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ABSTRACT

In this paper some new mathematical techniques used in the design
and analysis of cipher systems have been reviewed. Firstly, some
modem cryptosystems like stream ciphers, permutation-based systems
and public key encryption systems are described and the mathematical
tools used in their design have been outlined. Special emphasis has
been laid on the problems related to application of computational
complexity to cryptosystems. Recent work on the design of the systems
based on a combined encryption and coding for error correction has
also been reviewed.

Some recent system-oriented techniques of cryptanalysis have been
discussed. It has been brought out that with the increase in the
complexity of the cryptosystems it is necessary to apply some statistical
and ctassification techniques for the purpose of identifying a
cryptosystem as also for classification of the total key set into smaller
classes. Finally, some very recent work on the application of artificial
intelligence techniques in cryptography and cryptanalysis has been
mentioned.

I. INTRODUCTION

The desire of man to keep his communications with some of his fellow beings
secret from others is almost as old as the communication itself. From times immemorial,
various methods including invisible writing have been practised for this purposel-3.
At the same time, it has also been a strong desire of man to read somebody elses'
secret writing. While the former process of keeping the communications secure has
been named as 'cryptography', the art or science of reading the secret writings without
the total knowledge of the method of secret writing has been termed as 'cryptanalysis. ,

Put together, cryptography and cryptanalysis have been given the name 'cryptology'.

Received 29 December 1989

39



40 I J Kumar & Meena Kumari

This discipline received great importance due to its military applications. It Bas been
recognised by various authors that cryptography and cryptanalysis are essentially very
highly mathematical disciplines. While in cryptography mathematics has been used
to ensure that a certain minimum effort (beyond the power of the adversary) would
have to be put in for reading the secret writing, from the angle of the cryptanalyst,
mathematics has been used to develop general methods of reading the secret writings
of a particular class (prepared by a given set of transformations) .More and more
sophisticated mathematical tools have been used in this continuous fight for supremacy
between the cryptographer and the cryptanalyst. Starting from the simple substitution,
mono- and poly-alphabetic substitutions and various kinds of transpositions, the
cryptosystems based on composite and randomised permutations, block enciphering
and bit by bit encryption by non-linear binary sequences came into being. Some of
these methods of cryptography were based on ensuring mathematically that a certain
minimum number of trials would have to be carried out by any adversary to get the
clear message. On the other hand, with the development of fast computer systems,
more and more sophisticated algorithmic and analytical approaches were developed
to meet the challenge of cryptography. While the choice of means of securing one's
messages depends upon the available technology, the ease of the m&nagement of key
distribution and various other factors, and the methods used by the cryptanalyst have
certain short cuts available based on some inherent mathematical or statistical
structures in the crypts as also the information about the system of encryption. This
information available to the analyst is mainly the (a) knowledge available about the
system, (b) compromise of plain and cipher text, or (c) a large amount of cipher text
only to provide information about the system.

In what follows, some of the very recent methods of encryption pointing out the
requirements for these systems to be secure and the mathematical tools to ~nsure the
security of these methods are discussed. On the cryptanalysis side, some methods
aJ'plied to certain cryptosystems are discussed. Some general methods based on pattern
recognition and"Key classification have also been touched upon.

In section 2.1, stream ciphers based on linear feedback and non-linear
feed-forward shift registers bringing out mathematically the requirements of the
systems based on this philosophy to have good crack-resistance have been dealt. The
generation of the binary sequences using feedback based on Boolean functions is
discussed in section 2.2. Section 2.3 formulates some properties of permutations and
how the cryptosystems based on this philosophy are designed. Some public key
encryption systems based on factorisation of large composite numbers and the knapsack
functions are discussed in section 2.4. Elementary complexity theory has been discussed
with a view to point out its use in evaluation of cryptosystems in section 2.5. The
recently formulated problem of combined encryption and encoding for error correction
has been discussed in relation to public-key systems and the stream ciphers in section
2.6. Section 3.1 deals with some specific cryptanalytic methods of attack on some of
the systems discussed above. Some applications of the methods based on pattern
recognition and artificial intelligence (AI) in cryptanalysis are discussed in section 3.2.
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2. CRYPTOGRAPHY

2.1 Stream Ciphers

In Modulo-2 Addition Systems for secure communication, the message sequence
is added bit by bit modulo-2 to a randomly generated sequence. Thus for a message
sequence {a(n)} and the randomly generated sequence {b(n)} we get the encrypted
sequence as { a(n)}+ {b(n)}= { c(n)} .This is the principle of stream ciphers. The design
of such systems therefore, basically depends on ensuring certain characteristics in the
generated sequence. These characteristics are listed below:

Large period: For every key, the sequence should have a very large period so
that no part of enciphering sequence { b(n) } is used repeatedly within a reasonable time.

