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ABSTRACT

Acoustic emission (AE) is one of the most recent entries into the
field of nondestructive evaluation. Due to the uniqueness of the basic
principle and the potential for tackling a wide range of applications,
the technique has gone through rapid strides in a very short time. Thus,
today, two decades after the first application of the technique, AE is
used in various industries, such as petro-chemical, refinery , nuclear ,
transportation and aerospace. While, some of the applications can be
dealt with by current state-of-the-art, through simple methods of
measurement and analysis, the entire potential of the technique still
remains to be exploited as extraction of complete information contained
in the signal is not possible with the adaption of only simple data
analysis procedures. Currently several scientists in many countries are
involved in evolving and~mplementing advanced concepts for AE signal
analysis. These along with the approach adopted by us are discussed
in this paper .

I. SOME ASPECTS OF ACOUSTIC EMISSION

1.1 The Phenomenon

Acoustic emissions are pressure waves generated due to transient release of

energy when a material is subjected to mechanical, thermal or chemical changes
causing irreversible deformations or changes in atomic arrangement. Cracking of
timber, tin cry , noise generated before rock and mine collapses are some of the
examples of acoustic emission (AB) which have been intuitively utilized as warning
signals. Local dynamic movements such as initiation and propagation of cracks,
twinning, slip dislocation movements, phase transformation, and fusion (welding) are
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Figure I. Morphology of AE signals.

typical examples of processes giving rise to AE. The morphology of AE signals is
shown in Fig. 1.

The energy released travels as a spherical wavefront and is converted as electrical

signal by transducers placed on surface of the material. The volume and characteristics
of the AE generated are dependent on the source characteristics, the principal

characteristics of the source being its initial severity, current state, local metallurgical
structure and current environment. Propagation of the wave through the material is
effected by several factors. Macro- and micro-discontinuities and surfaces cause
reflections and generation of surface waves. Grain boundaries, inclusion, etc. cause
reflection and diffraction. Anisotropic behaviour of the medium causes the wave to
propagate with different velocities in different directions and non-ideal elastic
behaviour of the medium causes damping and dispersion. Thus the pressure wave
that arrives at the transducer is a highly distorted and attenuated version of the source
waveform. Further, the transfer functions of the transducer and the couplant between
the medium and transducer contribute their own share of distortion. The transducer
output is filtered and amplified to eliminate ambient noise and increase the
signal-to-noise ratio.

Acoustic emission is of two types: continuous and burst-type. Continuous
emission, in general, is of low level and is commonly associated with plastic

through
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deformation, grain boundary sliding and dislocation movements in crystal lattices.
Some of the common examples of burst-type emissions are crack advancement,
twinning, phase transformations (for example, martensite formation in carbon steel).
Emissions from a material can contain a combination of both of these two types.

The first scientific investigation of AE phenomenon was reported in 1948 by
Shockley et al.l. First pioneering work using electronic instrumentation was done in
1950 by Joseph Kaise~ who observed that AE was an irreversible phenomenon, in
that repetitive loading does not lead to repetition of emissions.

The work by Shoefield3 and Tatro4 in the mid 1950s did much to improve
instrumentation and bette~ understanding of AE sources. However, in this decade
very little work was reported. In the early 1960s AE caught the attention of many
workers. Significant advancements were made in this decade in AE signal processing
and instrumentation which hastened its growth as a viable nondestructive evaluation
(NDE) method. First commercial equipment was developed and a number of reports
on AE applications appeared5,6. In the seventies AE technology enjoyed a vigorous
growth and today AE literature spreads over thousands of papers, numerous books
and monographs. For qui<::k reference bibliographies with abstracts have been brought
out7. Special technical publications5,8 reviews by Lord6,9, Kanji OnolO and Wadley
and Scurbyl2 are valuable references.

1.2 Applications

The first practical application of AE was during the hydrotesting of Polaris missile
chambers. Since then it has gained wide recognition as an active NDE tool. One of
the first areas of applications is the study of plastic deformation, crack initiatiqn and
extension in materials. Currently, AE is being increasingly used to detect and locate
flaws in metallic and composite structures and has emerged as a valuable tool in
fracture mechanics studies.

