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ABSTRACT

In this paper, the problem of a semi-infinite accreting medium
moVing with a constant velocity is studied. The heat generation in the
medium begins at a constant rate and continues indefinitely. Using the
modified heat conduction theory , temperature distribution was
determined and the associated thermoelastic problem was solved with
Laplace transform technique. The results are evaluated numerically
and presented graphically.

I. INTRODUCTION

Development of nuclear sources of energy and the attainment of rocket powered
high s~ed flight has been among the most important technological advances of the
last four decades. Thermal stresses arise in many familiar areas, and has been a subject
of interest. Severe stresses may be developed in a structure subjected to non-uniform
changes in temperature. Aircraft structural designers usually deal with thermal stress
problems associated with elevated tem~ratures in airplane, missile structures, jet
engines and nuclear reactors. A knowledge of thermal stresses is of great technological
importance in the safe and economical design of aircraft structures.

Thermal stresses arising in many fields play an important role in the determination
of material life. Transient thermoelastic problems involve the solution of the Fourier
heat conduction equation which predicts infinite heat propagation velocities in solids,
which is physically inadmissible. To remove this paradox many investigators like
Chester, Bolef, Morse and Feshbach3, Tisza4 worked for the modification of the
governing heat conduction equation. Here modified heat conduction equation
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suggested by Morse and Feshbach3, has been taken up to solve a thermoelastic problem
of an accreting semi-infinite medium. We know that earth was formed by the accretion
of dust cloud hypothesis5,6. Here a homogeneous semi-infinite medium moving with
constant velocity v, in positive x-direction has been considered. Material is supplied
to the surface x= O of the medium at constant temperature T o with constant rate.
Initially, the generation of heat begins throughout the medium at the rate A cal/cm3 s.
As the time passes, the surface x=O continues to be held at the constant temperature
T o and the uniform distribution of heat sources is contained by the material accreting
at x=o.

As the spherical case presents some mathematical difficulties, a simple
mathematical model was considered with the hope that the mathematical solution
given here may be of interest to and aid others having related problems involving
more physical conditions.

2. FORMULATION AND SOLUTION OF THE PROBLEM

The governing modified heat conduction equation for the above described
problem for the one dimensional case is

1 82T

Ci~+

1 aT a2T
,--=-

h at aX2 (I)

where h, p".(::" and C are the thermal diffusivity, density , specific heat at constant
deformation and the velocity of heat propagation considered to be finite here, and
are taken to be constants along with vand A.

The initial and boundary conditions are given by

(2)at $ t = 0, x > °

T(x, t) = To at x = 0, t>o

which means that the time rate of temperature is initially zero and is necessary to
solve hyperbolic equation and the regularity boundary condition which says that the
temperature must be finite at large distance is .given by
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which was derived by taking the inverse of ~ (z,p) in Eqn. (11) as z- 00 and using
Eqn. (4) where
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Introducing the following non-dimensional variables for distance, time and

temperature respectivelyas

cz = -x. T =2h ,
cz T- To

To
2-ht; and 8 =

(4)

into Eqns. (I) to (3), we get
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with

8(0, 'T) 0
(6)

and

B
8(z, 'I") ~ 4(2'1" + exp (-2'1")- 1) as z~ 00

(7)

Applying Laplace transform to Eqns. (5) to (7), we get

d28
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C dz

B

p
-(p2 + 2p)lf (8)

with

8(0, p) 0 {9)

8(z, p) ~ Bp-2(p + 2)-1 as Z ~ 00

where e (z, p) is the Laplace transform of the temperature (J (z, T) and p is transform

parameter.

Using Eqns. (8) to (10), we get the solution for temperature in transform domain as

8(z, p) = -B [exp (m2Z) -I]p-2(p + 2)-1

where (II)

hv
C :J: [(p + 1)2ml,2 g2]1/2

and

(~)2g2 1

Inverting7, we get the expression for non-dimensional temperature as

z)dw
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where

IFl(Z. T) = 4 [exp (-2T) + 2T --i];

F2(Z, 'I") = zg exp (-'1")!.I[g('1"2 -Z2)1/2]

('1"2- Z2)112

where II (W) is the modified Bessel's function of first order and first kind and" (w)

is unit step function.

3. FORMULATION AND SOLUTION OF ASSOCIATED
THERMOELASTIC PROBLEM

The governing equation, the initial and boundary conditions for the detennination
of only non-vanishing thermal stress (1xx are given by

a2T= mat2...,2~-l;1 OX2
a2axx

8(2

where q = ().+2p.)/p is the longitudinal velocity of elastic wave and). andp. are Lam~'s
constants and m = ( 3). + 2p.)a. a is the coefficient of linear thermal expansion. The

initial and boundary conditions are taken as

The regularity boundary condition is

axX<x, I) ~ -t[ exp ~ ) + f:!
h h

asx-<x>

Using Eqn. (4), Eqns. (13) to (15) are transformed to

a20'
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with

and

where

1 2 C2
-a xx, a = 2
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Applying Laplace transfom1 to Eqn. (16) and using Eqns. (13) to (15) the solution
for stress in transfom1ed domain is given as

'O'(z, p) = B[[p-2 (exp ( -opZ) -I]

+ 02 [exp ( -opZ) -exp (m2Z)][(m~ -a2p2)-I](p + 2)-1

Using complex inversion theorem of Laplace transform, we get the
non-dimensional stress as

B J ~ 1
a(z, 'I') = 2 o (I -exp ( -2w» rl<w -.az) dw -4 exp ( -2('1' -az»

+ a2 [ !:J1Jl + ~ + ~
FiO) Fl(Wl) Fl(W2)

where

~ (1 :1:: !!!!!!.)til-l C
Wl,2-=

are the poles of the integrand taken for the inverse Laplace transform by complex
integration, and

F(f) = exp ( -azF.) -exp (m2f)

2h~ [ (f :t 1)(2f + 3) -g2

C «f + If -g2)J/2

F2(f) = 6(1 -a2)f + 4(1 -a2)

-.?:!!!!- [ 2(f + 1)3 =g2(5~:t 6)

C «f + 1)2 -g2)3/2

and f. is a complex number whose real part is p.

Here as a particular case where a medium has been considered for which

~ = 1, then m2 = -p and the expressions for temperature and stress are given by
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and

(26)

The above results for temperature and stress are evaluated numerically.

4. CONCLUSION

The expressions for non-dimensional temperature distribution and stress
distribution Eqn. (12) and (20) -espectively were obtained and were evaluated
numerically by considering a medium for which hvIC=I, for various values of z and
..In Fig. 1, the variation of temperature «(JIB) with distance (z) is given for. = 1,
2 and 3. From Fig. 1, it can be noticed that as time goes on, the temperature goes
on increasing. This is true because the generation of heat begins throughout the

Figure I. Variation of temperature with distance.
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Figure 2. Variation or temperature with time.
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Figure 3. Variation or thennal stress with distance.

semi-infinite medium at a constant rate, and this heat generation continues. In
Fig. 2 the variation of the temperature ({}IB) with noli-dimensional time, at positions
z = 1,2 and 3 is given. The variation of thermal stress (O'IB) with distance and time are

given in Figs. 3 and 4 respectively. It is noticed that the stresses are compressive in
nature which agrees with the physical nature of the problem.
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Figure 4. Variation or thermal stress with time.
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