Complexity : Given a segment of the sequence, it should not be ~ssible to predict
the following segment. The complexity of the sequence is measured in terms of length
of the sequence required to predict correctly the rest of the sequence.

Good statistical properties: To ensure proper distribution of ones and zeros in
the sequence and also good autocorrelation properties.

Variability : A large amount of variability to ensure that a brute force attack
becomes infeasible.

The above properties ean be ensured in a binary enciphering sequence generated
by a well-designed shift register. The properties of the shift register sequences lend
themselves to analysis through a number of mathematical methods like the linear
algebra and the theory of difference equations. A binary sequence {a(n)} generated
by r-stage shift register satisfies the linear recurrence relation

a(n)=cla(n- 1)+c2a(n -2)+ +cra(n -r)

H

where C; for i=1,2, ,ris lor O according as the ith register is or is not involved in
1he feedback circuit. There are three methods of studying the linear recurring sequence
generated by shift registers, viz., (a) algebraic method, (b) matrix method, and (c)
classical method4. If J(x) is the characteristic or the feedback, polynomial of the
generated binary sequence {a(n)}, the maximal period of {a(n)} depends on the
irreducibility of J(x) over the Galois field, GF(2). If J(x) is a primitive polynomial
over GF(2), then it generates the. maximal period. Number of primitive polynomials
of degree r is 4>(2r-l)/r, where 4> is the Euler 4> function. This gives the variability of
sequences generated through a linear r-stage feedback shift register. By applying m
linear transformations successively to generate a sequences, we can increase the period
of the sequence m times to m(2r-l) and also there is increase in the variability of the

system to~-l- m+!.
The classical method is based on the result of the analytical theory of difference

equations6, according to which the general solution of linear homogenous r;iifference
equation with constant coefficients can be represented explicitly in terms of the roots
of the characteristic polynomial. Selmer4 represented the sequence generated by a
feedback shift register as a linear recurrence in terms of the roots of the characteristic
polynomial. Based on this representation, Key' analysed the increase in the complexity
of non-linear feed-forward sequence in terms of the increase in number of roots of
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the generator polynomial. These roots of the generator polynomial are formed by
taking the products of roots of the characteristic polynomial. This process of
multiplication of the roots of the feedback polynomial, taken a fixed number at a
time can easily be understood in the general setting of the theory oJ matrices8. The
distinct products of the roots of the feedback polynomial are actually the roots of the
minimum polynomial of the compound matrix formed from the companion matrix of
the feedback polynomial. This property holds good for all the cases when the feedback
polynomial is an irreducible polynomial or a power of an irreducible polynomial.
Using this property Meena9 has proposed a unified method of analysing the complexity
of binary feed-forward sequence generated by any kind of generator and any level of
feed-forward logic. The generators of the non-linear feed-forward sequences are the
products of the various factors of the minimum polynomial of the compound matrix
and the feedback polynomial. This approach enables us to predict the maximum as
well as all other possible complexities of non-linear feed-forward sequences for any
level. If the feedback polynomial is primitive, then one can attain the maximum
complexity (equal to the period) of the sequence as well as sufficient variability by
applying non-linear feed-forward logic in layers. One can also ensure good statistical
properties in such sequences by using a Langford arrangements.

A Langfordarrangement is an arrangement of numbers 112233 ggin a sequence
(without gaps) in such a way that for b=1,2,...,g the two hs are separated by exactly
b placeslo.

It may be seen from Table 1, how, by applying a number of logics successively and
using non-linear feed-forward logic based on Langford arrangements, highly complex
binary enciphering sequences with good statistical properties and large variability can
be produced.

