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ABSTRACT

In this paper the effects of mechanical stress on the refractive,
absorptive and the rotatory properties of crystals have been considered
with particular emphasis on the role of crystal symmetry. Stress-induced
optical activity and the photoelastic behaviour of transparent, weakly
absorbing and metallic crystals have been discussed. Piezooptia of
polycrystalline media has also been briefly dealt with.

1. INTRODUCTION

It gives us great pleasure in writing this article on piezooptics to a volume to
remember Prof. S. Bhagavantam, who made so many important contributions to this
field.

Stress-induced birefringence was discovered in 1816 by Brewster. The
phenomenon of photoelasticity in crystals- wherein the changes of refractive properties
under stress are considered - was studied thoroughly by Pockels’.  A serious error he
had made in the photoelastic properties of crystals having certain symmetries was first
pointed out by Bhagavantam2 almost four decades later. He also gave a simple
experimental method of detecting the differences in the behaviour of two cubic
photoelastic classes which Pockels had overlooked. Indeed it was this work which led
to the revival of experimental and theoretical interest in this field. Stress-induced
optical activity was discovered by Ranganath and Ramaseshan3.  The photoelastic
behaviour of metals and absorbing crystals led to piezoabsorption being used to
understand the band structure of semiconductors. The photoelasticity of polycrystalline
aggregates and composites was the subject of a series of studies. Then came the
important advance made by Nelson and Lax4 who pointed out that the body rotation
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suffered by crystals under shear displacement alters some of the photoelastic
coefficients in uniaxial and biaxial crystals - an effect particularly important in
extracting photoelastic coefficients using Brillouin scattering techniques. Since 1980
the photoelastic constants of many semiconductors are being measured because such
measurements may reveal the dimensionality of the covalent network in crystalline
and amorphous materials. In this article, we shall briefly review some of these.

2. PIEZOREFRACTIONS

2.1 Photoelasticity

In a homogeneously deformed body, the effect of the deformation is to alter the
parameters defining the laws of propagation of light in the medium. It is therefore
necessary to choose a proper optical property that alters with stress or strain. In a
transparent medium placed in an electric field E, the distribution of charges (in the
atoms and molecules that constitute the medium) is altered, inducing an induction
D, which is given, in a linear model, by

D = [c]E (1)
The components of [E], the dielectric tensor, are real and positive. Alternatively

E = [a]D with [a] = [# (2)

where [a] is the index tensor. Both [E] and [a] are symmetric tensors of rank two
whose tensor surfaces can be represented by general ellipsoids. Along any direction
s in the index ellipsoid, two waves are propagated with their vibrations linearly
polarized parallel to the principal axes of the central elliptic section drawn normal to
the direction of propagation. The relative indices of these two waves are respectively
equal to the corresponding semi-axes of the central elliptic section. When the crystal
is stressed or strained the index ellipsoid deforms, but it continues to be an ellipsoid
with changes in its dimensions and orientation, with respect to the index ellipsoid of
the unstrained crystal. We shall denote the changes in components of the index tensor
by naii.  This may, in a first order theory be expressed aS a homogeneous linear
function of the components of stress or strain

A+j = -iju  X” or A a, = Pijki 41 (3)

where J$ and xii are stress and strain tensors of rank two. q;jk, and piik, are fourth
rank tensor symmetric in i, j and k, 1. These equations can also be written in the one
index form as

Aq=-q$l$  o r A4 =Pij? (4)