In industry, AE technology is used for testing and monitoring a wide variety of
structures and components ranging from simple fluid transmission pipelines to large
nuclear pressure vessels. Some of the other industrial applications are loose "partkle
detection, leak testing, weld and drill monitoring and corrosion detection in metals.

In the field of rock mechanics AE has emerged as a useful tool for field studies
on geologic structures.

1.3 Typical AE Instrumentation

Typical AE equipment consists of signal detection, data (signal) acquisition,
processing and analysis units. Most commonly used AE sensors are piezoelectric
transducers. Resonant types are used with narrow band instrumentation and
nonresonant types with wide band instrumentation. Transducers based on optical
interferometry principle using laser beams are currently under study. The transducer
is followed by a preamplifier -amplifier combination giving up to 100 dB total
amplification. If filtering is desired it is generally included as an interstage in the
preamplifier unit itself. To cater fora wide frequency range of experimentation, AE
preamplifiers are generally designed for wide bandwidth.
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The signal can be displayed on a cathode ray oscilloscope screen to get a

preliminary idea of the activity. To characterise the source mechanism, information
contained in the signal can be extracted and interpreted either online or off-line.
Different options of AE signal analysis are shown in Fig. 2. For off-line analysis and
interpretation, the signals can be recorded on analog magnetic recorders; the advantage
being the availability of raw signals for analysis. Alternatively, the data can also be
stored on digital recorders after digitization. Currently, a number of

microcomputer-based integrated real-time AE monitoring systems are commercially
available. These systems have software for signal parameter extraction and distribution

analysis.
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Figure 2. Options for AE analysis systems.

1.4 Signals

Acoustic emission bursts are transient in nature and hence are broad in spectral
content. But due to resonances of the transducer and the component, AE signal

(transducer output) becomes oscillatory. While a signal due to a burst-type emission
event can be approximated by decaying sinusoid (Fig. 3(a», continuous emission
events occur so rapidly that a sustained signal (Fig. 3(b» is observed. Ambient noises
limit measurements in the audio range. On the other hand, attenuation problems are
encountered in the higher frequency range. So, the usual frequency range of AE
experimentation is in the 100 kHz to 5 MHz band. Within this frequency range for
sensitivity and to avoid noise, resonant transducers are utilized in association with
narrow band filters (for example, 125 to 250 kHz). However, this approach has the
disadvantage of loosing signal content at frequencies other than the considered band.
There are certain mechanical and hydraulic noises which have broad spectral content
like acoustic emission events. In such cases it is desirable to have wide band operation
and determine characteristic spectral features of AE bursts which can be used to
discriminate them from noise signalsl2.
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BURST -TYPE EM ISSION(a)

CONTINUOUS EMISSION(b)

Two types or AE signals .Figure 3.

Figure 4 shows a typical AE signal due to burst-type emission and the parameters
commonly used for analysis. These are explained below:

Threshold (V J : In burst-type AE, the threshold voltage level ~ is generally set
to distinguish signal from noise. An AE event is counted only if the signal crosses

the threshold level V,.
Ring down count (RDC) : Number of times the signal crosses the threshold ~.

Event duration (ED) : The beginning of an event is marked when the envelope
of the signal crosses the threshold ~ and the end is marked when it falls below the
threshold. Event duration is the time difference between the beginning and ending

of an event.
Peak amplitude (PA) : Highest amplitude attained by signal in an event.

Rise time (RT) : Time taken for signal to reach peak amplitude from the time it

first crosses the threshold.
Energy ( Ee) : The area under time versus amplitude squared curve for an event.

Fall time (Ff) : Difference between the time when peak amplitude occurs and

end of event.



60 A KRao

~~

~ I
101
O
:>

~I--
<-<J Q.