'"

Table I. Comparison or characteristics or sequences

Number of sequences of maximum

period (variability)

NLFFS's with Langford

arrangement in slayers

2r-l 2'-1
Maximum

complexity

Good

(2'-1) I!> (2'-1)/r~ 1Q4for r=10

2
(2'-1) 1!> ~ (1: 'Cn ) ~

r n'l 2

{ sum of Langford arrangements for

each layer
~ 101° for 5=9

m(2r-l)Multilogic generator
(m logic on r-stage

generator)

Goodmr

2.2 De Bruijn Sequences

Removal of the restriction that the feedback logic be linear (involving only
modulo-2 addition of certain bits) increases the number of maximal length shift register
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sequence of degree n from <I>(2n-l)/n to exactly 22n-1- n (this formula was discovered

by N.G. de Bruijn). This astronomical increase in the number of good sequences
justifies, in itself, the quest for a non-linear shift register where apart from modulo-2
addition, multiplication and complementation of bits is also permitted.

The non-linear shift register sequence of maximal length 2n is called de Bruijn
sequence. In order to ensure that the sequence should achieve the length 2n without
cycles, its logic is to be of the form11

8k=/(8k -n'8k -n -1' '8k -J+8k -D.
De Bruijn sequences satisfy the first two randomness characteristics but its

autocorrelation is a three-valued function.
C(O) = 2n

C(k) = O l<k<n-l

C(n) ~ O

The value of C(n) is small in most cases. As against sequences generated by linear
shift register, no analytical estimates are available for shorter cycle lengths and it is
therefore important to stick to maximal length sequences. In fact, the distribution of
cycle lengths for fixed initial vector and variable logic is a flat distribution for all
lengths between 1 and 2D, Golomb's suggestion about the generation of all de Bruijn
sequences based on preferenceYfunction technique had the drawback that a large
amount of storage was needed in any mechanization of generation of sequences from
preference tables.

Games12 constructed a class of de Bruijn sequences of degree n+ 1 from two
(perhaps different) de Bruijn sequences of degree n, thus generalising the earlier work
of Leach 13 and LampeP4. Etzion and Lampeps have given two algorithms for generating

two classes of de Bruijn sequences. First algorithm generates 2k. 8(D. k) sequences of

period 2Dusing 3n+k.g (n,k) bits of storage where k is a free parameter in the range
l:E;k:E;2D-4)/2 and g (n,k) is of order n- 21og k. The second algorithm generates about
2;'4 sequences of period 2D using about n2/2 bits of storage space. Games and Chan16
have discussed the complexity of de Bruijn sequences. Etzion and LampeP7.18
constructed de Bruijn sequences of given minimal complexity for its use in stream

ciphers.

2.3 Permutation-Based Systems

Permutations of n objects number Ul. which is an exponential function of n. Such
permutations offer therefore a very good basis for design of cryptosystems with large
variability. The possibility of implementing randomised permutations through an
electromechanical rotor system led to design of machines like Enigma and Typex
during World War II. It is necessary to discuss some very basic results of theory of
permutation group which have a direct bearing on the design and analysis of such
systems.

The set of all permutations of n objects forms a group p a of order II!, in which
the product of two permutations A and B is obtained by first carrying out A and then
B. The group Pa is called19 the symmetric group of degree n. A permutation Cwhich
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shifts m objects cyclically (m < n) is called a circular permutation or a cycle of degree
m. It can be shown that every permutation can be uniquely resolved into cycles which
operate on mutually exclusive sets of objects. This resolution is unique save for the
order in which the cycles occur and for the alternative ways in which each cycle may
be expressed. If n is the degree of the permutation and J.ll' ~, , J.lr the degree of

the cycles then,

Jll+~+ +"=n'..r

2.3.1 Class of Permutations

Thus every pennutation of degree n is associated with a partition of n into positive

intC!en namely the degrees of the cycles iDto which it is decomposed. Two

pennutations which correspond to the same partition ar.e said to belong to the same

class of p a. Two pennutations A and B of degree n are said to be similar (or conjugate)

with respect to Pn if there exists a pennutation S in Pa such that B=S-1 AS. It can be

shown that two pennutations are conjugate with respect to Pn if and only if they

beleng to the same class.

