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Study of Trajectory of Spin-Stabilised Artillery Projectiles
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ABSTRACT

Equations of motion for conventional spin-stabilised artillery
projectile have been derived using a pseudo-stability axes system in
addition to body-fixed and space-fixed axes systems. The aerodynamic
forces and moments have been represented by their respective
coefficients and the effects of Mach number and Reynolds number
have been suitably accounted. The magnus terms which are significant
at high rates of spin are estimated using a simple model. The set of
equations have been partly linearised and solved numerically for a
typical projectile using NAG system routines. Various trajectory
parameters are computed and compared with the range-table data for
the projectile. A parametric study has been carried out varying the
aerodynamic coefficients to understand the sensitivity of the results
obtained.

1. INTRODUCTION

In the history of warfare, the success or failure of a land battle can invariably be
traced to the effective use or otherwise of artillery, and conventional spin-stabilised
projectiles continue to be a major ‘weapon’ of the artillery world. On the battlefield
of 1990s effective use of artillery would demand first round hit capability; quick
switching of guns from one target to another; and extremely fast reaction to meet the
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requirements of highly mobile battles. These demands can be met by fast acquisition
of the target, accurate computation of the gun data after accounting for all the known
nonstandard conditions, and an equally efficient means of delivering the rounds on
the target. The gun data computation using the tabulated data in the range-tables is
a highly inefficient approach though commonly used by many countries. The process
is manual, time consuming, involves interpolation errors and requires repetitive work
for each firing. With the availability of sophisticated computers it should be possible
to compute the complete gun data more accurately in a shorter time eliminating the
possible human errors, thus achieving more effective neutralisation of the target.

The present work reports a general mathematical model developed to describe
the motion of a spin-stabilised axisymmetric projectile and the resulting equations of
motion which have been numerically solved to yield the complete trajectory of the
projectile. The aerodynamic forces and moments are represented in terms of the
corresponding coefficients and the effects of Reynolds and Mach numbers are suitably
accounted. The Magnus terms which are significant at high rates of spin are
incorporated based on a simple model. The method can give improved accuracy of
prédicting the point of fall and can be applied to any projectile of known aerodynamic
characteristics.

2. EQUATIONS OF MOTION

Six-degree equations of motion for the projectile have been written making use
of three systems of coordinates axes (Fig.1), viz space-fixed axes, body fixed axes,
and an intermediate pseudo-stability axes. In the pseudo-stability axes system Y-axis
always lies in the initial X, Y, plane and is not allowed to roll'. The rigid-body linear
and angular momentum equations for the projectile are written in the space-fixed
coordinate system first, and are then transferred to body-fixed coordinate system,
using the Eularian angles—angle of yaw y, angle of pitch 6, and angle of roll
¢—representing the orientation of the projectile in space. The effect of rotation of

0 (VERTICAL)
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Figure 1. Axes system.
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body-axes and pseudo-stability axes on the inertial terms are accounted for using
Poisson’s formula. The external forces include gravitational force and aerodynamic
forces and moments. The details of the derivation are presented by Wakankar? (steps
involved are outlined in the Appendix).

2.1 Aerodynamic Forces and Moments

The aerodynamic forces and moments are expressed in coefficient forms as
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where, the subscripts X, Y, Z represent components along and about X, Y and Z
axes, and I, m and n are the rolling, pitching and yawing moment components. Cis
the force or moment coefficient, V the projectile speed, p the surrounding air density
and S and I are the reference area and length of the projectile respectively. Any
aerodynamic force or moment coefficientin Eqn (1) canbe, in general, expressed as:
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where, p, g and r are the roll, pitch and yaw rites of the projectile (expressible in
terms of y , 8 and ¢ and their time derivatives); a and g are the angles of attack and
side slip. The second and third subscripts represent derivatives with respect to the
corresponding nondimensional variable, and () represents time derivative. The second
order terms retained in Eqn (2) are the Magnus terms and are significant l'«)r‘lzlrgc
spin rates. The coefficients C, are assumed to be independent of the mo'tion vanab'les
and are only functions of flight Mach and Reynolds numbers. For bodies p0§s?ssmg
90° rotational symmetry, the following simplifications can be made for the coefficients :

