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Hall Effect in the Viscous Incompressible Flow Through a
Rotating Channel Between Two Porous Walls
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ABSTRACT

Exact solutions for the velocity and induced magnetic field
distributions, accounting for Hal1 currents have be",l obtained for the
flow of a conducting liquid, maintained between two paral1el
non-conducting porous wal1s under the action of a constant pressure
gradient and in the presence of a uniform magnetic field transversely
applied to the flow. Further, the channel is rotated w..h constant "t1gular
velocity about an axis perpendicular to ~e wal1s. For the purpose of
mathematical simp!icity, the magneticPrandtl number is assumed to
be negligible. An expression for the boundary layer thickness
dependent on Taylor, Hartmann, suction Rcynolds numbers and Hal1
parameter has been obtained.

I. INTRODUCTION

It has been shown by Vidyanidhi and Nigaml that secondary motion is set up
when a straight channel formed by two parallel walls through which liquid is flowing
under a constant pressure gradient, is rotated about an, axis, perpendicular to the
walls with an angular velocity .Q' .They have shown that when .Q' -00 such that the

pressure gradient remains finite, there exists in the vicinity of the walls a boundary

layer, the thickness of which is of the order ({;'1/V)-I12. '\lidyanidhi2 studied the effect
of a uniform magnetic field Ho applied transverse to the flow, on the above problem
who has shown in that the thickness of the boundary layer is of the order :
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Vidyanidhi et al.3 studied the application of uniform suction at one wall and an
equal rate of injection at the other wall on the flow investigated by Vidyanidhl and
Nigaml. It has been shown that for a given u~ (u~ < or > O according as suction or
injection), the thickness of the boundary layer near the suction wall is of the order

(u;12v +V.Q'/V)-I, while its thickness near the injection wall is of the order (-u:l2v +
V.Q'/V)-I. This problem has been extended in the frame-work of hydromagnetics for
a weakly conducting liquid by Bala Prasad and Ramana Rao: who neglected Hall
currents. It has been shown that the boundary layer near the suction wall is of the order :

,
( ~+

2v

JQI 2 2 ) -

-+~

~ 2pv (2)

while near the injection wall is of the order

( I JUI 2H 2 ) -1 -!!2 + -+ ~

2v 'I 2p'l (3)

In this paper the boundary layer thickness near the walls has been estimated for

any conducting liquid taking Hall currents also into account. The analysis is however ,
subject to the limitation that the magnetic Prandtl number is negligible.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The equ-ations of motion and continuity for the steady state in a rotating frame
of reference 0' , x' , y', z' as given by SquireS for an incompressible liquid are

(4)
-+ -+ -+ -+ -+ -+ -+

p(U"p")II' -2p(u'x.Q') = -P"1T + PVp',2U' + P.e(P"XH')xH',

-+
p",u' =0 (5)

where 11' = p' -l/~p I Q, X r' f, U', Q' and r' are the modified pressure, velocity,-

angular velocity and position vector of the liquid particle, respectively. Also p, v. .Ut"
(1 and H' respectively stand for the density, kinematic viscosity, permeability, electrical
conductivity of the liquid and the magnetic field vector .

In the steady state, Maxwell's equations are

(6)17'.H' = O

17' x E' = 0'

17' x H' = J'

...
17' E' = Pel€

(7)

(8)

(9)

where p p is the charge density and e is a constant
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Here the generalised Ohm's law in which ion-slip and pressure diffusion are
neglected ( Sutton and Sherman6 ) is taken as

I' = u[E' -1- lI-eU' x H' -.8el1-e(/' x H')]
(10)

where Pe = l/ne e; 0" = ne e2 'r/me ; e, ne, 'r, me being the charge of an electron,

number of electrons per unit volume, the mean time between successive collisions of
an electron with ions and mass of an electron, respectively.

Choose a right-handed Cartesian system such that z'-axis is perpendicular to the

motion of the liquid under the action of a constant pressure gradient ( -b7t' /bx') in
the direction of x' -axis between two parallel porous walls z' = :!:L (stationary relative

to 0!, x', y', z').

Assuming that it is independent of y' and z' ; 7t is given by

I PI
) I

(y x' -PI (II)

where p~ and p'z stand for the pressure on the planes x' = 0 and x' = D, respectively.

Suppose that the nom1al velocity at the wall z' = -L is Uo ( Uo > 0) so that this

represents a porous waW, through which liquid is forced into the channel with a
uniform velocity. It is further assumed that this rate of injection at the lower wall is
equal to the suction rate at the upper wall. The liquid velocity is then represented by

.. , - [ , ( ') , ( ') ,
1" -"x' z , "JI' z , "0

Assuming further ,

-.

