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Study of Trajectory of Spin-Stabilised Artillery Projectiles
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ABSTRACT

Equations of motion for conventional spin-stabilised artillery
projectile have been derived using a pseudo-stability axes system in
addition to body-fixed and space-fixed axes systems. The aerodynamic
forces and moments have been represented by their respective
coefficients and the effects of Mach number and Reynolds number
have been suitably accounted. The magnus terms which are significant
at high rates of spin are estimated using a simple model. The set of
equations have been partly linearised and solved numerically for a
typical projectile using NAG system routines. Various trajectory
parameters are computed and compared with the range-table data for
the projectile. A parametric study has been carried out varying the
aerodynamic coefficients to understand the sensitivity of the results
obtained.

I. INTRODUCTION

In the history of warfare, the success or failure of a land battle can invariably be

traced to the effective use or otherwise of artillery , and conventional spin-stabilised

projectiles continue to be a major 'weapon' of the artillery world. On the battlefield
of 1990s effective use of artillery would demand first round hit capability; quick

switching of guns from one target to another; and extremely fast reaction to meet the
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requirements of highly mobile battles. These demands can be met by fast acquisition
of the target, accurate computation of the gun data after accounting for all the known
nonstandard conditions, and an equally efficient means of delivering the rounds on
the target. The gun data computation using the tabulated data in the range-tables is
a highly inefficient approach though commonly used by many countries. The process

is manual, time consuming, involves interpolation errors and requires repetitive work

for each firing. With the availability of sophisticated computers it should be possible

to compute the complete gun data more accurately in a shorter time eliminating the

possible human errors, thus achieving more effective neutralisation of the target.

The present work reports a general mathematical model developed to describe

the motion of a spin-stabilised axisymmetric projectile and the resulting equations of

motion which have been numerically solved to yield the complete trajectory of the

projectile. The aerodynamic forces and moments are represented in terms of the

corresponding coefficients and the effects of Reynolds and Mach numbers are suitably
accounted. The Magnus terms which are significant at high rates of spin are

incorporated based on a simple model. The method can give improved accuracy of

predicting the point of fall and can be applied to any projectile of known aerodynamic
characteristics.

2. EQUATIONS OF MOTION

Six-degree equations of motion for the projectile have been written making use
of three systems of coordinates axes (Fig,l), viz space-fixed axes, body fixed axes,

and an intermediate pseudo-stability axes, In the pseudo-stability axes system Y-axis

always lies in the initial X'o Yo plane and is not allowed to roll1, The rigid-body linear
and angular momentum equations for the projectile are written in the space-fixed

coordinate system first, and are th'en transferred to body-fixed coordinate system,

using the Eularian angles---angle of yaw III, angle of pitch () , and angle of roll

4r-representing the orientation of the projectile in space, The effect of rotation of
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body-axes and pseudo-stability axes on the inertial terms are accounted for using

Poisson's formula. The external forces include gravitational force and aerodynamic

forces and moments. The details of the derivation are presented by Wakanka~ (steps

involved are outlined in the Appendix).

2.1 Aerodynamic Forces and Moments

The aerodynamic forces and moments are expressed in coefficient forms as

.-Lxs.ys.zs = ! pV2S 1 C1.m,/l (I)

where, the subscripts X, ¥, Z represent components along and about X, ¥ and Z
axes, and I, rn and n are the rolling, pitching and yawing moment components. C is

the force or moment coefficient, V the projectile speed, p the surrounding air density

and S and I are the reference area and length of the projectile respectively. Any
aerodynamic force or moment coefficient in Eqn ( 1) can be, in general, expressed as :

First order
aerodynamic terms

,Magnus
terms

+ c (~ )2 + C (~ ) (~ ) + C (~ ) (~ )."PP 2V aqp 2V 2V Drp 2V 2V

+ higher order terms
(.'!)