If G is a group with elements ~, g1' and M a group of matrices mo' m1' such that for each ~ there corresponds an mi and also the product of two ~s corresponds

to the product of the corresponding mis then we say that M defines a representation

of a. Matrices which are transfonns of one another are calJed equivalent matrices.

It is known that the equivalent matrices A and B"1 AB have the same characteristic

equation. Hence it follows that to a class of permutations, as defined above, there

corresponds a class of matrices which have the same characteristic equation. The spur

of a matrix which is the sum of the diagonal elements is called the character of the

representation. All the members in the class have the same character and the group

characters satisfy orthogonality relation20. The clas.-; structure of pennutation groups

can thus be studied more easily through representation theory using matrix algebra.

The class structure of the permutations forming a permutation group are not only

important for design and analysis of the crypto machines based on rotors but also

basic to cryptography in general and many other physical applications. A masterly

exposition of such structures has been given by Bhagavantham and Venkatar

A rotor (wired code wheel) is the basic building block of a permutation based

system. It is an insulating disk on which electrical contacts, one for each letter of the

alphabet, are placed uniformly around the periphery on each side of the disk. An

internal conducting path through the insulating material connects contacts in pairs,

one point on each side of the disk. An electric current enters on the left hand side

of the rotor cross..section and emerges at one of the contacts on the right hand side

of the rotcr. l'hus the rotor implements a permutation electrically. This is the

permutation of alphabet set from one side of the disk to the alphabet set on the other

side. Rotating the rotor counter clockwise k places yields a second substitution defined

by nk=C- k,r;ock where Ck and C- k represent the shifts through k points in counter

clockwise and clockwise directions and no is the initial permutation.

Rotor systems are built using a number n of rotor permutations n1' n2' ' nn

and by rotating the individual rotors after encipherment of each plain-text letter,
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effectively changing the rotation displacements by kt, k2, , kn shifts. The
cryptographic transformation is obtained by the composition of the n rotors

C-ki7tjCki l<j<n
O<k, <mI

where m is the cardinality of the alphabet set22.

In order to achieve randomness in the shifts kl, k2, , kn a mechanism called a
set of notch points is used. Notch points are identified with the letters against which
they appear on the metallic frame containing the rotor. When the latter is in motion,
a notch point induces a shift to the adjacent rotor also. At all other positions of the
motion, the adjacent rotor remains stationary .A very complicated set of polyalphabetic
substitution is thus generated through rotor-based systems. The famous Enigma and
Typex machines belong to this category. These machines, although of World War II
wintage, are still considered secure.

Permutations can also be implemented electronically. A 64-bit block cipher based
on modulo-2 additions and permutation of 32-bit blocks called DES (data encryption
standards) has been discussed in literature at length. The system was cleared by the
National Bureau of Standards (NBS), USA for data security23 .

2.4 PubUc Key Encryption System

Recently a new class of cryptosystems have been discussed in literature. Such
systems are fairly secure and it is not necessary to securely distribute the key used
for encryption operation. Such systems have been named as public key cryptosystems.
Mathematically speaking, such systems are based on one way functions. A function
F{X) is a one way function if (a) it is easy to compute F{X) given X in the domain
of F, and (b) it is hard to find Xif any Yis given such that Y=F{X). Two sub-classes
of one way function, namely, the knapsack problem and the factorisation of a large
number have specifically been used in the design of Merkle-Hellman Trapdoor
Knapsack System and the RSA Public Key System respectively. The RSA systems
makes use of the following result.

If R=pq, where p and q are distinct primes and </J(R)=<P-l)(q-l) then x"'(R)=l
(mod R) for x which i~ not divisible by either p or q. The RsA cryptosystem is based
on the selection of two large (about lOO digits) prime numbers p and q and calculation
of R=pq. We then select the random value e (less than R), such that the greatest
common divisor of e and </J(R) is one and solve congruence de=l{mod </J(R)} such
that O < d < R. This is a simple procedure requiring O(log R) operations. For this
scheme the public encryption key is kl=(e,R) and the secret decryption key is k2=d.
In order to send a message to B on this system, the sender A sends on the channel
C=Ekl (M)=Me (mod R) where O < C < R. B calculates D(C)=~=Med=M (mod
R) and receives M ulliquely as M<R. There is a very simple and fast method of doing
this whictt takes O(log E) operations to complete. The security of this scheme depends
on the difficulty of factoring R. The problem for the cryptanalyst is therefore, to
factor R and to calculate d in order to obtain the original text. There are large number
of factoring methods currently known24-26 but the most powerful of these methods
requires about e ""ag N lag lag N operations to factor N. A very fast computer (capable
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of carrying out an operation in 1<r9 seconds) might require about 4 x 1~ years to
factor 200 digits numbers.