Unlike the elastic constant tensor, the tensors qij and pii are not symmetric in
i and j. Consequently the number of independent constants may be described by a
6 x 6 matrix which in the triclinic class will have thirty-six independent components.
This number would however be less for crystals containing various elements of
symmetry. Pockels’  classified the thirty-two point groups into nine classes, according
to the number and the nature of surviving constants. This was shown to be erroneous
by Bhagavantam2 who showed that the thirty-two point groups fall into eleven classes,
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the so-called Laue symmetry groups, which are obtained if an additional inversion
symmetry is introduced. Bhagavantam’ later pointed out that it is possible to distinguish
the different photoelastic classes by the study of tilt, if any, of the principal planes
when stress acts along the principal axes of the index ellipsoid. One may easily
distinguish the two photoelastic classes in the case of cubic crystals. For a stress along
the cube axis in point groups 432, m3m,  43m  cube the crystal becomes uniaxial, while
in the point groups 23 and m3 it becomes biaxial. For a general direction of stress,
the optic axial angle in the cubic crystals is independent of the magnitude of stress.
While in other classes the optic axial angle depends on the magnitude of stress. A
measurement of stress-induced birefringence in different geometries yields the
photoelastic constants. The principle that photoelastic constants can be determined
from the apparent decrease of magneto-optical rotation (Ramaseshan and
Chandrasekharan6) was used to determine the photoelastic constants of the optically
active crystals of NaCfO, (point group 23) by Ramachandran and Chandrasekharan’.

MuelleI.8 gave an elegant method for determining the ratio of photoelastic
constants in cubic crystals based on the Raman-Nath theory’ of light diffraction by
ultrasonic waves. When ultrasonic waves are transmitted through cubic crystals, due
to the strains, every volume element becomes birefringent and for light travelling
perpendicular to the ultrasonic wave, the birefringence can be obtained from the
index ellipse which is a section of the index ellipsoid normal to the direction of light
propagation. Detailed analysis shows that for a plane wavefront of linearly polarized
incident light at a general azimuth, the different orders of diffraction are again linearly
polarized, but the direction of polarization is different in different orders. A
measurement of the rotation of plane of polarization in the different orders with
respect to that of the zeroth order gives the ratio of the photoelastic constants. This
method has been extended to optically active cubic crystals by Vedam and
Ramachandran”.

2.1.1  Second Order Effects

Pockels’  linear laws of photoelasticity are valid only at small stresses and strains.
Recent measurements of the variation of refractive index with hydrostatic pressure
up to 7 k bar (Vedam, Schmidt and Roy”) have revealed departures from the linear
law. The second order theory has been developed by Vedam and Srinivasan who
worked out the number of non-vanishing second order constants for all the thirty-two
point groups. There are 126 piezorefraction coefficients in a crystal of triclinic
symmetry. As the crystal symmetry increases this number decreases.

2. I .2 Secondary Photoelasticity

We have so far discussed primary photoelasticity. But it must be remarked that
in piezoelectric crystals there can be an indirect photoelastic effect due to the stresses
and strains accompanying the electric field. This secondary effect is not always
negligible. This phenomenon is also referred to as false photoelasticity.
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2.2 Photoelasticity in Polycrystalliie Aggregates

2.2.1 Transmission of Light in a Stressed Aggregate

A polycrystalline aggregate consists of randomly oriented crystallites.  The
problem of light transmission through a polycrystalline aggregate has been considered
by Raman and Viswanathan’* and later by Ranganath and Ramaseshan13.  The
crystallite size is assumed to be larger than the wavelength of light. When a plane
wavefront  of linearly polarized light falls on such a medium, the incident light enters
the first crystallite and as the light beam passes through the stack, the polarization
state continuously changes. The emergent light from the polycrystal, therefore, consists
of light beams polarized in different states; they are also incoherent as they travel
through optically uncorrelated paths. Part of the incident intensity would be lost in
intercrystalline boundary reflections.

A ‘polycrystal’ consisting of optically isotropic particles would also be optically
isotropic. When this aggregate is stressed by a uniaxial load each of the constituent
particles becomes optically uniaxial, with the axis of symmetry coinciding with the
stress direction. Therefore, the polycrystal as a whole will behave as an optically
uniaxial crystal with the axis of symmetry along the stress direction. The photoelastic
birefringence introduced in the medium would be exactly same as that found in a
single particle. On the other hand, one finds. an entirely different behaviour when
particles are produced from a cubic crystal. Such particles though optically isotropic,
are photoelastically anisotropic. We find the principal axes of the index ellipsoid to
be generally tilted with respect to stress axis and this tilt varies from crystallite to
crystallite.