where, p, q and r are the roll. pi(\."h anli ya,,' r;I(I.'~ l)( 1111.' 1)1')jl'..'(ill' (l':\rll'~...illl..' ill
(erms of III , {J and <I> and their time deriv.1(ivl.'s); a anlll>' I\rl.' (!11.' .m~ll:~ l)( 1\((I\\.'k I\nll
side slip, The second and third subscripts represent derivatives with respect to the

corresponding nondimensional variable, and (.) represents time derivative. The secl)nd
order terms retained in Eqn (2) are thc Magnus terms .mll .Ir~ ~ignific.ml fl)r larg~
spin rates. The coefficients Ca are assumed to be independent of the motion variables

and are only functions of flight Mach and Reynolds numbers. For bodies possessing
90° rotational symmetry , the following simplifications can be made for the coefficients :

Cxa = Cx.8 = Cxa = Cx.8 = CXp = CXq = CXr = 0

11Cy" = CIA' = CY.J = C7f1 = CY.i c ('..,i = (i',. a (':, ..(i~
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Clo = Cia = Ci/J = Cia = c,.8 = CIq = C'r = 0

c- = CAD = CmfJ = C..a = C".iJ = C,.a = Cmp = ClIp = C"" = CIIq = 0

Cyp = CZa; CYIi = Cza; CYr = -Cz.,; C",a = -C,.p; c,..a = -CAli; Cmq = C",

Cxap = CxfJp = CX£9. = CXP" = CXqp = CXrp = 0

CyfJp = Czap = CyiJp = Czixp = Cypp = CZpp = Cyrp = CZqp = 0

G=O

Cmap = C"fJp = Cmirp = C"t'Jp = Cmpp = Cllpp = CIIIqp = C",p = 0

Cyap = -Czpp; Cyirp = -CzJip; Cyqp = Cup; Cmpp = Cl\aP; C ,..iJp = C"i9>; Cmrp = -C"'lP

(3)
2.2 Linearisation and Nondimensional Equations

Variables a, p, III , q and r are initially zero and are assumed to be small during

the trajectory so that the equations can be linearised in these variables by ignoring

the higher order terms. Variables V, 8 and p are not small and the nonlinear terms

in V and 8 are retained. fIowever, variation in p over the initiai spin rate Po can be
assumed to be small and linearisation can be carried out in the variable (p-po).

Equations are nondimensionalised using

u -V. t + -t. i. v -d, .--, --
(4)Yo 'f Vo dt+

where Vo is the muzzle velocity and t is the real-time, and they are given below in

the final form :

Vu -uaDa -uPDP + uaD8 -[uP cos 8- Kl Cx", Eo sin 8] VV'

-K1CXW EoD<P = K1U2 CXO -K1CXW EJ -K sin (ro + 8) (5)

]DV'= KlU2CypP + KluaEoCy",. + KV'sin ro+ (6)

u( 1 + ~ CZf)]D6aDu+

(7)
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where
v pSI g/ Polu=-, Kl =-, K=2' Eo =-
Vo 2m Vo 2Vo

D2c/> -sin 6D2V'= K2uC,p (Dc/> -sin 6DV') (8)

D28+ l 2IXS Eo cos 8 --K3C",

Iys 11'
1 D 'I' -K3uC",1i Da

-K3UCMf DO -KJEoCM.40 DfJ = 2K3U2Cma a + 2K3Uf3EOCmjt. (9)

cos (} D2 VI -

-K3u cos 8 CAI' DIll -K~oCA", Da = 2K3U2 J3CAp + 2K3UaEOCA", (10)

where

-~. -~-~K2 -.K3 --

4IxB 4IyB 4IzB

9 is the acceleration due to gravity. m the mass of the projectile and 1 its moment of

inertia.