The other scheme of public key encryption is the Merkle-Hellman Trapdoor
Knapsack System23. The knapsack problem is: Given a set of k-rods of various length
a1' ~, , ~ find a sub-set of these rods that exactly fills the knapsack length
5~al+~~+...+~. If 5 is the length of the knapsack, then 5=alx1+~+...+
~xk=A.x, where x;=0 or 1. Merkle and Hellman have used the idea that it is e~
to compute 5 from vectors A and X but it is computation ally infeasible to find X
given 5 and A , to design a cryptosystem, which is a public key system described below.

Choose a vector "1' = (a;, a~, ) such that each element is larger than the sum
of the preceeding elements, for example, "1' = (2,6, 14,31,61). Choose any integer
msuch that > ~a~. Choose wsuch thatgcd(w, m)=l. Compute W-l such that WW-1 = 1

C.' ---(mod m). Compute a = a '.w (mod m). Then each user makes vector a public and
keeps "1' , wand m secret. In order to encrypt, we convert the message into binary
form, say by using TP code or ASCII code and divide it into blocks of 200 bits. Let

-;t ---
a block be denoted by A. .Compute 5= a. x. Then 5 represent the crypt of x. Each
block can be enciphered in the same way. To decrypt, the designer knows, "1' , w,m, W-1.
From 5 he computes 5' = 5.w-1 (mod m). Knowing 5' and "1', to compute vector-;
is an easy knapsack problem. For example, if "1 = (14 42 98 90 46) and-; =
(1 1 0 1 0), then encryption 5=14+42+90=146. Decryption 5' = 146 x 109
(mod 127) = 39, here w=7, w-1=109, m=127, -;'=(2,6, 14,31,61). Since 39<61
~ Xs=O, 39 > 31 ",. x4=1,39-31=8<14~x3=0, 8>6~x2=1, 8-6=2~x1=1. Therefore
decryption can be easily obtained. It requires 2200 trials to compute 7 if -;, , wand
m are not known. The above scheme has not been used in any military system because
of the following two reasons.

(i) In spite of the progress in VLSI technology , it is still difficult to implement
these systems with desirable parameters so as to achieve appropriate

security.
(ii) No definite proof of the computational infeasibility has been achieved.

May be in future someone might develop new methods that can be used to factor
numbers of a certain type. It should not be forgotten that till today no such thing as
proveably secure public key system exists. This aspect has been discussed in the next

section.

2..5 Complexity of Cryptosystems

Looking back at various cryptosystems just discussed, namely the stream ciphers,
permutation-based systems and public key systems, it comes out that the basic concern
of the cryptographer is to ensure some minimum effort to be necessary to get the
message out of the crypt. In order to achieve the above aim each system is designed
to have two components, namely, an algorithm say E, and key k. The crypt is forme.d
by applying E to a message M with key k. The crypt C is therefore, given C=~(M).
M can be achieved from C by authorised person knowing the key k by applying the
inverse tranform and getting M=E; l(q. For the cryptanalyst the effort to get M
consists of two parts, i.e., getting the inverse algorithm E- 1 and the key k. The
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minimum effort to get the message M is ensured by making the inverse algorithm
hard and making the set k of key very large. Even the knowledge of the algorithm
makes it necessary for the cryptanalyst to try a large number of keys. While in
symmetric systems the encryption and decryption keys are the same and are secured,
in public key systems a part of the key is made public and other part is secured. In
systems discussed above, one can achieve the desired minimum effort by adjusting
various parameters. However, it is necessary to study the application of computational
complexity theory to put the classification of cryptosystems on a firm basis. We say
that a cryptosystem is unconditionally secuf"e27, if the cryptanalyst cannot determine
how to get M regardless of how much cipher text and computer power i5 made available
to him. The only system of this type is 'One Time Pad'. Unfortunately such a system
requires a key length equal to that of the message and therefore cannot be brought
in general use. One has therefore to content with systems which are computationally
secure. In such systems, the cryptanalyst cannot solve a message in useful time even
when provided with very large computational power. The above notions can be put
on a firm basis of computational complexity theory .