Q.-

~

RDC=4

l:~~:OLD

~

kENT .1. EVENT GAP ~
DURATION

IEDI

FIgure 4. Some AE signal parameters.

Inter event gap: Time between the end of previous event and beginning of current
event.

Some frequency domain parameters that can be chosen for analysis are the peak
amplitude in the spectrum, dominant frequency (the frequency at which the peak
amplitude occurs), energy (the area under the energy density spectrum). Peak
amplitudes, dominant frequencies and energies at various sub-bands can also be used
as features to study the characteristics of a source.

2. CURRENT METHODS OF SIGNAL ANAL YSIS

Some parameters that can be utilised to measure the AE activity were indicated
in the previous section. The simplest and most commonly used analysis procedures
are estimation of cumulat~ve counts, cumulative events, event and count rates. These
kinds of analyses have often been very useful for obtaining warning of impending
failures. However, when one is interested in studying the behaviour of a source such
as a crack in its early stages, these procedures appear to be deficienf3.14. In recent
times, the random character of AE signals has been well-recognised and statistical
methods have found their way into AE signal analysis. These include, signal parametric
plots as per event basis with respect to time or load or any other parameter of interest,
mean signal parameter plots, distribution plots of each individual signal parameter
and distribution plots with respect to time- or load. The objective of this type of
analysis has been to observe and quantify trends in the individual signal parameters.
In the conventional statistical signal analysis language, these are univariate analyses
involving a single signal parameter individually and independently. But, if we accept
that an AE signal is random in character, a more appropriate approach would be to
utilize the information avail:lble in each one of the parameters collectively, i.e. , to
use a multivariate approach than considering a single parameter in its isolation. This
is the basis on which we proposed and pursued pattern recognition (PR) in acoustic
emission.

a:
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An AB signal available for analysis is a distorted version of the source waveform.
While the distorted version of the signal, v~riations in the behaviour of notionally
identical sources and statistical aspects of the experimental conditions give a random
character to an AB signal, the presence of pseudo AB sources and extraneous noise
signals further complicate the situation. Thus in some cases signal recognition itself
can become a difficult task. Under these circumstances, the concept of PR which
looks for meaningful regularities under otherwise confusing conditions has attracted
the attention of some investIgators in the AB community.

3. PATTERN CLASSIF1CATION OF AE SIGNALS

Pattern recognition by itself is a vast field. Often, the success of using the approach
depends upon understanding the data at hand and identifying a suitable method. In

the present context, we can start with a formulation that ABs are complaints generated
by materials in their own language and suggest the use of syntactic approach for
understanding the phenomenon. But, this would be highly involved' and too difficult
to handle as the basics of the kl:nguage itself are completely unknown. Thus, we are

left with statistical methods, either supervised or unsupervised, the underlying principle
being extraction of implicit information from data which has statistical variations and
is distorted and noisy. When we focus our attention on the general situations
encountered with AB data such as difficulties in generating a training set for analysis,
the advantages of unsupervised methods outweigh the supervised methods.

Blsley and Graham15 first reported the application of PR to AB signal analysis.
They used the peak amplitude in each of the seven chosen bands of the frequency
spectrum and the time of occurrence of an emission event as features to classify data
from bending experiments on graphite epoxy composite coupons. Detection of the
inherent classes (clusters) in the emission data was attempted by searching for dense

regions, well separated from one another, in the eight-dimensional feature space.

Hut ton et al.16 utilized PR to discriminate emission due to crack growth from
acoustic noise signals such as rubbing or fretting in fasteners with the objective of

automated detection of fatigue crack growth in aircraft structures. Using a combination
of time and frequency domain para~eters, they compared the performance of

commonly used classification. techniques Jike linear discriminant function, empirical
Hayes estimation and K-nearest neighbour rule and obtained classification accuracy

ranging from 80 to 90 per cent.

Chan et al.17 demonstrated the utility of PR techniques by successful application
of K-nearest neighbour rule, empirical Bayesian classification and linear discriminant
function for identification of stress corrosion cracking in aluminium, stainless steel
and alloy steel. Features were derived from time and frequency domain parameters

and statistical properties of the signals.