H' [h:,(z'), h;,(z'), Ho]

-+
J' = li~,(z'), j;,(z'), 0] ( 14)

...
E' = [E~, = ~ , E;, c~. E;,(z')]

and expanding the generalized Ohm's law given byEqn. (10) into its three components,
we get

I
j~1 = a(E~, + ILeU;'Ho -P.e,Bej;,Ho -ILeU6hy' )

I
j;1 = a(E;, -ILeU~'Ho -1- IL",Bej~,Ho + ILeUoh.,,)

O = a[E;, + ILeU~,h;, -ILeUt,h.~, -,BeILe(j~,h~,

(16)

(17)

(18).;;,h;,)]

solving the first two for j:, and j;-, it is found that

ILeu6(wOTh~, -1- h;,,)]
.,

, ,
x

a [E~, + ILeU;'Ho -woT(E;., -ILeU~'Ho) ..
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.,

Jy' a [Eyl -P.eu~,Ho + woT(E~1 + P.eu~/Ho)

+ P.euo(h~1 -woTh~,)]

where

~

me

0'- a- 1 + ro~'T2 , roo =

(22)

(23)

(24)

Eqn. (18) determines E'z'.

Further assuming,

-+-
Q' = (0, 0, .Q'),

Wo1' = m(Hall parameter),

ci = c~ = 0,

and in terms of the following non-dimensional variables,
...

--., -+ ..., uQ , .QQ Q2 ..., ...
.= rL u ~ , .Q = -, 7T = -,H = HoH, PL2 pL2

pL

p (suction Reynolds number) = u~ Uv

M (Hartmann number) = lie Ho L (a/pv)l/2

~ (magnetic Reynolds number) = lieaQ ! p

a (Taylor number) = L vQ1;
p = -UQ.Q'.O7t'!ox'

(25)magnetic Prandtl number, P,II = fLe(Jv

masss flux, Q = (Q~I -1- Q;')J/2

f L J L I -I , I -I ,

Q.., -PUX' dz , QY' -PUyl dz

-LL

Eqn. (4) gives

.B~

"";1:"2 dz

.B!!!!L

-;2 dz

Further from Eqns. (8) and (10), we get

dhy ) d2hx

m~+"di"2

duy

-;[i
=0

.8P,"
I +m2

~+m~ ) +~+

dz dz d~2

duxRm
~+m dz
dz

=0
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In terms of complex notation as given by Cramer and Pais,

q = Ux + iuy; 11 = I1x + ihy;

R; (complex magnetic Reynolds number)

(32)

If the walls are non-conducting, we have

h = O at z = :1::. 1

Also, the .;ondition of no-s.lip at the walls gives

(36)q = O at z = :1:

3. SOLUTION OF THE EQUATIONS

Assuming that Pm « I, the solution of Eqns. (33) and (34) subject to the
boundary conditions in Eqns. (35) and (36)

Ux = -CI e~zl2 sinh 8z sin Cpz + C2 e~zl2 cash 8z cos Cpz

, .,82
)82 -c/I2 --4-+ .i -

{(82- ~ -.~)i+ 4;~ (C3- mC4) (82 -."'2- ~)

+ 2(C4 + mC3)8«p + 2Po
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(44)

(45)
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and

,82

~

M2 M2m 102- ",2 = l"+"m2 + T' 0", = «2 + 2(1 + m2)' PO = 2«2p (42)

and C1' ~, C3' and C4, are constants of integration to be determined by solving the

fo~owing system of linear equations for a given p :

~

sin 4> -C2 cosh 8 ~osh ( .8 2Cl sinh 8 cash ( ~ ) , ) cas <.6

.

~

~

(82-.f.1-~)
~[(82-.f.1- 4 +2m8<P)C3

~

-{m(82 -4>2- ~) -28c/>}C4

(43)

/1 )2 sin 4>f) cos I/> + C2 sinh 8 coshCI cosh 8 cosh

m(82-1/>2-Pl

( 82 -1/12 -.~2. )
+ ~2 -)2 [(82-1/12-4 +4821/12

+ {(82 -1/12- P;-) + 2m81/I}C4
4Pofl4>-

-(82- cjl2- Pi)2 + 482cj12

~

[ -{m(/1 -i-v + (g1 -g-V} cosh (f )

-{m(/1 +i-v+ (g1 + g-V} sinh(f)]

Cl

f)

+ 2C4

+ 4m82."2} = -4PO{82 -."2 -~ + 2m8."

