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ABSTRACT

Fibre reinforced plastics (FRP) are widely used as structural
materials. For designing structural components, a designer is provided
with data based on unidirectional testing. But ‘in real structural
applications the component is subjected to multiaxial stress throughout
the material. Hence a multiaxial test is a bettei gauge of the behaviour
of FRP components in service. In the present paper a ring-on-ring
method was adopted which produces biaxial flexural Stress on the FRP
specimen. Wubull’s statistical weakest link theory was applied to
standardize the complexity and to assess the reliability of the results.

1. INTRODUCTION

Increasing applications of fibre reinforced composites in aerospace and spacecr aft
industry necessitated the development of newer high performance composites. Their
characterisation is all the more important when they are considered in applications
primary structures. A large number of papers in recent years have appeared discussing
the fabrication, testing and application of compositest'*.

Fibre reinforced plastics (FRP) have maximum strength and stiffness values
paralel to, and minimum values transverse to, the fibre direction. However, in most
applications the reinforcement is used in the form of woven fabrics, random mats
and/or multi-layered laminates.
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Standard methods of tests in the tensile, compressive or  flexural mode use narrow
specimens usualiy cut paralel to the principa material axis. The designer is concerned
with the prediction of the deformation and strength from such properties. In red
structurd gpplications the components are subjected to loading which produces
multiaxid stressng throughout the materid, usudly of a sustained nature and with
varying magnitude. Hence a multiaxial test is a better gauge of the behaviour of FRP
components in service than a uniaxia test.

Because of the heterogeneous nature of the composites and the large number of
processing parameters controlling the strength behaviour involved, a deterministic
evauaion of the composites is often not possible and recourse to dtatistical evaluation
has to be made. An inherent feature of the dtatistical nature of properties is the
so-caled size effect, a large volume of a materiad has a higher failure probability than
a sndler volume’

With the advent of new applications more and more families of compostes are
being introduced every year. However basic data for these, for reliability-based design,
is often unavailable. In this paper an attempt has been made to generate basic data
for reliability-based design. Thus five types of composites have been studied for biaxid
flexural strength. '

Weibull’ firgt formulated his Satistical weakest link theory to characterize the
mechanical behaviour of brittle materials. He later introduced the effect of size in his
theory. Over the years, different workers like Babel and  Sines?, Batdorf and Sines?®,
Radford aud Lange* refined the origind Weibull theory and applied it to a large
number of materids in different modes of testing. Trustrum and Jayatilaka® developed
andyticd solution for evaluating the combined effect of stress and Sze and falure
modes. Shetty et al.%" gpplied biaxia flexural Srength testing to ceramics and
glass-ceramics. In the last few years, Morona, Rice,**? etc. have perfected the Weibull
andysis and applied it to a number of composite materials.

In the original theory proposed by Weibull, the risk of ruptureffailure  probablity

is given by
=1 - exp[~(£;)m] $))

where P is the failure probability a or below stress level, o and a4, and m are Weibull
parameters, called scale and shape parameters respectively.

As the volume of the specimen increases, the number of links in the model
increases and hence failure probability increases. The net failure probability iS

.

P=1 —exp —jv(;;,'m dv )

A closd form solution of the integrd is often difficult to obtain. A close
approximation can be obtained by dividing the specimen into finite eements and
summing the failure probabilities of these individua dements.
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We can equate the failure probability of the specimen volume under a variable
stress with that for a smaller volume under maximum stress by the following equaity

"ot (on n‘ =

where Vo represents volume of a specimen under uniform tension/compression and
having the same failure probability as the larger specimen with variable stress. Equation

(4) enables us to apply the results obtained in one mode of testing to that in any other
mode, if stress state is known.

To cadculate equivalent volume, the specimen is divided into 5 elementa volumes
as shown in Fig. 1. The innermost disc having a radius = b = r, and under a uniform
stress and four annular rings with outer radii 1y, r;, 13, and r, respectively. The average

stressin these is taken as the stress a the average radii  fys, fys, fys, Fys ESPECtively.
Stress a any radius is given by

Figure 1. Finite element analysis to calculate equivalent volume under maximum stress;
ry = b = load ring radius, r, support ring radius; A, = A, (0/0.)"™
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= ::f—%)) | ®)

(&‘.:)m = (:":‘%% ) 0]
Volume of the fird ring

= mef-(rf — bY) . ®)

where t isthickness and r, and b are outer and inner radii. Equivaent volume of the
firdring =

7o 12 — 1) = (In(alr)\®
27 1 — ) (l_.._n “ /b)) ©

(The factor 2 in Eqn. (9) has been used to account for the failure probablity in radia
and tangentid directions).