Michel et al.18 applied the ISODATA algorithm for analysis of acoustic signals
generated in sodium-cooled fast breeder reactor. Bae et al.19 also used the ISODA T A
algorithm to classify AB signals generated during mechanical testing of two types of
fibre glass composite materials. They attempted to model the envelope of AB bursts
by two different mathematical fu~ctions. Parameters obtained through least square
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fit were used for clustering the data which do not lead to any conclusive results.
However, when energies of various sub-frequency bands of 5 MHz width were used
as features, four distinct classes resulted.

Chan et aJ.20 applied linear discriminant function, minimum-distance classification
and K-nearest neighbour classification for sorting AE signals representing several
kinds of welding parameters under controlled shop conditions. Classification
experiments were conducted with thirty waveform features, and also with the best
features chosen from this set. Results revealed 95 per cent classification accuracy.

Murthy13 studied the feasibility of PR approach for AE signal classification through
several experiments with plain and defective tin and zircalloy specimens. Using a
combination of time and frequency domain parameters, a heuristic clustering algorithm
was applied to classify signals obtained from a plain specimen and two specimens with
different initial crack lengths of tin and zircalloy.

Graham and Elslerl used energies in each of the seven chosen frequency bands
as detected by a single transducer and the ratios of the energies in these bands as
detected by two transducers, as features to classify signals due to fatigue crack growth,
crack face rubbing and fretting. They could achieve an accuracy of more than 95 per
cent in discriminating fretting against crack growth or crack face rubbing using the
ratios of the spectral energies detected by the two transducers. An accuracy of more
than 90 per cent was achieved in separating crack growth events from crack face
rubbing using spectral energies detected at either transducer separately.

The investigations discussed in the preceeding paragraphs indicate that they are
more or less feasibility studies with limited scope. The Bayesian scheme, K-nearest
neighbour rule and linear discriminant functions used by Hut ton et aJ.16 and Chan
et al.17.20 are supervised procedures. These procedures require a sufficiently large set
of classified training samples truely representative of the various categories of signals
representing different sources. In most of the AE signal classification problems,
collection of such a training set is either impossible or impracticable due to the
non-availability of a priori information regarding the sources of the signals.

The unsupervised procedures (clustering) used by Elsley and Graham IS are

heuristic in nature and for practical AE signal analysis problems the computational
requirements of these procedures may turn out to be prohibitive. The
minimum-distance classification method20 suffers from the drawback that its success
depends on the choice of characteristic prototypes or cluster centres in the given data
set. The ISODATA algorithm used by Michel et aJ.18 and Bae et al.19 requires a
number of process parameters that depend on the knowledge about the category
structure of data to be specified. In the absence of such information, the investigator
has to experiment with various values of the process parameters to arrive at meaningful

results.

4. APPLICATION OF AE IN AIRCRAFf COMPONENT MONITORING

Failure of structural members under the action of fluctuating loads is known as
'fatigue failure'. A fatigue failure begins with a small crack. The crack usually nucleates
from a point of discontinuity in the material such as change in cross-section or a hole.
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Less obvious points at which fatigue cracks are likely to initiate are irregularities
caused due to machining, inclusions, etc. A fatigue crack thus nucleated, can grow
to critical size due to fluctuating loads in service leading to catastrophe if it is not
detected and attended to at some stage before it becomes critical.

Fatigue crack growth in critical aircraft components like aero engine mountings,
wing root attachments, undercarriage mountings, etc. during flight can lead to
catastrophic .failures. Cause of many fatal accidents in the past has been traced to
fatigue crack growth. Even in the recent times, failure of critical aircraft structures
due to cracks resulting in fatal accidents are not uncommon. So, there is a vital need
to continuously monitor these structures to detect the existence of growing fatigue
cracks. This demands a dynamic nondestructive testing (NDT) technique which can
continuously monitor critical assemblies and give suitable early warning before a
propagating crack reaches the limits of criticality.

