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ABSTRACT

Film  reinforced plastics (FRP)  are widely used as structural
materials. For designing shucuual  components, a designer is provided
with data based on unidirectional testing. But ‘in real stmcuual
applications the component is subjected to muItiaxial  stress throughout
the mate&I.  Hence a muMxial  test is a bettei gauge of the behaviour
of FRp  components in setice.  In the present paper a ring-on-ring
method w& adopted which produces biial  fIe%ural  stress on the PRP
specimen. WubuII’s  statistical weakest link theory was applied to
standardize the complexity and to assess the reliability of the ksuks.

1. INTRODUCTION

Increasing applications of fibre reinforced composites in aerospace and spacecraft
industry necessitated the development of newer high performance composites. Their
characterisation  is all the more important when they are considered in applications
primary structures. A large number of papers in recent years have appeared discussing
the fabrication, testing and application of composites*‘*.

Fibre reinforced plastics (PRP) have maximum strength and stiffness values
parallel to, and minimum values transverse to, the fibre direction. However, in most
applications the reinforcement is used in the form of woven fabrics, random mats
and/or multi-layered laminates.
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Standard methods of tests in the tensile, compressive or flexural mode use narrow
specimens usualiy cut parallel to the principal material axis. The designer is concerned
with the prediction of the deformation and strength from such properties. In real
structural applications the components are subjected to loading which produces
multiaxial stressing throughout the material, usually of a sustained nature and with
varying magnitude. Hence a multiaxial test is a better gauge of the behaviour of FRP
components in service than a uniaxial test.

Because of the heterogeneous nature of the composites and the large number of
processing parameters controlling the strength behaviour involved, a deterministic
evaluation of the composites is often not possible and recourse to statistical evaluation
has to be made. An inherent feature of the statistical nature of properties is the
so-called size effect, a large volume of a material has a higher failure probability than
a smaller volume”

With the advent of new applications more and more families of composites are
being introduced every year. However basic data for these, for reliability-based design,
is often unavailable. In this paper an attempt has been made to generate basic data
for reliability-based design. Thus five types of composites have been studied for biaxial
flexural strength. .

Weibull’ first formulated his statistical weakest link theory to characterize the
mechanical behavlour  of brittle materials. He later introduced the effect of size in his
theory. Over the years, different workers like Babel and Sines*,  Batdorf and Sines3,
Radford aud Lange4 refined the original Weibull theory and applied it to a large
number of materials in different modes of testing. Trustrum and Jayatilaka’  developed
analytical solution for evaluating the combined effect of stress and size and failure
modes. Shetty et aL6*’ applied biaxial flexural strength testing to ceramics and
glass-ceramics. In the last few years, Morona,  Rice,8-12  etc. have perfected the Weibull
analysis and applied it to a number of composite materials.

In the original theory proposed by Weibull, the risk of rupture/failure pr&&hty
is given by

P I-exp-zm= [ ()I
where P is the failure probability at or below stress level, u and a,, and m are Weibull
parameters, called scale and shape parameters respectively.

As the volume of the specimen increases, the number of links in the model
increases and hence failure probability increases. The net failure probability  is

a’)(
P = I -exp-  y ;o doIO

A closed form solution of the integral is often difficult to obtain. A close
approximation can be obtained by dividing the specimen into finite elements and
summing the failure probabilities of these individual elements.
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(3)

We can equate the failure probability of the specimen volume under a variable
stress with that for a smaller volume under maximum stress by the following equality

n-r
c 5 “(*dV, = viq
0n-l 00 (4)

where Vq represents volume of a specimen under uniform tension/compression and
having the same failure probability as the larger specimen with variable stress. Equation
(4) enables us to apply the results obtained in one mode of testing to that in any other
mode, if stress state is known.

To calculate equivalent volume, the specimen is divided into 5 elemental volumes
as shown in Fig. 1. The innermost disc having a radius = b = r, and under a uniform
stress and four annular rings with outer radii r,, r2,  r,, and r, respectively. The average
stress in thdse  is takfzn as the stress at the average radii roa5,  r,.s,  rzJ,  r3.s  respectively.
Stress at any radius is given by



174 MNSaref,etal.

(2)” = ($g)m
Volume of the first ring

= n*t+:  - bq .

