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ABSTRACT

The unsteady flow of two viscous, incompressible and immiscible
fluids in a long parallel channel of which the upper one is impervious
and lower one is porous of infinite thickness is considered by taking a
pressure gradient of the form Pe®, where Pand care constants. Beavers
and Joseph’s dip condition at the permeable interface and the
generalised Darcy’s law in the porous region have been used. The
analysis reveals that the flow depends upon the Reynolds numbers for
the upper and lower fluids, slip parameter and the porous parameter.
The effect of dip parameter a and the porous parameter & on the flow
are sudied in detail.

1. INTRODUCTION

The analysis of fluid flows of immiscible liquids has been a popular area of
research since several years. Russell and Charles’ have examined the effect of a less
viscous liquid such as water on the laminar flow of a high viscous liquid. They have
shown that the pressure gradient required for the flow of the high viscous liquid can
be reduced if water isinjected into the channel. Considering the flow of atighter fluid
with less viscosity over a heavier fluid with high viscosity in a parald plate channel,
Bird et al.?2 have shown that the fluid having less viscosity flows more rapidly than
that with high viscosity. Kapur and Shukla® have extended the analysis of the flow of
two immiscible liquids discussed by Bird et al.2 to the case of timedependent pressure
gradient. They have noticed that as the Reynolds numbers for the two flows increase
the interface velocity, the flux and skin friction at the plates decrease. In a recent
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paper Sai and Agarwal* have investigated the flow of two immiscible fluids with
different densities and viscosities under constant pressure gradient in a paralel plate
channel bounded by a rigid wall a the top and a permeable bed of infinite thickness
a the bottom. Using Darcy's law for the flow in the permeable medium and Beavers
and Joseph'’s dip condition® at the permedble interface it has been shown that the
fluid velocity and mass flux increase with permeability of the bed.

The objective of the present paper is to discuss the effect of time dependent
pressure gradient on the rectilinear flow of a two-layer Newtonian fluid in a channel
with an impermeable upper wall y = h and a permeable lower wall y = = A; the fluid
interfaceisa y = 0. The flow in the'porous mediumy < = b it-taken to be spatialy
uniform. It is assumed that the fluids are viscous, incompressible and immiscible and
the flow in the three zones is in the x-direction and is driven by a common time
dependent pressure gradient, say, Pe® where ¢ isaquantity with dimension ¢! and
the porous medium is assumed to be homogeneous and isotropic so that its permeability
is constant. The positive vaue for ¢ is taken for a mathematical convenience. However,
such a pogtive congant could model a non-autonomous system in which, time
increasing pressure gradient can be maintained by a source. The two layer flow
problems are of wide industria importance, and examples of their application include
in-tube condensers, (for example, air cooled condensers in process plants), petroleum
industry, certain types of waste-heat boilers, in the area of ground water technology
and many others.

2. FORMULATION AND SOLUTION OF THE PROBLEM

Congder the fully developed laminar flow of two viscous, incompressible,
immiscible fluids between two pardle plates subject to a pressure gradient of the
form Pe®*where P and care constants and ¢ is the time. The lower plate of the channel
is permeable and is of infinite thickness while the upper plate is rigid.. Choosing the
origin midway between the plates, taking y-axis perpendicular to the plates, and x-axis
in the direction of the flow, the equations governing the flow can be written as

P _ oS 1 dp

oy Booat ox D
where y; (y, t) is the velodity, 4, the coefficient of viscodity and g; is the density of
the two fluids. The subscripts i = 1, 2 denote the two fluids where j = 1 and 2
correspond to the lighter and heavier fluids respectively.

The generalised Darcy’s law® governing the flow in the porous medium is given by
P2 au_s_ _ d L B2
© ot 'Eéx k® @

where ¢ and k are the porosity and permeability of the medium.
Now introducing the relaions g, = vie® and op / dx = - Pe<, the Egns. (1) and
(2) can be written as
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dv M} _ —P

FRT W 2
and
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2
where the Reynolds number Mi = %, vi=2andg= _h

Py v
The boundary conditions appropriate for the problem are
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n=wpady=-h V)

The relation (7) is the Joseph Beavers condition where a is a non-dimensiona quantity
which depends upon the structure of the porous materid.