Many of the conventional NDT techniques like radiography, eddy current and
ultrasonics are unsuited for detection of incipient cracks in some aircraft components
because of their poor reliability and the laborious process of scanning the entire
structure. For example, a crack present in the bottom face of wing spar can ea~ily go
unnoticed when the aircraft is on ground by any of the above mentioned techniques.
Moreover, these techniques cannot be used in detecting cracks located in inaccessible
locations in aircraft components such as wing root attachments, engine mountings,
etc. Naturally a dynamic technique such as AB is the obvious answer. But, certain
problems prevent the direct usage of the technique in the current state-of-the-art and
preforce further investigations. Currently, some investigators in the area are involved
in investigation to address this problem.

A major problem with AB technique in the context of in-flight monitoring of
critical aircraft components is that of detecting the true AB activity in the presence
of various spurious AB sources such as hydraulic noise, jet engine noise, aerodynamic

noise, electromagnetic interference, fretting, crack face rubbing, etc.

4.1 AE Monitoring during Fatigue Crack Growth in an Aero Engine Mount

An aero engine mount, a highly stressed structural member of an aircraft which
can be treated for all practical purposes as a typical pin joint is considered for the
present investigation. The complete experimental programme was planned and carried
out towards a Master of Engineering Project22.23. A study was carried out on different
types of aero engine mountings pertaining to Dart, Orpheus, RD-OF, RIIF, Goblin,
AI-2O and Avon engines and a typical engine mount of a jet engine pertaining to a
fighter aircraft was chosen for the study. In the present context, though different
engine mounts differ in finer design details, most of these can be generalised into
simple pin joint type of structures. So, a simple version of the mount was designed
keeping in view the overall geometric features. Fine curvature and stepping in the
fork end of engine mount were avoided. The simplified engine mount which is in two
parts, viz. , top bracket and bottom bracket secured by a centre pin is shown in Fig.
5. Thus the problem when brought down to the laboratory scale should consist of two
noise sources, fretting (friction between pin and the hole periphery) and crack face
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Figure 5. Aero engine mount.

rubbing (rubbing of crack surface due to crack tip plasticity effects), in addition to
the true AB activity due to crack growth.

4.2 Experimental Program

Three simulated aero engine mounts were fabricated with EN-24 (SAE 4340)
material. To obtain illustrative data for understanding the basic characteristics of the
material in relation to AE as well as to decide about the instrument settings, tensile
tests were also carried out. Further, the tensile tests also included experiments designed
for obtaining fretting data separately. The.engine mounts were subjected to constant
amplitude fatigue cycling using a servo-hydraulic test system (MTS) (Fig. 6). AE data
was picked up by using a 375 kHz resonant transducer, and was recorded on winchester{
floppy diskettes utili sing AET -5000 system. The sensors were mounted on opposite
faces on the bottom bracket of the engine mount well close to the centre bolt, the
likely zone of fatigue crack initiation. Fretting characteristics were obtained from
fatigue tests on engine mounts by suppressing the signals due to fretting with the
application of grease and use of teflon tape on the pin and noting down the
characteristics of the events that were eliminated. Further different load ratios were
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Figure 6. Experimental set-up.

used to obtain conditions of crack propagation and crack face rubbing simultaneously

and crack growth alone.

4.3 Classification and Source Characterization

4.3.1 Cluster Analysis of the Data

Each of the above data files was subjected to clustering by threshold-k-means
scheme. A four-dimensional pattern vector, with the four time domain parameters
RDC, ED, PA and RT as coordinates, was derived from each event data record.
Software developed with the city block distance (1! metric) as the similarity IJ1easure
was used. Number of clusters (k) in each of the data file was assumed to be four
corresponding to fretting, crack face rubbing, crack growth and any other possible
noise source. The initial threshold for the first stage of the threshold-k-means classifier
was computed from the maximum and minimum values of the four chosen features.
The results of classification for mounts 14, 17 and 18 are presented in Table l(a-c)
and the results for mounts 11, 12 and 25 are presented in Table 2(a-c).