The problem of determining the complexity of an algorithm is related to two
important aspects, (a) the most efficient methods of obtaining the solution of a
problem, and (b) the number of operations needed to perform this task.

It is necessary to define certain terms before going deeper into this question. We
say that a function .t(n) is O(g(n» if there exists a constant C such that .t(n) < C 19(n)1
for n~O. The polynomial time algorithm is defined to be an algorithm which solves
any instance of a particular problem in time O(p(n» for some polynomial function p
of the input length n. Any algorithm, where time requirements are not so bounded,
is called an exponential time algorithm. Denoting the class of all problems which can
be solved by polynomial time algorithm by P, we find from Table 2 that for small
values of n, a given polynomial function can accede a given exponential function.
However, as n increases, the exponential function will greatly accede the polynomial
function. The problems which are not in P are termed as hard or intractable28.29. Let
NP (non-deterministic polynomial) denote the class which consists of all problems
such that any guess solution of any instance of the problem can be checked for validity
in a period of time which is O(p(n». For example, the factoring problem is NP because
any guess for any factor of n can be checked for trial division and division is a problem
in P. This also is the case with the solution of a particular instance of the knapsack
problem to be checked by addition, which is a problem in P. Thus the knapsack
problem is also in NP which can be easily seen in P, as a sub-class of NP. An important
unsolved problem in complexity theory is whether P=NP. If this is not the case, it
proves existence of the problem for which really no efficient method of solution can
ever be developed. A very remarkable result concerning this question has been the
discovery of a special sub-class problem of NP called NP complete or N PC problems.
If any problem on NPC can be shown to be in P also, then P=NP. The knapsack is
one of the several problems which have shown to be in N PC. If anyone could develop
any polynomial algorithm for solving this problem then polynomial algorithm exists
which will solve all problems in NP. Despite the fact that there are still a number of
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Table 2. Polynomial and exponential functions for various n

l{n) Type n=l ~ n=5 n=10 n=20 I
n=2

2

4

8

4

2

n=50

Polynomial

Polynomial

Polynomial

Exponential

Exponential

1

1

1

2

1

n

n2

n3

2n

1Jl

5

25

125

32

120

10 20

100 4000

1000 8000

1024 1048576

3628800 2.4329xl018

50

2500

125(XX)

1.1258x1015

3.0414xlQ64

important unanswered problems in complexity theory , we have the means of identifying
what are the hard problems. Naturally it would be desirable to base the encryption
techniques on these problems.

This idea of using computationally intensive problems in the design of
cryptosystems seems to be very attractive. However, Shami~ has shown that there
are a number of difficulties associated with doing this.

(i) Complexity value deals with worst possible case of any problem which
could be only one or few instances. A cryptosystem however should not
be secure sometimes but always.

(ii) It is difficult to quantify the complexity of crypto problems because the
exact amount of information available with the cryptanalyst varies from
time to time.

(iii) It is not always possible to convert any particular difficult problem into
a cryptosystem.

It has been shown by Even and Yacobi31 that the problem of breaking a public
key cryptosystem is not as hard N PC problem. Thus, at the moment, the complexity
theory is inadequate to demonstrate the computational infeasibility of any
cryptosystelD:. The only method currently available for the evaluation of a
cryptosystem, even at design stage, is to ensure that even under the most favourable
circumstances for the cryptanalyst, the problems of finding the message under the
cryptogram is computationally very expensive.

2.6 Combined Encryption and Encoding

The transmission of encrypted blocks of data over noisy channels requires an
additional step of error correction coding. This. has led to the problem of joint
encryption and coding for error correction. This problem can be formulated either as
encoding problem followed by encryption or encryption followed by encoding.

Mc Eliece32 used the first approach and designed a public key cryptosystem based
on algebraic coding theory using t-error correcting Goppa codes. Recently Rao and
Nam33 introduced a new approach to the private key algebra coded cryptosystems
using only small distance ( d<6) codes. This scheme results in a very strong
cryptosystems with high information rate and low overhead for encoding and decoding.