The equivalent volumes of other four rings can be cdculated amilarly. The
equivalent volumes of four ring elements and volume of central disc under maximum
dressisequd to the total equivaent volume.

For a given equivadent volume, the variaion of falure probability is given by
Egn. (1). By rearranging the terms in Eqn. (1), we have

| -P= expl[—(::-’;)m] * (10)

=[5 an

Taking logarithm twice, we have

In/ln(1/1 = P)= m (In ¢ = In o) 12

For P = 0632, In In (1/1 — P) > 0, Hence In ¢ — In 0 = 0
Of ¢ = o0 g2 = Vp/P

Hence graph of In In(1/1-P) versus Ine is a raght line with dope m and with an
intercept on abscissa equal to  Ina,,

For P= 05, In In (1 ~ P) = -0.3665 (13)
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Hence, the mean grength is given by the antilog of the intercept of the graph with
the line x = -0.3665.

With the help of the foregoing analysis, we can calculate 6, and a,, for various
equivalent volumes for equa falure probabilities of 0.632. For two specimens with
equivaent volumes V; and V,, we have

hin(1=pP)=0=In¥+minay =InV2+mlIneo. (14)

where o, and o, ae the stresses at P = 0.632, for volumes ¥, and 'V, respectively.
By rearanging terms in Eqn. (14) we have

In Vi = INn V2 =m [In %0,2 ~ Inoo,] (15)

In (i/V2) = m In (o,2/90,1) (16)
or : , .

Vi .2 Y7

ne () o

%2 _ (W)
0,1 - VZ) (l8)

Equation (18) shows that as the volume increases, the mean stress ‘decreases.
Theplot of In 6, , Versus InV isadraight line with a negetive dope = -I/m. At the
intercept on y-axis, we havelnV =0 (or V = 1 cc). Antilog of this intercept gives
the satistical mean strength of a unit volume of the materid. Thisvaue of g, isa
materiadl property independent of volume.

If 2 number of samples are tested, then their failure strengths can be arranged
rankwise in increasing order. The sample space is divided into a intervals. Each
specimen is considered a the centroid of each interval. Though, there are complicated
formulae for assgning probability in each interva, the following smplified formula
suggested by Lankford" suffices.

r
N+ (19)

pr =

where r isrank of specimen. Cumulative failure probability at the fallure of the last
specimen is given by

n
n+1 (0)

To cdculate the mean strength at a unit volume of 1 cc and the size effect, we
need to test a few series of specimens of different equivalent volumes Vv, V, stresses
0, , G €IC., and average m are evaluated. A plot of In gy, — In V, etablishes the
relation between the strength and volume.

pP=




176 M N Saraf, et al.

The foregoing analysis enables a designer in reliability-based design where the,
data obtained from small specimens tested in the laboratory is to be extrapolated to
large structures under complex stress conditions.

The biaxid dress digribution in the ring-on-ring test, has been evauated by
Kristen and Wooley'* using elementary plate theory. The maximum stress occursin
the centrd region ingde the loading ring and is given by

orm o= N5 0(2) + (452)(ER2)] )

where ¢, and g, are radial and tangential stresses, P is load, ¢ is thickness, v is Poisson's
retio, a and b are radii of support ring and load ring, respectively and R is the radius
of the specimen. At any other radius ¢, and g, are dightly different.

0. = P+ V) a 1 — v\((a® — r)p2

=T e (3 ()N @)
3P+ v) _ (=9 + ) — 22

R [2 0ar T (T ST @

Though variation in the two is not the same, we can condder the Stressto be
proportiond to In (ar) as an approximation.

2. EXPERIMENTAL

2.1 Materials

The following materids were used in the experimenta part : () phenalic resin
supplied by Indian Plagtics Ltd., Bombay; (b) glass fabric 1. 1 plain weave, aminosilane
treated supplied by Unnati Corporation Ltd., Ahmedabad; (c) nylon fabric,  wt 225
gm/m? procured from loca market; (d) carbon fabricc, TORAY-6141 procured from
Toray, Japan; and (e) kevlar fabric, 1 : 1 plain weave procured from Fabric

Development Corporation, USA.