Table l(a). Classification results for fretting files

File Test

394

10

15

97

4

4

Mount 14

Mount 17

Mount 18

Fretting

-do-

-do-

1798

123

1007

1306

113

945

1
1

43

No. Classification
of

events Ouster 1 Cluster 2 Cluster 3 Cluster 4
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Table 1 (b) .Classification results in tenns of percentage population of clusters

File Test

Mount 14

Mount 17

Mount 18

Fretting

-do-

-do-

1798

1~

1007

72.6

91.8

93.8

21.9

8.1

1.5

5.4

3.2

0.4

0.05

0.8

4.3

Table l(c). Classification results in terms of
cluster centres.

Cluster centres
File

Cluster 1 Cluster 2 Cluster 3 Cluster 4

4.62

26.02

87.24

3,96

2.84

12.92

92.58

1.42

2.26

8.45

96.07

1.14

20.29

166.51

92.54

11.97

10.1

65.9

92.7

3.9

13.06

104.00

92.00

7.53

63.23

347.88

94.27

18.77

9.50

117 .25

97.00

1.00

7.00

196.25

97.00

1.00

36

383

85

289

2

213

97

1

6.44

37.44

90.95

4.00

Mount 14

Mount 17

Mount 18

Table 2(a). Classification of events obtained for different tests by the
threshold-k-means method

File Test

Mount!! Crack

propagation

-do-

--do-

1212 521 408 221

Mount 12

Mount 25

1437

981

808

831

460

140

152

9

17

Table 2(b) .Classification results in terms of percentage population of clusters

TestFile

43.2 33.6 18.2 5.00Mount!! Crack

propagation

-do-

-do-

1212

1437

981

56.2

84.7

32.2

14.2

10.5

0.9

1.10

0.10

Mount 12

Mount 25
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Table 2(c). Classification results in terms of cluster
centres

(
Cluster centres

File

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Mountll 2.32

15.86

77.73

5.18

3.07

21.40

89.98

5.15

4.40

20.70

88.41

3.40

15.84

102.74

88.41

11.26

12.96

95.85

92.28

13.86

16.56

120.75

90.65

13.35

43.15

226.82

89.97

23.61

29.95

208.25

90.15

33.00

43.88

421.88

92.55

32.11

93.00

442.34

95.90

25.86

70.11

443.35

96.70

13.17

36

496

83

473

Mount 12

Mount 25

4.4 Discussion of Results

The results of the classification carried out on different files can be discussed by
dividing them into two categories. The first category consists of files (mount" 14, 17
and 18) which have fretting as the major source. The second category consist:. of files
(mounts 11, 12 and 25) have data recorded during crack growth and so the events
generated are due to all the three sources namely fretting, crack growth and crack
face rubbing.

To start with, let us take a close look at the first category (Table l(a-<:) to obtain
the characteristics of fretting in terms of event parameters. The first file (mount 14)
consists of a total of 1798 points. Out of these 1306 have been classified as one cluster
which is the most dominant with the cluster centre having the parameter values as
RDC = 4.62, ED = 26.02, PA= 87.24 and RT = 3.96. As can also be observed

from the table, the second dominant cluster has 394 points with different parameter
values. The other two clusters have insignificant number of points. In view of the
controlled conditions set up for the experiment, we should have had only one cluster .
But the second cluster has 394 points with different characteristics. This may be due
to a set of events belonging to fretting which have slightly different characteristics or
events which have entered the data due to an unknown source such as noise. So, for
all practical purposes we can consider the classification to have yielded one cluster
with the fretting characteristics.

