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ABSI’RACT

This paper reports the flow of elastico-viscous liquid embedded
with particles in an oscillating cylinder. Explicit expressions are
obtained for the velocities of liquid and dust particles by the technique
of Laplace transforms. Numerical computations of the velocity fields
are carried out for different values of mass concentration and relaxation
time of the dust particles and varying elastic elements in the liquid.

1. INTRODUCTION

The study of rotational transient flow of non-Newtonian fluids in both semi-infinite
field and bounded field is of practical need for certain industrial processes to have
the description of fluid mechanical phenomena exhibited by non-Newtonian materials.
Srivastava’  and Tandon*  analysed the propagation of small disturbances in an Oldroyd
fluid contained in a semi-infinite circular cylinder due to the slow rotation of a disc
at the base. Srivastava considered the radius of the disc to be same as the radius of
the cylinder while Tandon has considered it to be smaher.  Rao and Rao3  have
investigated the rectilinear oscillations of a circular cylinder about a mean position
along a diameter in an infinitely extended micropolar fluid. Tandon and Chat&a4
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have discussed the unsteady motion inside and outside of an infinite cylinder which
suddenly starts rotating impulsively about an axis in an incompressible Oldroyd’s
two-parametric fluid, not three-parametric one as claimed by the authors. Recently
Mukherjee and Mukherjee’  have considered the unsteady axisymmetric rotational
flow of elastico-viscous liquid due to the time-dependent rotation of a circular cylinder.

However, studies on dusty non-Newtonian fluid flows and rheological aspects of
such flows have not received much attention though the studies of dusty non-Newtonian
fluid flows are likely to have some industrial and chemical engineering applications
on the problems of polluted oil extraction, polymer extrusion and paint spraying.
Based upon the theoretical model proposed by Saffma#,  Srivastava’ has analysed
the unsteady flow of dusty Rivlin-Ericksen  fluid through a channel. Bagchi and Maiti’
have studied the unsteady flow of dusty elastico-viscous liquid through a channel with
arbitrary time-varying.pressure gradient.

This paper deals with the rotational flow of dusty elastico-viscous liquid. The
expressions for the velocity fields of the liquid and the dust particles are obtained
explicitly. The effect of elastic element in the liquid, the mass concentration and the
relaxation time of dust particles on the velocity profiles of liquid and dust particles
are studied graphically. This paper is likely to have some bearing on the problems of
transport of solid particles suspended in non-Newtonian fluids through pipes.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

Let us consider the flow of an incompressible elastico-viscous liquid (Kuvshinski’
type) for which the stress-strain relation is

where
$.dk +;k

&p:k  = -Ji-  + V”rafj

and
plk = -p&k +  p!k (3)

p is the static pressure, 8,  is the associated metric tensor and p’ik  is a tensor usually
related to the rate of strain e, by the equation of state (l),  & is the relaxation time
and p is the coefficient of viscosity.

In the present problem, it is assumed that the particles are spherical in shape
and uniform in size and the bulk-concentration (concentration by vohtme) of dust is
very small. Following Saffman, it is assumed that steady Stokes law of resistance
between the particles and fluid is applicable. However the mass concentration of dust
can be of the order of unity by allowing the ratio of the density of the dust and fluid
to be large. For sufficiently small particles, the velocity of sedimentation will be small
compared with a characteristic velocity of the flow and can be neglected.

The equations of motion of a dusty elastico-viscous liquid obeying Eqn. (1) are
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UkUi,k = Pik,k  + KiV(vt  - Uf)

m a? f vkb,k = K(ui  - vi)

Ui,f  = 0

;;  +  WVf),f  =  0

(5)

where ui, b are the local velocity vectors of liquids and dust particles respectively, p
the density, K the Stokes resistance coefficient (for spherical particles of radius d, it
is 6 n@, N the number density of dust particles and m the mass of a dust particle.

Initially the liquid and dust particles are at rest. We consider the flow of a dusty
elastico-viscous liquid in an infinitely long circular cylinder of radius a which oscillates
with constant frequency about the axis of the cylinder. In the cylindrical polar system
of co-ordinates (r,  8,  z), the z-axis is chosen along the axis of the cylinder. The physics
of the problem suggests

and
241 = (0, u(f, 0, 0)

VI = (0, u(f,  f), 0)

Using Eqns. (I) - (7); we get the equations of motion of dusty elastico-viscous
liquid as

where v is the kinematic viscosity of the liquid and the number density of dust particles
is N = iV,,,  a constant throughout the motion.