2.2 Methodology

Composites were fabricated by first impregnating phenolic resin on the reinforcing
fibre fabrics by brushing. The fabric treatment was repeated till the resin take up was
30 per cent w/w. The solvent was evaporated out, first a room temperature and then
by keeping the impregnated fabrics in vacuum oven. The fabrics were then cut into
specific sizes and were stacked in an open mould. The mould was placed on heated
platens of hydraulic press and curing was carried out a 160°C for two hours under
70 kg/em? pressure,

The following composite laminates were thus fabricated :
(i) Glass fabric only

(if) Glass fabric 70 per cent w/w + nylon fabric 30 per cent wiw
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(i) Glass fabric 70 per cent w/w + kevlar fabric 30 per cent wiw
(iv) Glass fabric 70 per cent wiw + carbon fabric 30 per cent wiw

Glass fabric used in all the cases was of same quality, particularly in weave and surface
treatment.

3. GLASS FABRIC REINFORCED PMR POLYIMIDE RESIN COMPOSITES

PMR polyimides are high temperatures resistant class of resins which retain their
strength properties up to  300°C. These resins can be easily processed and curing is
done in situ. The basic components of resin are taken in liquid form. The monomeric#
reactants react to produce amic acid which is further polymerised to polyimides. The
end capping monomer reactant then cross links by reverse Diels-Alder reaction.

3.1 PMR Solution

PMR solution-22; 3,3;-benzophenone tetra carboxylic dianhydride purified by
crydallization from boiling acetic anhydride, and S-norbornene-2,3-dicarboxylic
anhydride were weighed in two separate round bottom flasks fitted with reflux
condensor. Enough methanol was added to provide a fina 50 per cent wiw ester
solution ir. each case. The mixtures were refluxed gently for two hours, cooked and
then the two ester solutions were mixed. Diaminodiphenyl methane (DDM) was
dissolved in methanol to prepare 50 per cent w/w solution. Ester solution and DDM
solution were then mixed in required proportions.

Reinforced fabric was then treated with this solution ensuring complete wetting.
Then the prepregs were dried a  70°C for one hour. The oven temperature was then
raised to 220°C and the prepregs kept for one hour.

The prepregs as prepared above were stacked in semi-positive mould and moulded
a 290°C and under 350 kPa pressure. The temperature was then raised to 320°C (in
10-15 minutes) and maintained for 2 hours a 700 kPa.

3.2 Biaxial Flexural Strength

The laminates were cut into square pieces of different dimensions. A ring-on-ring
method was adopted to produce biaxia flexural Stresses in the specimen. The coupen
was supported on a support ring of radius A and loaded by a concentric ring of  smaller
radius B to failure, in a 16 tonne hydraulic press. Locating pins attached to the load
ring with matching hole in the fixture of the support ring ensures concentricity. The
cailure in composites due to biaxial flexural stresses was found to be of complex nature
with a combination of matrix falure, fibre pullout, shear falure at interfaces and
fibre breskage. Hence to standardize the complexity and to assess the reliability, the
result was subjected to Welbull andyss.

4. RESULTS AND CONCLUSIONS

A series of specimens of each of the materids were tested for a number of
combinations of load ring and support ring radii b and a. The stress at failure for each
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specimen was cdculated using Egn. (21). The data was tabulated rankwise in the,
order of increasing failure stress. Then a graph of Inin  (1/1-P) versus In g, was plotted
for each series of each composte. For the sake of brevity, only one table and the
corresponding graph for the composite RKM-3 (described in Table 1) are given (Fig. 2).
From the graph, ¢, , a P=0.632 and a,,,, a P=0.5 for different equivaent volumes
of each composite were determined. This data is presented in Table 2. From Table 2,

Table 1. Biaxial flexural strength test of composite RKM-3*

% Rank P 1/(1-P) Inin(1/1-P) ot Ing,
(MPa)

! 01 1111 -2.25 4454 6.099
2 0.2 1.25 -15 485.7 6.186
3 0.3 1.429 -1.031 528.1 6.269 .
4 0.4 1.667 -0.6717 567.0 6.34
5 05 2.0 -0.3665 3711 6.348
6 0.6 25 -0.0874 576.1 6.356
7 0.7 3.333 0.1855 5778 6.359
8 0.8 5.0 0.4759 664.5 6.499
9 0.9 to.0 0.834 696.1 6.545