(5)

(6)

(7)

(8) ’

where t is thickness and r, and b are outer and inner radii. Equivalent volume of the
first ring =

,2n*  r(d  -  bl)  = m
(9)

(The factor 2 in Eqn. (9) has been used to account for the failure probablity in radial
and tangential directions).

The equivalent volumes of other four rings can be calculated similarly. The
equivalent volumes of four ring elements and volume of central disc under maximum
stress is equal to the total equivalent volume.

For a given equivalent volume, the variation of failure probability is given by
Eqn. (1). By rearranging the terms in Eqn. (l), we have

1 -P=eexp’-  $”
[ ( 13

0

Taking logarithm twice, we have

ln/ln(l/l -  P) = m (In Q’  - In 00) t-1  2)

ForP= 0.632, In In (l/l -P)~O.Henceln~--Ittoo.=
or 0 = 00 a? = Yp/P

Hence graph of In In(l/l-p)  versus Ina  is a straight line with slope m and with an
intercept on abscissa equal to Inn,.

For P = 0.5, In In (l/l -  P)  = -0.3665 (13).
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Hence, the mean strength is given by the antilog of the intercept of the graph with
the line x = -0.3665.

With the help of the foregoing analysis, we can .calculate  a,  and a,,, for various
equivalent volumes for equal failure probabilities of 0.632. For two specimens with
equivalent volumes V,  and V,,  we have

In In (l/I -  P)  = 0 = In YI + m In OO,I  =  In V2 -j- m In uo,2 (14)

where a,,,  and @as  are the stresses at P = 0.632, for volumes V,  and ‘V,  respectively.
By rearranging terms in Eqn. (14) we have

In VI  - In V2 3 m [In co,2 - tn@o,tl (1%

In (V1jV2)  1 m In (~0,2/~0,1) (16)

000,) VI ‘im
-a -

-4 ( 1v 2

(17)

(18)

Equation (18) shows that as the volume increases, the mean stress 3letreases.
The plot of ln bo,a versus 1nV  is a straight line with a negative slope = -l/m. At the
intercept on y-axis, we have 1nV = 0 (or V = 1 cc). Antilog of this intercept gives
the statistical mean strength of a unit volume of the material. This value of a,,.,,  is a
material property independent of volume.

If R number of samples are tested, then their failure strengths can be arranged
rankwise  in increasing order. The sample space is divided into n intervals. Each
specimen is considered at the centroid of each interval. Though, there are complicated
formulae for assigning probability in each interval, the following simplified formula
suggested by Lankford13  suffices.

where r is rank of specimen. Cumulative failure probability at the failure of the last
specimen is given by

p=n
n+l

To calculate the mean strength at a unit volume of 1 cc and the size effect, we
need to test a few series of specimens of different equivalent volumes V,, V2  stresses
Go,,  7 Go,29 etc., and average m are evaluated. A plot of In bar  +  In V,  establishes the
relation between the strength.,+d volume.
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The foregoing analysis enables a designer in reliability-based design where the,
data obtained from small specimens tested in the laboratory is to be extrapolated to
large structures under complex stress conditions.

The biaxial stress distribution in the ring-on-ring test, has been evaluated by
K&ten  and Wooley14  using elementary plate theory. The maximum stress occurs in
the central region inside the loading ring and is given by

(21)

where a, and q  are radial and tangential stresses, P is load, t is thickness, v is Poisson’s
ratio, a and b are radii of support ring and load ring, respectively and I? is the radius
of the specimen. At any other radius o, and a, are slightly different.

+ = 3m  + 4
4nt2 [z In  (:)  + (ev)f2  ;;;‘p] (22)

ot = 3P(1 + 4
1 * ln 0  r2

(I - v) b2(a2  + 9)  - 2a2rZ
-4nt2 (1 [ 9R2 3 (23)

Though variation in the two is not the same, we can consider the stress to be
proportional to In (a/r) as an approximation.