The kinematic equations relating the velocity components along Xo yo~ to the

motion variables are given in the nondimensional form by

(11)DXo = u1(cos 8 + a sin 8)

DYo= uJ(ytcos 8+fJ) (12)

(13)DZo = ul(-sin 8 + a cos 8)

The initial conditions for Eqns (5) to (13) are,

t+ = 0; u = I;at 4I=Po

a = /3 = 8 = I/> = 'I' = iJ = lit = 0; and Xo = yo = Zo = 0 (14)

2.3 Solution

The set of Eqns (5) to (13) has been numerically solved on DEC-I0 computer
at lIT, Kanpur using Gear's variable-order-variable-step. routine3 for a typical
projectile for which aerodynamic data was partly available. All the first order
aerodynamic coefficients except drag coefficient have been computed as per USAF
Stability and Control Datcom method4 and the compressibility effects have been
accounted using similarity rules5. The drag coefficient has been computed for different

Mach numbers and Reynolds numbers6. The Magnus coefficients have been estimated

11
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assuming a two-dimeiJsional flow in the cross-flow plane2. The temperature and density

variations are chosen to correspond to ICAO atmosphere. The physical parameters
of the trajectory shown in Fig. 2, viz range and height have been computed from the

equations

(15)

~

Height = Xo sin ro -Zo cas JfJ
(16)

/ Xo

Zo

0

[

0[

AB
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Figure k Geometry of the trajectory. .

A parametric study has been carried out by varying the aerodynamic coefficients

one at a time to study the sensitivity of the results to these coefficients.

3. RESUL TS AND DISCUSSION

3.1 Trajectories

Resnlts have been computed for a muzzle velocity of 297 m/s and for angles of
projection of 15, 25 and 30°, and are presented in Figs. 3 to 6. The initial spin rate
is related to the muzzle velocity for a given gun and is accordingly set. The program

takes on an average a CPU time of 3 to 4 s to execute a complete trajectory and write
all the parameters at 1000 intermediate stations. In Fig. 3, the computed trajectories

for the measured a:; well as, theoretically estimated drag coefficients ~re presented
and are compared with range-table data for three values of yo. The computed

trajectories for the two drag coefficients are quite close to each other, but they deviate
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Figure 3. Height vs range; muzzle velocity; 297 m/s, Po; 935.~9 rad/s.
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Figure 4. Time histories or lateral parameters, muzzle velocity = 297 m/s, )'0 = 25°.

consideruhly from the range-tahle riots for }'II = 25 and JO°. ThiN difference hllihls Ilr

!iigl\ificanlly uurillg IIi\: !i\:COIIU Ilalf of 111\: Iraj\:cl(lry all(1 il\l:fl:a~l:~ willl iIICfl:a~\: (If )'I)

initially. The computed results predict lower values of range and height than those

of range-table results. Percentage deviation in range between the computed and

range-table results are also presented in Fi,g. 3.
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Figure 4 shows the time histories of the lateral parameters P, 1/1 and <P for a

complete trajectory. It is observed that angle of yaw and roll angle build up

continuously over the trajectory while the sideslip angle undergoes fluctuations.
Similarly, it was observed in the case of longitudinal variables2, that while pitch angle

builds up continuously (negatively) with time, the angle of attack exhibits fluctuating

variations. It was further noticed that () variation with time is almost linear so that 8
can be approximated to zero for simplifying the model. Variation of <P with time in

Fig. 4 is also seen to be almost linear implying that variation in spi:n rate is negligible.

It is observed that the sideslip angle P remains small throughout the trajectory, so
also the longitudinal parameter2 a. These results justify the a priori assumption of
small a, P, q and (p -Po). However, assumption of small 1/1 and hence small r seems
to be in doubt from the observed results.

3.2 Effect of Magnus Terms

The influence of Magnus terms on the trajectory are shown in Figs. 5 and 6. In

Fig. 5, variations of angle of attack and sideslip angle with time are presented with
and without Magnus terms taken into consideration. In the absence of Magnus effect

both a and p show variation with large fluctuations. While the angle of attack seems
to settle down to a small steady state value in the later part of the trajectory, the

sideslip angle still retains a large value at the end of the trajectory. The angle of attack
variation with Magnus terms included is less fluctuating as compared to the variation
without Magnus terms. This smootliening of the variation due to Magnus terms is
even more pronounced in the case of sideslip angle variation. In Fig. 6, the significant
influence of the Magnus terms on the lateral deviation y 0' has been presented. It is
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Figure 6. Effect of Magnus tenus on lateral deviation; muzzle velocity = 297 m/s, p. = 935.39 radls,
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noticed that while the lateral deviation builds up gradually along the trajectory for

both the cases, the Magnus effect brings down the magnitude of the lateral deviation
considerably, and the value of Yo with the Magnus effect included is. very close to the
range-table data for the particular case studied here. This empha!iises the need to

include the Magnus effect terms in the analysis.