As the stress-induced birefringence is small, we can justifiably. neglect, in this
analysis, intensity loss due to intercrystalline reflections. A light beam of intensity I,
ellipticity (oO  = tan-’  b/a) and azimuth &, is analytically represented by the
four-component Stokes. vector

I
I

&=I&os2w,cos2&7
M, C,= Z,cos2w,sin2&

a, =

I

(5)

2 h=bsin2w,

where &,  is the intensity of the completely polarized part. Also 13 I, depending upon
whether the light beam is partially polarized (inequality sign) or completely polarized
(equality sign). When the light beam passes through an optical system a0 changes to
a& the two being related by the equation

6’ = [m] 0, (6)

where [m] is the 4 x 4 Mueller matrix. For a polycrystal, we find to a first order in
6 the crystallite phase retardation.



Pierooptics of Crystals 5

[ml= 0 ”
1

1 0 0 0 :q
; ;

0 &j
-N8 (7)

0 0 NJ 11

where 6 is ;he spatial average of ~3~~.  Therefore, the polycrystal is linearly birefringent
with a phase retardation r$ per unit thickness given by

4=:&j (8)
In other words, the photoelastic birefringence of the medium is the average of

the stress-induced birefringences of the various crystallites. It is clear that this is
equivalent to averaging the photoelastic tensor itself.

2.2.2 The Average Photoelastic Tensor

To find the average photoelastic tensor, we must know the stresses acting on the
crystallite. But the elastic response of a polycrystal depends crucially on stress or
strain.continuity  across the grains. As early as 1889, Voigt14  calculated the elastic
constants of polycrystalline media assuming strain continuity with discontinuous stress.
Reuss”, on the other hand, computed the elastic constants of tht  aggregate assuming
stress to be continuous. It may be remarked that both the Voigt (strain continuity)
and Reuss (stress continuity) conditions have their innate deficiencies. In the former,
the forces between the grains will not be in equilibrium, while in the latter, the grains
will not fit together (Hill’6).  This means that the Voigt condition leads to intrinsic
instabilities while the Reuss condition leads to voids in the aggregate. In both these
procedures crystallites are assumed to be randomly oriented, (i.e., with no preferred
orientation) and data on single crystals are used to compute those of the polycrystals
(see also Bhagavantam”).

Since the stress optical constants of the aggregate can be measured when the
crystallites are transparent, it appeared to us that this may be yet another approach
to this problem of stress or strain continuity. One has to work out both the elastic
and the photoelastic tensors under the Voigt and the Reuss limits. One gets the
interesting result that the photoelastic constants are very much more sensitive to stress
or strain continuity than the elastic constants are.

For the Voigt condition x, is assumed to be same for all crystallites and one has
to average ciiu to get the average stress. ~ij”)  gives the average birefringence in this
case. On the other hand for the Reuss condition xU is assumed to be the same for all
crystallites so that the average strain and birefringence are obtained from the averages
Of  t%jd and tejd*

Though for a single crystal @) = (qJ (cmj)  and (qJ  = (p,)  (hj), these relations
do not hold, however, for a polycrystal. Agam we know that (ajJ  and (CT;) [ = (4j)-‘]
correspond to stress continuity in the medium while @) and (~~j) [=(4)-l]  correspond
to strain continuity in the medium. Hence a,,, C~j = ph are the strain optical constants
for stress continuity and&,,  $Aj = qij are the stress optical constants for strain continuity.
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We have calculated the elastic and photoelastic constants of randomly oriented
polycrystalline aggregate of alkali halides from the experimental values for single
crystals. As these are cubic crystals, the equations get further simplified. Ranganath
and Ramaseshan”  found

A1’4,; P**=%  and  P,‘Pk (9)
Interestingly from the average elastic tensor of the polycrystalline aggregate, it is
known that

S,,  < sii; (Sir  + ZS,,)  < (& + 2$,) and S,  < S& (10)
This result has been theoretically established by I-IilI16.  It would therefore be important
to find a theoretical basis for the inequality found in the photoelastic behaviour of
the polycrystalline aggregates.