2. EXPERIMENTAL

2.1 Materials

The following materials were used in the experimental part : (a) phenolic resin
supplied by Indian Plastics Ltd., Bombay; (b) glass fabric 1: 1 plain weave, aminosilane
treated supplied by Unnati Corporation Ltd., Ahmedabad; (c) nylon fabric, wt  225
gm/m2 procured from local market; (d) carbon fabric, TO,RAY-6141  procured from
Toray,  Japan; and (e) kevlar fabric, 1 : 1 plain weave procured from Fabric

Development Corporation, USA.
2.2 Methodology

Composites were fabricated by first impregnating phenolic resin on the reinforcing
fibre fabrics by brushing. The fabric treatment was repeated till the resin take up was
30 per cent w/w. The solvent was evaporated out, first at room temperature and then
by keeping the impregnated fabrics in vacuum oven. The fabrics were then cut into
specific sizes and were stacked in an open mould. The mould was placed on heated
platens of hydraulic press and curing was carried out at 160°C  for two hours under
70 kg/cm2 pressure.

The following composite laminates were thus fabricated :
(i) Glass fabric only
(ii) Glass fabric 70 per cent w/w  + nylon fabric 30 per cent w/w
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(iii) Glass fabric 70 per cent w/w + kevlar fabric 30 per cent w/w
(iv) Glass fabric 70 per cent w/w + carbon fabric 30 per cent w/w

Glass fabric used in all the cases was of same quality, particularly in weave and surface
treatment.

3. GLASS FABRIC RJZINFORCRD  PMR POLYIMIDE  RESIN COIMFOSITES

PMR polyimides are high temperatures resistant class of resins which retain their
strength properties up to 3OOT.  These resins can be easily processed and curing is
done in situ.  The basic components of resin are taken in liquid form. The monomer&&
reactants react to produce amic  acid which is further polymerised to polyimides. The
end capping monomer reactant then cross links by reverse Diels-Alder reaction.

3.1 PMR Solution

PMR solution-2,2; 3,3;-benxophenone  tetra carboxylic dianhydride purified by
crystallization from boiling acetic anhydride, and S-norbomene-2,fdicarboxylic
anhydride were weighed in two separate round bottom flasks fitted with reflux
condenser.  Enough methanol was added to provide a final 50 per cent w!_w  ester
solution irL  each case. The mixtures were refluxed gently for two hours, cooked and
then the two ester solutions were mixed. Diaminodiphenyl methane (DDM) was
dissolved in methanol to prepare 50 per cent w/w solution. Ester solution and DDM
solution were then mixed in required proportions.

Reinforced fabric was then treated with this solution ensuring complete wetting.
Then the prepregs were dried at 70°C  for one hour. The oven temperature was then
raised to 220°C and the prepregs kept for one hour.

The prepregs as prepared above were stacked in semi-positive mould and moulded
at 290°C  and under 350 kPa  pressure. The temperature was then raised to 320°C (in
10-15  minutes) and maintained for 2 hours at 700 kPa.
3.2 Biaxial  Flexurd Strength

The laminates were cut into square pieces of different dimensions. A ring-on-ring
method was adopted to produce biaxial flexural stresses in the specimen. The coupen
was supported on a support ring of radius A and loaded by a concentric ring of smalier
radius B to failure, in a 16 tonne hydraulic press. Locating pins attached to the load
ring with matching hole in the fixture of the support ring ensures concentricity. The
Iaihue in composites due to biaxial f’lexural stresses was found to be of complex nature
with a combination of matrix failure, fibre pullout, .&ear  failure at interfaces and
fibre breakage. Hence to standardize the complexity and to assess the reliability, the
result was subjected to Weibull analysis.

4. RESULT!3  AND CONCLUSIONS

A series of specimens of each of the materials were tested for a number of
combinations of load ring and support ring radii b and a. The stress at failure for each
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specimen was calculated using Eqn. (21). The data was tabulated rankwise  in the,
order of increasing failure stress. Then a graph of lnln (111-p)  versus In 0; was plotted
for each series of each composite. For the sake of brevity, only one table and the
corresponding graph for the composite RKM3  (described in Table 1) are given (Fig. 2).
From the graph, a,,  V at P=O.632  and a,,,, at Pro.5  for different equivalent volumes
of each composite were determined. This data is presented in Table 2. FrornTable  2,

Tabkl.  BiaxialfkxuralstrengtbtestefcwmpdteRKNI-3*

Rank ‘P 1/(1-p) lnln(lll-P) lna,

1 0.1 1.111 -2 .25 445.4 6.099
2 0.2 1.25 -1.5 485.7 6.186
3 0.3 1.429 -1.031 528.1 6.269 _
4 0.4 1.667 -0.6717 567.0 6.34
5 0.5 2.0 -0.3665 371.1 6.348

