering) from University of Belgrade. He is now a PhD candidate in the Military Academy, University of Defense in Belgrade. His current research interests include : Inertial navigation systems, global positioning systems, and navigation.

Dr Goran Dikic received his BSc (Missile systems engineering), MSc and PhD in control engineering from University of Belgrade. He is currently with University of Defense in Belgrade, working as a provost for inter-university and international cooperation, and as an assistant professor. His current research interests include : Control systems, stochastic systems and data fusion.

Dr Rade Stančić received his BSc, MSc and PhD in control engineering from University of Belgrade. His current research interests include : Inertial navigation systems, global navigation satellite systems, and particularly, algorithms used in the integrated navigation systems.