Further examination of the most dominant clusters obtained for mounts 17 and
18 indicate that they are very similar to the most dominant cluster obtained for mount
14. So, th~se clusters can be reasonably identified with the fretting events. In other
words, the characteristic parameter vector for fretting can be represented as the mean
of the first cluster centres of all the three files (mounts 14, 17 and 18). Thus the
representative values of the parameters for fretting are RDC = 3.59, ED = 18.37,
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Table 2(c). Classification results in terms of cluster
centres

Cluster centres
File

4.4 Discussion of Results

The results of the classification carried out on different files can be discussed by
dividing them into two categories. The first category consists of files (mount" 14, 17
and 18) which have fretting as the major source. The second category consist~ of files
(mounts 11, 12 and 25) have data recorded during crack growth and so the events
generated are due to all the three sources namely fretting, crack growth and crack
face rubbing.

To start with, let us take a close look at the first category (Table l(a-c) to obtain
the characteristics of fretting in terms of event parameters. The first file (mount 14)

consists of a total of 1798 points. Out of these 1306 have been classified as one cluster
which is the most dominant with the cluster centre having the parameter values as
RDC = 4.62, ED = 26.02, PA= 87.24 and RT = 3.96. As can also be observed

from the table, the second dominant cluster has 394 points with different parameter
values. The other two clusters have insignificant number of points. In view of the
controlled conditions set up for the experiment, we should have had only one cluster .
But the second cluster has 394 points with different characteristics. This may be due
to a set of events belonging to fretting which have slightly different characteristics or
events which have entered the data due to an unknown source such as noise. So, for
all practical purposes we can consider the classification to have yielded one cluster
with the fretting characteristics.

Further examination of the most dominant clusters obtained for mounts 17 and
18 indicate that they are very similar to the most dominant cluster obtained for mount
14. So, th~se clusters can be reasonably identified with the fretting events. In other
words, the characteristic parameter vector for fretting can be represented as the mean
of the first cluster centres of all the three files (mounts 14, 17 and 18). Thus the
representative values of the parameters for fretting are RDC = 3.59, ED = 18.37,
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PA = 91.02 and RT = 2.71 which can be used to identify the other two sources, viz.,

crack growth and crack face rubbing. The centre of the fourth cluster for mount 18
with 43 points seems to be resembling the fretting events except for a slightly higher
value of ED. Since the procedure has been implemented for k = 4, it is highly probable
that this cluster has resulted because of split of the first cluster (representing fretting

events).
The second set of files (mounts 11, 12 and 25) represents data collected during

crack growth. The results of classification are shown in Table 2(a~). The first important
feature that can be noticed in this set is that each file has more than one significant
cluster. Out of these, the ciJaracteristic features (cluster centres in Table 2(c» of the
first cluster are identical to the fretting features obtained in the previous section and
can be identified as events due to fretting. Thus, we are left with two significant
clusters for identifying the other two sources, viz. , crack growth and crack face rubbing.
Out of these, cluster 2 for all the three files is very similar to one another in all the
four parameters. In other words, these cluster centres are very near to each other in
the four"dimensional feature space and the events represented by them can be
attributed to the same category , crack growth or crack face rubbing. Similarly, cluster
3 for mounts 11 and 12 seems to be representing the same category of events. But,
cluster 3 for mount 25 seems to be quite distinct. However, it has insignificant number
of points (less than 1 per ~ent of the total number).

s. CONCLUSIONS .

Acoustic emission is a highly potential NDE tool which can cover a wide range
of applications. Methods and techniques have been established over the past few years
to locate and evaluate defects in relatively simple situations. But, its successful
utilization in.areas like in-flight monitoring still poses problems. This is primarily due
to deficiencies in AE signal analysis in the current state-of-the-art. Presently used
signal analysis techniques like the one-dimensional histogram analysis of the signal
parameters and study of cumulative activity are of limited use in complex situations
like in-flight monitoring where a major problem is to identify true AE activity due
to sources such as crack growth in the midst of various AE-Iike noises. The present
study indicated that this problem can be tackled through pattern recognition.

We attempted a practical application by classifying data taken from carefully
designed experiments in the laboratory oriented towards in-flight monitoring. The
data could not only be successfully classified but the characteristic features 0( each

of the individual sources also emerged out very clearly.
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