Cx“ = Cxp = Cx& = CXﬂ = Cxp = Cxq = Cx, =0

Cyo=Czo =Cra =Czp = Cryg =Coq =, = Cope= Cry \
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Co=Ca=Cpg=C4=Cy=Cq=C,=0
mo=Cro = Cng = Cra =Cyy = Cug = Crp = Cop = Coy = Cog = 0
Crp = Czas Cyp = Czas Crr = ~Czqs Ca == Gy Cpg = -C i Gy =Cy
Cxap = Cxpgp = Cxip = Cypy = Cxtep = Cxp = 0
Cypp = Czep = C}'Bp =Czap = Crpp = Czpp = Cypp = Cgp = 0
G=0
Crap = Capp = Cmap = C 3 = Copp = Crpp = Cingp = Cop = 0
Crap = —Czpps Crep = Zﬂp' Crep = Czrpi Crgp = C'ww' ip = Cnips Cmp = —Cogp

3

2.2 Linearisation and Nondimensional Equations

Variables a, f, v, q and r are initially zero and are assumed to be small during
the trajectory so that the equations can be linearised in these variables by ignoring
the higher order terms. Variables V, 8 and p are not small and the nonlinear terms
in V and 0 are retained. However, variation in p over the initial spin rate p, can be
assumed to be small and linearisation can be carried out in the variable (p-p,).
Equations are nondimensionalised using ‘

= . . = D
Vo T Vo d* “@

where Vj is the muzzle velocity and ¢ is the real-time, and they are given below in
the final form :

Du — uoDa — ufDf + uaD8 — [ufi cos 8 - K, Cx,, Eg sin 8] Dy

~ K\Cx,, EoD¢ = K\u? Cx, - KiCx,, E{ - K sin (Yo + 6) 5)
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where
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g is the acceleration due to gravity, m the mass of the projectile and I its moment of
inertia.

The kinematic equations relating the velacity components along X;Y,Z, to the
motion variables are given in the nondimensional form by

DX, = ul(cos 8 + a sin 6) €9))
DY, = ul(y cos 8 + B) (12)
DZy = ul(-sin 8 + a cos ) (13)

The initial conditions for Eqns (5) to (13) are,
a *=0; u=1 ¢=p

a=Pf=0=¢=y=0=y=0; and Xo=Y¥=2Z=0 (14)
2.3 Solution

The set of Eqns (5) to (13) has been numerically solved on DEC-10 computer
at 1IT, Kanpur using Gear’s variable-order-variable-step- routine® for a typical
projectile for which aerodynamic data was partly available. All the first order
aerodynamic coefficients except drag coefficient have been computed as per USAF
Stability and Control Datcom method* and the compressibility effects have been
accounted using similarity rules®. The drag coefficient has been computed for different
Mach numbers and Reynolds numbers®. The Magnus coefficients have been estimated
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assuming a two-dimensional flow in the cross-flow plane?. The temperature and density
variations are chosen to correspond to ICAO atmosphere. The physical parameters

of the trajectory shown in Fig. 2, viz range and height have been computed from the
equations )

Range = 1/Xg cos? Yo + Y02 + Zg sin? Yo+ XoZy sin 2y, (15)
Height= X, sin % - Z; cos § (16)
e xo
A
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Figure 2. Geometry of the trajectory.*

A parametric study has been carried out by varying the aerodynamic coefficients
one at a time to study the sensitivity of the results to these coefficients.

3. RESULTS AND DISCUSSION

3.1 Trajectories

Results have been computed for a muzzle velocity of 297 m/s and for angles of
projection of 15, 25 and 30°, and are presented in Figs. 3 to 6. The initial spin rate
is related to the muzzle velocity for a given gun and is accordingly set. The program
takes on an average a CPU time of 3 to 4 s to execute a complete trajectory and write
all the parameters at 1000 intermediate stations. In Fig. 3, the computed trajectories
for the measured as well as, theoretically estimated drag coefficients are presented
and are compared with range-table data for three values of y,. The computed
trajectories for the two drag coefficients are quite close to each other, but they deviate
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Figure 3. Height vs range; muzzle velocity = 297 m/s, p, = 935.39 rad/s.
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Figure 4. Time histories of lateral parameters, muzzle velocity = 297 m/s, y, = 25°

considerably from the range-table plots for y, = 25 and 30°. This differcnce builds up
significantly during the sccond half of the trajectory and increases with increase ol y,
initially. The computed results predict lower values of range and height than those
of range-table results. Percentage deviation in range betwecn the computed and
range-table results are also presented in Fig. 3.
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Figure 4 shows the time histories of the lateral parameters g, w and ¢ for a
complete trajectory. It is observed that angle of yaw and roll angle build up
continuously over the trajectory while the sideslip angle undergoes fluctuations.
Similarly, it was observed in the case of longitudinal variables?, that while pitch angle
builds up continuously (negatively) with time, the angle of attack exhibits fluctuating
variations. It was further noticed that 8 variation with time is almost linear so that 9
can be approximated to zero for simplifying the model. Variation of ¢ with time in
Fig. 4 is also seen to be almost linear implying that variation in spin rate is negligible.
It is observed that the sideslip angle § remains small throughout the trajectory, so
also the longitudinal parameter? a. These results justify the a priori assumption of
small a, 8, g and (p — p;). However, assumption of small y and hence small r seems
to be in doubt from the observed results.