Considering the approach of encryption followed by encoding, Kak34 described
a method based on D-sequences. D-sequences are obtained in expansion of a fraction
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or a rational number and are decimal sequences to arbitrary basis. He used the scheme
for secure and error- free transmission of the keys in Diffie- Hellman encryption system .

In the present context of broad band communication, it is essential to introduce
a technique of error-free transmission for stream ciphers. Here the bit encryption is
followed by blockwise encoding. After encryption, the message sequence is encoded
for error correction using (m, k) block code by dividing the encrypted sequence into
blocks of k bits and then adjoining to each k bits of this sequence (m-k) parity bits,
which are the linear combination of the k bits.

It is known that the capability of error correction depends upon introduction of
redundancy into the sequence which goes against the property of unpredictability or
complexity required for a good encrypting sequence. Thus the addition of redundant
bits for error correction appear to affect the security adversely. However, a deeper
analysis by Kumar and Meena35 has shown that, breaking the encryption sequence
(generated by a primitive polynomial of degree n) into block& and then introducing
the redundancy bit~ for error correction actually increases the complexity of the
encryption sequence from 2n to 2mn provided some care is taken in selection of the
block size. The above result is derived by making use of an earlier result ofBerlekamp36.
A number of problems in the field of combined encryption and coding have been
discussed in a recent monograph37.

3. CRYPT ANAL YSIS

3.1 Some Systems Dependent Approaches

In the context of availability of the plain and cipher text of sufficient length (this
in stream ciphers means availability of the encryption sequence), an important method
of attack is to evaluate a minimum Boolean function for which some of the bits are
considered known and the rest are taken as no-care conditions. Let N bits be available
from the systems. We may choose S such that (N-S) bits are considered as known
bits and S bits considered as no-care conditions. A Boolean function which satisfies
the given N bits in this way may generate further bits leading to the continuation of
the given meaningful message. Based on the algorithm of Quine38 and Macluskey39
presented in HU40, Bedi41 has established a method of analysis for stream ciphers and
has applied the same to a number of shift register based systems.

Although the cryptanalysis of the German Engima machine which is a World
War II vintage rotor-based system, has been mentioned in a number of publications42,43,
the methods of attack used on such machines are still classified. Some general methods
of attack on such systems deserve attention. Konheim44, Andleman and Reeds45, and
De Laurentis46 are important contributors in this area. The method of Andleman
and Reeds is based on considering the cipher text C, as a sequence of random variables
generated by a probability distribution Pr( C, K) parameterised by the key k. The
problem of cryptanalysis is thus reduced to a statistical point estimation problem,
where the parameter is to be estimated in the key. Using an efficient iterative
maximisation technique with convergence properties given earlier by Baum and
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Eagon47, the authors have illustrated the use of the technique to rotor-based systems
as well as to substitution permutation networks.

The advent of public key encryption systems based on factorisation of composite
numbers into primes and the knapsack problem have created a new interest in number
theory .A number of attacks have been suggested on the RSA System48.49 and

Merkle- Hellman Systems50.51.

3.2 Application of Pattern Recognition and AI Techniques

The present day electronic cipher systems are characterised by highly non-linear
systems with a very large number of keys. In such systems even when the cryptanalyst
has complete knowledge about the algorithm, a bruteforce method to try all keys is
impossible even on the fastest computer. Any attack on such systems must therefore ,
aim classification of the keys in smaller sets and the capability to reach the correct
sub-set for any given cryptogram. To achieve this mathematical and statistical
techniques based on pattern recognition, cluster analysis and other classification
techniques52-57 can be applied. The problem of the cryptanalyst is further compounded
if the intercepts come from a mixed source using more than one cryptosystem with
no apparent clues to segregate them. Rao58 and Khanna59 have developed a number

of techniques to segregate the traffic based on pattern learning.