6 0.6 2.5 -0.@?74 576.1 6.356
7 0.7 3.333 0.1855 577.8 6.359
8 0.8 5.0 0.4759 664.5 6.499
9 0.9 to.0 0.834 696.1 6.545 ‘ ,

*V-  under maximum stress - 0.6064 cc

Figure 2. Graph of  lnlnw1-1p)  verxus  In  a,.
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Table2. MeanbhxWfltxadatrqtbs,~~rbrpc~~~ e@vakntvdulnes
far tmmpohs  RKM-I, RKM-2, RKM-3, RKM-4 and gIdPMR

Mater ia l InV =$imm
(MM

tnu ’ wnL%w

RKM-1

RKM-2

RKM3

RKM-4

GlasdPMR

2.386 0.87

3 . 4 7 4 1.245
3.862 1.351

12.944 2.561

13.202 2.58

14.792 2.694

21,66 3.075

2.31

3.474

3.634
12.944

14.792

0.6064
2 . 4 9

0.476
2.413.

0.89 -.1165

4.252 1.447

0.837

1.245
1.29
2.561

‘2.694

0.5

0.912
-.742
0.881

635.9

685.4
669.8.
539.2

553.2
537.6

53419

595.9.
690.2

653.9
540.2

555.6

601.8

493.8
642.3
559.5

645.5
623.3

620.2

656.6
641.0
5il.i

553.2
937.6

53o.b

579.4

675.5

643.5
514 .4

510.8

572.5.
470.1

620.2
539.2

629.5
621.7,

6.455 6.43
6.53 6.487
6.507 6.465
6.29 6.257

6.316 6.316
6.287 6.287

6.282 6.274

6.39 6.362
6.537 6.51
6.483 6.47
6.292 6.243

6.32 6.256

6.4 6.35
6.202 6.153
6.465 6.43.

6.327 ,629 _

6.47 6.445
6.435 6.4325
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Name Composition ‘amm =o,o m
(MM (ma)

RKM-1 65% E glass +35% 764.1 788.1 7.248
phenolic resin

RKM-2 45.5% E glass + 19.5% nylon 742.2 765.6 7.246
+35%  phenolic resin

RKM-3 45.5% Eglass  +19.5%  kevlar 511.9 561.2 7.14
+ 35% phenolicresin

RKM-4 45.5% E glass + 19.5% carbon 58~~ 603.7 11.76
fibres +35%  phenolic resin

GlassPMR E gl&s  + PMR  resin 646.2 658.6 22.6

* Compositions RKM-2, RKM-3 and RKM-4 were arrived at by adjusting the plies of
reinforcement during stacking for the laminate.

graphs of In a0  and In a,. In Vq were plotted (Fig. 3). These graphs enabled the power
law relation between o and V to be established. Graphs for RKM3 and RKM-4 only
are shown. ~~,a  (mean strength for a specimen with 1 cc volume), Weibull scale
parameter and m, Weibull shape parameter for the composites are presented in Table 3.

If we compare the systems RKM-1 and glass P&IR,  we find that RKM-1 has a
larger strength, but more pronounced size effect. Let Vbe the volume at which both
the systems have equal strengths. Then

764.1 646.2
(V)(1/7.246)  = (F')(1/22.6) (24

Solving we obtain

vo 09375  = 764.1
646.2

Therefore
V = 5.975 cc and strength 597.1 MPa

4. CONCLUSIONS

(25)

Amongst the composites tested during the study, glass fabric reinforced phenolic
resin laminates were found to have highest biaxial flexural strength. Partial replacement
of glass fabric by nylon, kevlar or carbon fibre did not improve the strength, where
the maximum reduction was of the order of 20 per cent. Phenolic resin glass fabric
laminates were found to have better biaxial flexural strength than PMR polyimide
resin glass fabric laminates, thus indicating the brittle nature of PMR composites.

Systems RKM-1, RKM-2 and RKM3 have a fairly pronounced size effect whereas
PMR glass composite has a very low size effect. For a specimen of size 1 cc,
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glass-pbenolic and glass-PMR laminates have a strength value of 764.1 and 646.2.
However, if calculated for equal strength, at a volume of 5.975 cc both systems will
have equal strength of 597.1 MPa but for components larger than this volume.
Glass-PMR composites will have higher strength than glass-phenolic laminates.
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