3.2 Effect of Magnus Terms

The influence of Magnus terms on the trajectory are shown in Figs. 5 and 6. In
Fig. 5, variations of angle of attack and sideslip angle with time are presented with
and without Magnus terms taken into consideration. In the absence of Magnus effect
both a and f show variation with large fluctuations. While the angle of attack seems
to settle down to a small steady state value in the later part of the trajectory, the
sideslip angle still retains a large value at the end of the trajectory. The angle of attack
variation with Magnus terms included is less fluctuating as compared to the variation
without Magnus terms. This smoothiening of the variation due to Magnus terms is
even more pronounced in the case of sideslip angle variation. In Fig. 6, the significant
influence of the Magnus terms on the lateral deviation Y,, has been presented. It is
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Figure 5. Effect of Magnus terms, muzzle velocity = 297 m/s, Py = 935.39 rad/s, y, = 25°.
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Figure 6. Effect of Magnus terms on lateral deviation ; muzzle velocity = 297 m/s, p, = 935.39 rad’s,
e = 25%

noticed that while the lateral deviation builds up gradually along the trajectory for

both the cases, the Magnus effect brings down the magnitude of the lateral deviation

considerably, and the value of Y, with the Magnus effect included is very close to the

range-table data for the particular case studied here. This cmphaslscs the nced to

include the Magnus effect terms in the analysis.

3.3 Parametric Study

Figure 7 shows the dependence of range dnd height on the drag coefficient Co-
It is seen that a reduction in drag coefficient results in increase of range and height
and vice versa. At lower drag coefficient, the changes are more than those at higher
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Figure 7. Effect of variation of the drag coefficient; muzzle velocity = 297 m/s, p, = 935.39 rad/s, y, = 25°.
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drag coefficients. The drag coefficient is the most significant parameter in determining
the trajectory; in particular the range mainly depends on it. Variation of C,, showed
only small changes in the trajectory parameters: an increase of 90 per cent resulted
in a 0.7 per cent reduction in rahge and 0.1 per cent reduction in vertex height.
Similarly, variation of the parameters C,,, G, Gpi- Gy, and G, independently did
not show any significant changes in the overall trajectory parameters. However,
variation in these parameters, except C,, (and hence C,,), did show significant ¢hanges
in the variation of angle of attack, sideslip and yaw angle over the trajectory. Typical
variations due to changes in G, ( = — G,5) and G, are depicted in Figs. 8 and 9
respectively. In these figures variations of @, f and y are plotted for half and twice
the base values of C,, and G,. Figure 8 shows that increase in C,, (—G,p) results in
reducing the magnitudes of fluctuations in a and § considerably, owing to an increased
level of static stability in pitch and yaw. Further, for large C,,,, the angle of attack
and sideslip angle seem to settle down to steady state values towards the end of the
trajectory, uniike, for small C,, case. Increase of C,,, also results in a reduction of
yaw angle ¥ over the entire trajectory. From Fig. Y it is seen that the roll damping
G, mainly influences the sideslip angle variation. For lower roll damping the sideslip
and yaw angles tend to diverge towards the end of the trajectory.

4. CONCLUSIONS

The discrepancy between the computed and range-table results can be mainly
attributed to uncertainness in the data arising from variations in gun perfarmance
during repeat firing, limitations of measuring instruments, human errors, etc on one
hand, and uncertainness in the aerodynamic data used in the computation on the
other. Regarding the latter, methods used for estimation of Magnus terms and
application of similarity rules to account for compressibility effects might be the
contributing factors. It is observed from the results that, the perturbation
quantities—angle of attack' a, sideslip angle B, angular velocities 6 and ¥ and also
the change in the spin rate p'—are quite small and this justifies the postulates made
in linearising the equations. However, assumption of small y and r seems to be in
doubt from the observed results and needs a careful consideration. The observation
that variation of 6 with time is almost linear over the entire trajectory suggests that
further simplification of the equations will be possible by neglecting 6 terms and
assuming @ to be constant. This study has brought out clearly the important role
played by the Magnus terms and the need to include them in the analysis.