To formulate the cryptosystem identification problem as a pattern recognition
problem, a crypt is expressed as a set of d real numbers Xl' Xz, X3' ' Xd. Such a set
of measurements is called a pattern x and the individual components are features
taken from the crypt such as single and digraph frequencies and jumps between two
successive letters in the cryptogram. Any pattern can be represented as a point in a
d-dimensional Ecludian space called the pattern space. A pattern classifier is a device
which maps the points of the pattern into category numbers 1, 2, 3, , R. The decision

surfaces of any pattern classifier can be implicitly defined by scalar and single valued
functions containing r members, gl(X), g2(X),...gR(X) called discriminant functions.
These discriminant functions are chosen such that for all x in the ith category

8i(x»Sj(X), i, j=l, 2,...R and i*j. The decision surface separating contigious regions
i and j is given by 8i(x)-Bj(x)=O when R=2, we obtain g(X)=gl(X)-g2(x) and if g(x)
is positive, we place x in category 1 and if g(x) is negative we place x in category 2.
A large number of patterns (crypts) are chosen whose desired classification (system
of encryption) is knowA. Discriminant functions are chosen which perform adequately
on the training set and then these discriminant functions are used to predict the

category of the unknown pattern.

Let Mi represent the prototype vector of the ith category, such as the mean
feature vector obtained from the training set. A minimum distance classifier places a
pattern x into that category which is associated with the nearest of the prototype
points. The minimum distance classification can be effected by comparing the values
of the expression for various x in the above expression 8;(x)=M;x-1/2M;M; for
i= 1, 2,. .., R and selecting the largest value. In this expression M; is the transpose of M;.

Apart from the above, another important and useful method is the probabilistic
method of discriminant functions. Let the parameters in each R categories be
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probability function ]1(Xl1), i=l, 2,..., R and ]1(1) which denotes the prior probability
of the ith category .

Let ).(i,j) be the loss incurred when a machine places a pattern belonging to
category i. For any specific X, we calculate the conditional average loss LAX) and
place X wherever the loss is minimum. Define the loss function ).(i,j)=l -t5ij where
t5;j=l and t5;j=O for i~j then LAX)=]1(X)-]1(Xl1) .]1(1) and minirnising LAx) means
maxirnising ]1(Xl1) ]1(1) and therefore 8i(X)=]1(Xl1) ]1(1).

In case X is normally distributed with mean vector M and covariance matrix 1:
and taking 1:=1:.=1:., i.e., assuming same covariance matrix for an groups.I J 1 1

]1(Xl1) = 21f1/211:11/2 exp[( -2(X-M;)'1:(X-M;»)]

After estimating the parameters M; and ]1(1) for each category , an unknown
pattern is placed in that category, where the discriminant function yields the largest
value.

As newer and more complex systems are given for analysis, more sophisticated
methods of discriminant analysis had to be developed. One such approach is based
on misclassified observations. In this approach, as a second stage, discriminant
functions were developed based on misclassified patterns of one category and the
original patterns of the other category and exact rules for classification were framed.
This method is found to be very useful when there is a structure in the patterns and
ordinary linear discriminant analysis has limitations in dealing with such data59.

In another approach the data sets were partitioned into different sub-sets based
on the norms of the vectors in all the categories. Discriminant functions were then
developed for each range of the norm and an unknown pattern is classified by
computing its norm to select the appropriate partition and then applying the associated

discriminant function.

Very recently the techniques of artificial intelligence have been applied in
cryptography and cryptanalysis. Carrol and MartinOO have used expert systems to
break simple substitution ciphers. These expert systems have used knowledge based
on language characteristics. The authors have suggested the extension of such system
for solution of polyalphabetic systems using regression analysis to separate out the
segments of the text enciphered in each component alphabet. Kumar et 81.61 have
suggested AI based systems for design of stream ciphers and for automatic location
of the correct English text. The authors have also suggested Discovery Systems based
on AI techniques to discover the statistical laws for classification of N keys into
approximately VN classes in any cryptosystem. The theoretical and practical
difficulties connected with uncertainty in Induction Systems have been discussed by

Kumar62.

4. CONCLUSION

In this paper we have reviewed a number of techniques used recently for
cryptography and cryptanalysis. While most of the techniques used in cryptography
are based on discrete mathematical structures and number theoretic concepts,
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cryptanalysis of systems based on these techniques require additionally the application
of statistical and classification techniques. The development of public key system has
led to renewed interests in the classical problems of primality testing and factorisation.
There are a number of open problems in the application of the results of complexity
theory to the evaluation of cryptosystems. The design of systems using combined
encryption and encoding is another promising area of research work. Application of
AI techniques in cryptography is also bound to become a very important area.
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