Solving Egn. (1) subject to the conditions of Eqgns. (5) to (7) we get

Vo 9nh Mi(l = %)

Vi &= o

A Snh My
+ M_L ;[‘ _ dnh M:(lsj-r;hij)” :L snh My ] ®
+ ao(os = t3) m M2y ©)

where

vi=2E = B2y, Daa

= =22 Doz 5 __ Y
PRz’ Ph?’ YT

.'-'_&2 :?!ﬂ :v 2
ot Ve = i and Vs ﬁhﬁf

in which the non-dimensiona interface velocity
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Vo __[ { ~ cosh Mz — Vyuo S0 Mz}

{smh Mz + cosh Mz X tanh (My/2) + ma}]
T My

M MI (10)
Where
X = M cosh M2 + ao sinh M
. M cosh Mz +
z = X(Ma sinh o + HLESOAE) * gopy,
and the velocity at the porous surface
_ M2 cinh My _ 1 — cosh M2
Vp = —,\_"[V°+ acls — 7% | (1)
Now it can be readily shown that the velocities V , and V, have their maximum
values at
1, (: + Jie ]
n= 2M BT e ‘ (12)
and
e -
y2 = 2M log [~ (W)] respectively. (13)

In these relations i '—“%, V2= %2, - 1-—"%——"—

2
and ¥ = M2Vo — |

" aoMAVs — V3)

The mass flow rate (non-dimensional) G is given by

G My, = ¥ tanh (Mi/2) , tanh Mz]
= Ph’l’z My M2
A _ tanh(M1/2)] _I_[ __tanh Mz]
+ MY [l (My[2) + I M
+ %[V; — V) [tanh M3] [tanh (M2/2)] (14)
Where
a2
Y == P2 and M= Miy
4] A
The fractional increase of mass flow rate ¢, due to the permeability is given by

¢| _ G e Gc

G. . (15
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Where G, the limiting value of G as ¢ — @ and it denotes the mass flow rate in the
case of channel with no permeable bed.

The fractional increase in the mass flow rate ¢, due to unsteady pressure gradient is
obtained as

G-G
b= "7 ! : (16)

where Gy is the limiting value of G as M, or M, tends to zero.

The non-dimensional skin friction coefficients T, and T, respectively at the
permeable bed and at the upper wall are obtained at

= -;—',;- = ag(Vp — V3) an
and
Ty=12 o 1 —cosh Mi VoM,
2= PR = Misnh My Asnh M, (18)
3. DISCUSSION

The ordinates ¥, and ¥, a which the velocity of the fluids in the upper and lower
halves assume maximum values are calculated for different values of ¢ and g. These
results are graphicaly presented in Fig. 1. The dip velocity Vg at the interface of the
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Figure 1. Plots of 5, and F,against M, for different values of a and 0.
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Figure 2; Slip velocity V, versus M,.

permeable bed and the lower fluid is given in Fig. 2 for various values of a and g.
The flow characteristics such as interface velocity V,, mass flow rate G, fractional
increase of mass flow rates ¢, and ¢, and skin friction coefficients T, and T, are
displayed in Fig. 3.

From Fig. 1 it can be noticed that ¥,;, ¥, are positive or negative depending upon
aand a. The negative values of ¥ and the positive values of ¥, are inadmissible. From
this, it is interesting to note that the upper or lower fluid will have maximum velocity
depending upon ais high or low. It can also be noticed that ¥, and ¥, increase as 6
or M, increases.

From Fig. 2 it can be found that the velocity at the porous surface Vi decreases
as aincreases. This effect is more pronounced when e takes higher values.
Figure 3, clearly shows that V,, G, ¢,, ¢, decrease as a or ¢ increases. Further

it is also seen that skin friction coefficients T, at the permeable bed increases with a
or ¢ while the skin friction coefficient T, decreases as a or @ increases.
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Figure 3. Flow characteristics versus M.
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