'Vml under maximum stress = 0.6064 cc

inn (/) -P)
o

-1.04

Figure 2. Graph of Inha(1/1~P) versus In a,.
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Table 2. Mean biaxial flexural strengths, Weibull shape and scale parameters against equivalent volumes

for composites RKM-1, RKM-2, RKM-3, RKM-4 and glassPMR

Material Ve InvV gy O pcan Ing 0,0
(cc) (MPa) {(MPa)
RKM-1 2.386 0.87 635.9 620.2 6.455 6.43
3.474 1245 665.4 656.6 6.53 6.487
3.862 1.351 669.8. 641.0 6.507 6.465
12.944 2.561 539.2 521.1 6.29 6.257
RKM-2 13.202 2.58 553.2 553.2 6.316 6.316
14.792 2.694 537.6 937.6 6.287 6.287
21,66 3.075 534.9 530.6 6.282 6.274
RKM3 2.31 0.837 595.9- 579.4 6.39 6.362
3.474 1.245 690.2 675.5 6.537 6.51
3.634 1.29 653.9 643.5 6.483 6.47
12.944 2.561 540.2 514.4 6.292 6.243
14.792 2.694 555.6 510.8 6.32 6.256
RKM-4 0.6064 05 601.8 © 5725. 6.4 6.35
2.49 0.912 4938 470.1 6.202 6.153
0.476 -742 642.3 620.2 6.465 6.43.
2413 0.881 559.5 539.2 6.327 629
Glass/PMR 0.89 -.1165 645.5 629.5 6.47 6.445
4.252 1.447 623.3 621.7, 6.435 6.4325

»Fig_ure 3. Fixtures for rlu-on-rhg test.
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Table 3. vumamm(rm.vmwlu)wmmmmwam
shape parameter for the composites: RKM-1, RKM-2, RKM-3, RKM-4* and

glass’PMR
Name Composition O Goo m
(MPa) (MPa)

RKM-1 65% E glass +35% 764.1 788.1 7.248
phenolic resin

RKM-2 455% E glass + 19.5% nylon 422 765.6 7.246
+35% phenalic resin

RKM-3 455% Eglass +19.5% kevlar 5119 561.2 714
+35% phenolicresin

RKM-4 455% E glass + 19.5% carbon 580 603.7 11.76
fibres +35% phenolic resin

Glass’PMR  E glass + PMR resin 646.2 658.6 226

* Compositions RKM-2, RKM-3 and RKM-4 were arrived at by adjusting the plI€s OF
reinforcement during stacking for the laminate.

graphs of In gy and In . In V,, were plotted (Fig. 3). These graphs enabled the power
law relation between ¢ and V to be established. Graphs for RKM3 and RKM-4 only
are shown. a,, (mean strength for a specimen with 1 cc volume), Welbull scae
parameter and m, Weibull shape parameter for the composites are presented in Table 3.

If we compare the systems RKM-1 and glass PMR, we find that RKM-1 has a
larger strength, but more pronounced size effect. Let Vbe the volume a which both
the systems have equa strengths. Then

764.1 646. 2
(VX1/7.246) = (VX(i/22.6) (29

Solving we obtain

0 09375 = 764.1
VoI = 62

Therefore
V =5975 cc and gtrength 597.1 MPa (25)

4. CONCLUSIONS

Amongst the composites tested during the study, glass fabric reinforced phenolic
resin laminates were found to have highest biaxid flexural strength. Partid replacement
of glass fabric by nylon, kevlar or carbon fibre did not improve the strength, where
the maximum reduction was of the order of 20 per cent. Phenolic resin glassfabric
laminates were found to have better biaxia flexural Strength than PMR polyimide
resn glass fabric laminates, thus indicating the brittle nature of PMR composites.

Systems RKM-1, RKM-2 and RKM3 have a fairly pronounced size effect whereas
PMR glass composite has a very low size effect. For a specimen of size 1 cc,
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glass-phenolic and glass-PMR laminates have a strength value of 764.1 and 646.2.
However, if calculated for equal strength, at a volume of 5.975 cc both systems will
have equal strength of 597.1 MPa but for components larger than this volume.

Glass-PMR composites will have higher strength than glass-phenolic laminates.
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