3.3 Parametric Study

Figure 7 shows the dependence of range and height on the drag coefficient CxO"

It is seen that a reduction in drag coefficient results in increase of range and height

and vice versa. At lower drag coefficient, the changes are more than those at higher
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Figure 7. Effect of variation of the drag coefficient; muzzle velocity = 297ulis,Po = 935.39 rlld/s, )'0 = l5°,
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drag coefficients. The drag coefficient is the most significant parameter in determining
the trajectory; in .particular the range mainly depends on it. Variation of Cza ~howed

only small changes In the trajectory parameters: an increase of 90 per cent resulted
in a 0.7 per cent reduction in ra~ge and 0.1 per cent reduction in vertex height.

Similarly, variation of the parameters Cza, Cma' Cma' ~P' and Cmq independently did

not show any significant changes in the overall trajectory parameters. However ,

variation in these parameters, except Cmq (and hence Cur), did show significant changes

in the variation of angle of attack, sideslip and yaw angie over the trajectory. Typical
variations due to changes in Cma ( = -Cup) and ~p are depicted in Figs. 8 and 9

respectively. In these figures variations of a, p and IJI are plotted for half and twice

the base values of Cma and ~p. Figure 8 shows that increase in Cma ( -Cup) results in

reducing the magnitudes of fluctuations in a and p considerably, owing to an increased
level of static s~ability in pitch and yaw. Further, for large Cma' the angle of attack
and sideslip angle se'em to settle down to steady state values towards 1he end of the
trajectory, unlike, for small Cma case. Increase of Cma also res~lts in a reduction of

yaw angle IJI over the entire trajectory. From Fig. ~ it is seen that the roll damping

Gp mainly influences the sideslip angle variation. For lower roll damping the sideslip
and yaw angles tend to diverge towards the end of the trajectory.

4. CONCLUSIONS

The discrepancy between the computed and range-table results can be mainly
attributed to uncertainness in the data arising from variatio":s in gun performance

during repeat firing, limitations of measuring instruments, human errors, etc on one

hand, and uncertainness in the aerodynamic data used in the computation on the
other. Regarding the latter, methods used for estimation of Magnus terms and

application of similarity rules to account for compressibility effects might be the

contributing factors. It is observed from the results that, !he perturbation
quantities--angle of attack a, sideslip angle p, angular velocities O and !i/ and also

the change in the spin rate p'-are quite small and this justifies the postulates made
in linearisi~g the equations. However, assumption of small 1{1 and r seems, to be in
doubt from the observed results and needs a careful consideration. The observation
that variation of O with time is almost linear over the entire trajectory ~uggests that
further simplification of the equations will be possible by neglecting O terms and

assuming iJ to be constant. This study has brought out clearly the important role

played by the Magnus terms and the need to include them in the al1alysis.

The parametric study has suggested that amongst the aerodynamic coeffici~nts,
the drag coefficient is the ~ost critical parameter in determining the range and height
of the tr;ljectory ;1n(! ;1 precise determination of its v;1!lle is esscnti;1! fc)r ;1ccllrnte
prl:Jiction of the trajt?ctory. Of the other C.;Ol:ttlc.;tl:lll:;, L;"U ( ---L;,p) illIJ (ip ill c ItlllllJ
to influence the variations of a, p and 1{1 significantly over the trajectory. With a proper

dIlliL:c of l:ocffll:lclll~, !llc IIICNCIllIlIt'III(HI L:IIII givc Vl'ly 11\'I;tllilll' Ic tlll:i willlill ] I N

and the.~xpensive and laborious exercise of preparing range-table can be obviated'.
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Further, the method can be used effectively on an on-field microprocessor thereby

improving the success of firing a great deal. A rugged model of such a microprocessor-
will have no serious problems of power supply or stringent requirements of temperature
and humidity for its operation and therefore, it will be feasible to use this on the

battle-field very effectively.
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APPENDIX