-( 82- «!>2- ~)2 + 482«!>2

+ {(/I + I-.) -m(gl + gC".)} sinh ( f ) ]
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(46)

where

~. ) sinh 8 cas ~ + ~( 82 + ~2 + ~ ) cash 8 sin t/>

cosh 8 cos ~ -8p{J sinh 8"sin ~

/I = 8(82 + 4f>2 -

.B( fP' +---82+4f>2

2 4

I-i = -8(82 + 4f>2- .:--

..B( fP +-- --82+4f>2

2 4

~cosh 8 cos ~ -8~.B sinh 8 sin ~

gl = 8( 82 + cf»2 -

~.) cosh 8 sin ~ + ~(82 + ~2 + ~) sinh 8 cos 0/>

putting m = O and p = O in Eqns. (37) to (47) we recover the solution arrived by

Vidyanidhi2.
When a ~ 00 such that PJa2 is finite, for O < z < I, it is obtained

Ux ~ ~ {e(I+P/2)(Z-I) sin 1/>(1 -z)} (48)
~

PoUy ~ 2 {~I+P/2)(z -1) COS I{>(I -z) -1} (49)
a

+ f( ~ -82 + ~ ) sinh 8 sin I/> + 81/>.8 cosh 8 cos I/>

g-J = -8( 82 --1- 1/>2- ..
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similar expressions can be written for O ~ z ~ -I

4. DISCUSSION AND CONCLUSIONS

If the Suction Reynolds number p is replaced by its negative value and z by -z,
the expression for both the primary and secondary velocity distributions as given by
Eqns. (37) and (38) respectively do not change, while bx and hy as given by Eqns.
(39) and (40) respectively change in sign. This symmetry in Uxand ~ ; bx and hy can
also be seen from Eqns. (28). to (31) which remain invariant under the transformation
z-+ -z, P-+ -p, Ux -+ -ux, ~ -+ -~ ' hx -+'-bx and hy -+ -hy, for any p m. This shows
that when there is uniform injection at the lower wall, the primary and secondary
flow distributions in the lower half are the same as in the upper half for the case of
uniform suctiO;n at the upper wall and vice-versa. Similarly, when there is uniform
injection at the lower wall, bx and hy in the lower half and these in the upper half for
the case of uniform suction at the upper wall are also the same but of opposite sign
and vice-versa. It is, therefore, concluded for any p m that Ux, ~, bx and by deviate
more and more from the solutions obtained by Vidyanidhi2 when p= 0.

When the side walls are made of conducting material and short-circuited by an
external conductor, the induced electric current flows out of the channel. In this case
no electric potential exists between side walls. If we assume the zero electric field
also in z' -direction, we have

E~, = 0, E~I 0 (50)

These conditions are realised, for instance, for the flow between two concentric
cylinders under the radial magnetic field with the pressure gradient parallel to the
axis of cylinder .

Calculations reveal that as the Hall parameter m increases, the primary velocity
U;.: changes from the characteristic Hartmann profile (~quare shape) to the typical
Poiseuille profile. Also the cross flow given by Uy which is non-existent when m = 0
and a = 0, increases to a maximum value and then returns to zero as m increases in

value.

By defining the viscous drags in x-direction at the lower and upper walls as dujdz
I z= -1 and- dujdz I z = 1 (~spectively, then each can be obtained from the other

on replacing p by -p. This also holds true for the drags in the y-direction at the walls.
For such a~replacement of p, the magnetic drags at these walls in the x-direction are
just the opposite and similarly in the y-direction. These results have been concluded
from Eqns (28) to (31) and therefore, hold true for any p m.

It is noted from Eqns. (48) and (49) that the amplitudes of ~ and Uy are positive
and the functions sin <I> (l-z) and cos <I> (l-z) can take positive or negative values.
For a-+ 00 , such that Pola2 is finite, the disturbance is confined to regions of the order

U (8 + p/2) in the vicinity of the suction wall and U(8 -p/2) in the vicinity of the

injection wall, the thicknesses of the boundary layers being of the order
( u' r/2v + 8)-1 and ( -u' r/2v + 8)-1 respectively,
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where

The thickness of the boundary layers near the suction and injection walls which
are respectively given by

( , JD' ..2U~~ \') -1 !!2.+ ~+~

2v y 2Pv

J .Q' 2 U2a ) -I -+~

V 2Pv

,

-~+
2v

and

as in the study of Bala Prasad and Rarnana Rao 4 are now modified as :

{ f J~ + ~+;;~2U2 , -I
!!2. + -+ p.r~oa ~ and
2v v 2Pv(I + W~Tl) + 8v2

{ 1l'o j Q' p.~H~CJ 1l02} -1

-~ + -;- + 2Pv(I + w~2) + 8V2

From Eqn. (52) it is concluded that as the Hall parameter Q)OT increases, the boundary
layer thickness increases.

For large M, the boundary layer thicknesses at suction and injection wall are

given by

..f. J 2H2 }~1 -+ IJ.~ 00

-"j:; pv( 1 + W~T2)

-'I

and

respectively, while for large p, they are respectively given by

(Ej)-
-.!!!2

) -1

v'

and

It is concluded that the magnetic field and suction cause thinning, while injection and
Hall parameter cause thickening of the boundary layer .
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