Initial and boundary conditions for the problem are

U(f,  0
atrtr, t)
=at=

0

a t t  A
av(f*  1)

0 and for all r (10)

a(f, 1) L at- 0
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u is finite on r = 0
(11)

where IJ, is the characteristic velocity and sh is thd imposed oscillation.
Using the non-dimensional variables

.g=Uif=Lp=3Lf=L?l
uo  ’ 240’ a’ a2’

Eqns. (8) - (11) in non-dimensional form are written as (dropping bars)

(l+a;)$=  ($+  $$-  ~)+8(l+~$~-u) (12)

a v ‘(u - v)5” 7

654 avu=,7=O;v=z=Oaft G= 0 and for all r

(13)

(14)

u = e -ifft  on r = 1; u is finite on r =.O;  and for t > 0 w

where a (= &v/$) nondimensional elastic parameter, f (=mN,p) the mass
concentration of dust partides, and T (= mv/K$)  the dimensionless relaxation time
of dust particles and /I = (UT).

3. SOLUTION OF THE PROBLEM

Using the Laplace  transform technique in Eqns. (12) and  (13) subject to initial
and boundary conditions in Eqns. (14) and (15),  it turns out that the expressions for
the velocity profile of liquid and dust particles can be represented by the Laplace
inversion integral in the form

1 + &(I +f + p4
1 7+100

u = 2nrI
1 II (p7  + I)

V-lop  (p + IQ)  1, (1 +  ap)(l  + f +pr) (16)
(PT  + ii

(17)

where y is greater than the real parts of the singularities of the integrand and Re (p) > 0.
On evaluating Eqns. (16) and (17),  we have the expressions for the velocity

profile of liquid as
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(18)

where

A =
{

-inyl - ia@(l  + f - il2.r) ‘n
(1 - iQ7) 1

/&‘s  are roots of

and J+‘S are the roots of the cubic equation

.w

It is clear from Eqn. (21) that all roots of p, (for any n = 0, 1,2,...) are either negative
or one negative and other two complex. From the physics of the problem we consider
those values of pnj  in Eqns. (18) and (19) for which exp @Dir)  +  0 as t +  a.

The non-dimensional skin-friction on’  the wall of the cylinder is given by

(23)

It is evident from Eqns. (18) and (19) that velocity of liquid and dust particles
become same as the relaxation time tends to zero,  i.e., when the dust particles become
very fine. In the absence of elastic parameter and dust particles, the expression for
the velocity profile of liquid particles is same as that obtained by Mukherjee and
Bhattacharya”!  (if it is made dimensionless).
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4. DISCUSSION

The analysis of the present study reveals that the solution contains three pertinent
Bow  parameters, viz., a (the dimensionless elastic parameter), f (the mass
concentration of dust particles) and t (the relaxation time of dust particle$. The
behaviour  of these parameters, therefore, yields a physical insight into the problem.
Keeping this in view, the numerical computations of real part of Eqns.  (US),  (19)  and
(20) have been carried out to represent graphically the velocity fields, Skin-friction at
the plate walls for different values of a, f, T.

The velocity of liquid and dust particles are depicted in Figs. l-4 against r for
different values of a, f and r. Figures 1 and 2 showr  the effect of f on u and v
(with r fixed) while Figs. 3 and 4 depict the variation of u and v due to the change
of relaxation time of dust particles (with f fixed) for different values of elastic
parameter. From Fiis. 1 and 3 it is seen that u increases with increasing a for fixed
r and f, i.e., the effect of elastic element in the liquid is to increase the velocity of
liquid particles. Also it is observed that both mass concentration (f) and relaxation
time (T) increase the velocity of liquid for any a. Figure 2 shows that flow occurs in
reverse direction, (i.e., in the direction of decreasing 0) for a = 0, I,2  and r = 0.5.
As f increases both forward flow and back flow exist and the region of forward flow
increases with the increase in f for any value of a. It is evident from Fig. 4 that as T
increases, the magnitude of the velocity of dust particles increases with tixed  f.

Table 1 shows that the magnitude of skin-friction increases with the increase in
elastic’ parameter for f = 0.2, T = 0.5 at t = 5. The negative values of skin-friction
indicate that the shearing stress acts in the decreasing 8 direction at t = 5.

f = 0.2, t = 0.5 -
f = 0.5, t = 0.5 - - - - -
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Flgurel.  Vdadtypdlkofliqaidpartickatt=Swhmr=8.5
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Figure4.  vdastyproflkofdustpartkb8t  t~5vvkll1-0.2.

a *r@  r - 1

.1 . 0 a.0273578

..“ \ -0.0532131 . 5
2.0 -0.912364
2 . 5 -1.563151
3.0 -2.251595
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