EQUAnONS OF MOTION

In a moving axes system the equations of motion for a six-degrees-of-freedom

motion vehiale can be written using the Poisson's equation as

M+ mxM=FA +Fa

and 1J+~X!!=~+::'a (I)

where ¥ and 12 are linear and angular momentum vectors respectively, and ~ the

vector representing the angular velocity of the moving axes with components p, q and r.

F and.;( represent the forces and moments respectively. Subscripts A and G stand for
-.-

ilerodynamic and ~ravitational contrihlltions respectively, 1~(III.lti()11 ( I) in Nct1i()n 2,1
llc::;~JI1>t::; lllt:~t: at:ruJyntilIli~ turl:t:~ tinJ IIIU111t:lIlli" '1'1lc glilVJlilllullillllluJIIC:JII ~"<; will

be zero if the centre of gravity of the body is chosen as the origin of the axes system.

'.1 wllut lilJIJlw!j tJI~ Ntt:'IN illv(IJvt:d ill tll~ dc.:rivuti(111 (If tJIC.: .~-l"\IIIIJI\IIICllt 1111\'l"l"ytl;lli\111

will be outlined.



1Q7Trajectory of Spin-Stabilised Artillery Projectiles

X-FOFCe Equation

X-component of Eqn (I) can be.written as

(2)

The components of the linear momentum in Eqn (2) are given by

Mx = mVXB = mV[l -sin2 a- sin2 p11/2

My = mVyB = mV sin p

(3)Mz = mVZB = mV sin a

where m is the mass of the projectile and V the flight speed.

Following the assumptions of small a and p made in section 2.2, Eqn (3) can be
approximated as .

Mx =mV(l-~

My = mVf3

Mz = mVa (4)

The angular velocity components in the body axes system can be expressed in

terms of the Euler angles and their time derivatives using the familiar relationships as

p = ~ -IjI sin 8

q = iJ cas 4> + lit sin 4> cas (}

(5)r = Ijtcos () cos 41 -iJ sin <P

For the pseudo-stability axes-system <I> = O (not allowed to roll) and hence Eqn (5)

simplifies'to

p = ~ -IjIsin (J

q=iJ

(6)
r = IjIcos 8

gubstituting Eqn (4) and (6) in Eqn (2) and neglccting ai alld fJi terms we get
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1 .
= 2 pV2SC..x -mg sin ( rO + 0) (7)

where CaX is the X-component of the aerodynamic force coefficient. Making use of

the results of Eqn (3) arising from 90° rotational symmetry, Eqn (2) in section 2.2

can be written as

CaX = CXo + CXpp (-I!v J (8)

Assuming the spin rate p to be different from the initial spin rate Po only by a small
amount, one can write

2 2 2p ~ -Po + PPo (9)

Substituting for p in the RHS of Eqn (9) from Eqn (6) we get .

dl/l .dljf
--sm8-

dl dl

p2 = -p~ + 2po

(10)

Using the results from Eqn (8) and (10), Eqn (7) can be written as

.d'l' 2}-2po SIn 0- -Po

dl

E!.P..

dl

-mg sin (Jb + 6)
(11)

Nondimensionalising Eqn (11) using the scheme defined by Eqn (4) results in

Du- uaDa -u{3D/3 + uaD9 -[u/3 cas 9- K) Cx Eo sin 9] DIll
pp

-K1CX", EoDI/> = K1u2 CXO -K1CX"" EJ -K sin (ro + 0) (12)

which is Eqn (5) of Section 2.2.

Derivations of Eqns (6)-(10) can be carried out in exactly similar manner as the
one presented for Eqn (5), and have no1 been inclu?ed here.