The parametric study has suggested that amongst the aerodynamic coefficients,
the drag coefficient is the most critical patameter in determining the range and height
of the trajectory and a precise determination of its value is essential for accurate
prediction of the trajectory. Of the other coctlicients, €, (— Gp) und €, e lound
to influence the variations of a, § and y significantly over the trajectory. With a proper
choice of coellicients, the present method con give very neéiite reanlis within 2 4y
and the.expensive and laborious exércise of preparing range-table can be obviated:
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Further, the method can be used-effectively on an on-field microprocessor thereby
improving the success of firing a great deal. A rugged model of such a microprocessor-
will have no serious problems of power supply or stringent requirements of temperature
and humidity for its operation and therefore; it will be feasible to use this on the
battle-field very effectively.
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APPENDIX

EQUATIONS OF MOTION

In a moving axes system the equations of motion for a six-degrees-of-freedom
motion vehicle can be written using the Poisson’s equation as

M+oxM=F, +Fg

and H+wxH= a4+ 4 1)

where M and H are linear and angular momentum vectors respectively, and w the
vector representing the angular velocity of the moving axes with components p, gand r.
F and « represent the forces and moments respectively. Subscripts A and G stand for
acrndfr?amic and gravitational contributions respectively. Equation (1) in scction 2.1
descitbes these acrodynamic torces and moments. The Bravitational moment o4 will
be zero if the centre of gravity of the body is chosen as the origin of the axes system.
In what follows the steps involved in the detivation of the X-component foree equation
will be outlined.



Trajectory of Spin-Stabilised Artillery Projectiles 397

X-Force Equation

X-component of Eqn (1) can be written as

M 4 g Mz - r My = Fax + Fox (2)
The components of the linear momentum in Eqn (2) are given by

My = mVyg = mV[1 - sin? o - sin® g2

My =mVyg =mV sin

Mz =mVzg =mV sin a 3)

where m is the mass of the projectile and V the flight speed.

Following the assumptions of small a and  made in section 2.2, Eqn (3) can be
approximated as '

2 2%
Mx=mV(1— a’+p |
2 )
My = mVﬁ
Mz;=mVa 4)

The angular velocity components in the body axes system can be expressed in
terms of the Euler angles and their time derivatives using the familiar relationships as

p=¢-\sind
q = 0cos ¢ + ysin ¢cos 6

r=1cos 8 cos9 - 6 sin ¢ 5)

For the pseudo-stability axes-system ¢ = 0 (not allowed to roll) and hence Eqn (5)
simplifies to

p=¢- ysin@
q=0
r = \scos 6 )

Qubstituting Eqn (4) and (6) in Eqn (2) and neglecting a® and f* terms we get
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m av _ mV(ad—a + Bﬂ) +mVa—4§ — mV Bcos Od—w
dt dt dt dt dt

= %pVZSCax ~ mg sin (yo+ 6) o

where Cyx is the X-component of the aerodynamic force coefficient. Making use of

the results of Eqn (3) arising from 90° rotational symmetry, Eqn (2) in section 2.2
can be written as

I 2
CaX = Cxo + Cx” ('22‘7) (8)

Assuming the spin rate p to be different from the initial spin rate p, only by a small
amount, one can write

p* = -p§ +2ppo 9)
Substituting for p in the RHS of Eqn (9) from Eqn (6) we get

do . dy
2 _ .2 a9 ay
p* = p°+2p°(dt smGdIJ (10)

Using the results from Eqn (8) and (10), Eqn (7) can be written as

mﬂ-mVag(;Oi—mVﬂ—‘—idg—+mVag§ —mVﬂCOS()gz

dt t t dt dt
1 .2 LY d¢ Cdy
2# S[ (&) con o - 2msno g

~mg sin (% + 6) (11)

Nondimensionalising Eqn (11) using the scheme defined by Eqn (4) results in
Du - uaDa - ufiDP + uaD8 — [ufcos 8 - K, Cx,, Eo sin 8] Dy
- K\Cx,, EoD¢ = Kyu? Cx, - K\Cx,, E} - K sin (yo+ ) 12)
which is Eqn (5) of Section 2.2.

Derivations of Eqns (6)-(10) can be carried out in exactly similar manner as the
one presented for Eqn (5), and have not been included here.