Experimentally, the quantity (& - PI21 or (& - d12) (i.e., P$ or h as the
medium is isotropic) can be easily obtained rather than the individual components.
To determine the sensitivity of the elastic and the photoelastic constants to stress or
strain continuity, we define a parameter f given by

f = 2 (~~ -~~j)  / (~~ + ~;j) (11)

where & and ~~j are the ijth components of elastic or photoelastic matrix for strain
or stress continuity. For the elastic constant [Q],  the maximum value of f is 0.5.
However for the photoelastic constant [q,+,],  the highest value of f is 8.0. Therefore,
we conclude that the photoelastic birefringence is very much more sensitive to stress
or strain continuity than the elastic constants are.

It must be remarked that a similar study by Flannery and Marburger”,  in the
limit of the crystallite size-being much less than the wavelength of tight, has also
shown some interesting piezooptical effects. They show that the polycrystalline
photoelastic constants not only deviate appreciably from the single crystal value, but
@ii - &) may also change sign relative to the single crystal value.

From the simple model presented here it can be argued that, to a fair
approximation, in a polycrystalline aggregate consisting of crystallites immersed in an
isotropic medium like glass or plastic, the net photoelastic constant of the aggregate
can be obtained from a simple mixture rule given by

where x is the fraction of the volume occupied by the crystallites and pIj and p,!i  are
the photoelastic constants of the crystal and the matrix respectively.

3. PIEZOROTATION

If one discards the assumption that the components of the tensor relating D and
E are real then

E =  [a]D-4GJD (12)

If there is no dissipation of energy, then [G] is an antisymmetric second rank tensor.
Mathematically [q can be replaced by D, a vector operator. Therefore
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E = [a]~-ir  x D (13)
This implies a rotation in the plane of polarization, which would therefore, depend
upon the direction of propagation in an anisotropic crystal, and it could be expressed
as a linear vector function of s the wave normal.

r= [VJS 04)
[v] may be called the fundamental optical activity tensor, which need not be symmetric,
i.e.,

vjj # vii (19
And the optical rotation p can be written as follows :

P'BijsiSj (16)

where b] is symmetric and

(17)

where n,,,  is mean refractive index.
The variation of optical activity with hydrostatic stress has been observed in

quartz, benzil, and NacIo,  (Myers and VedamaD), but the components of the tensor
describing the phenomena was not obtained. In the first order phenomenological
theory of piezorotation, change ingj, that is Agj,  is a linear function of stress or strain.

A4j = -l$ju X,., or Ag = Siiu  xu 08)

I$,.,  and Siiu are symmetric in i, j and k, 1. Agj is a second rank axial tensor while
JQ,  and xU are second rank polar tensors. It can be easily shown that Riiu and qj,.,
are fourth rank axial tensors. They exist only in non-centrosymmetric classes. The
tensor components may be called piezorotatory coefficients.

Group theoretical methods may profitably be applied to determine the number
of independent piezorotatory coefficients in any crystal system. It is found that
piezorotatory coefficients are non-vanishing in non-centrosymmetric classes, while
they vanish in centrosymmetric classes. A most unexpected result obtained, is that
the groups 4mm,  3m,  6, 6m2,  6mm,  ?3m which do not show optical activity have
piezorotation coefficients. The physical significance is that stress induces optical activity
in these classes (Ranganath and Ramaseshan3).  Another interesting result is that
crystals belonging to the same photoelastic class get further classified by piezorotation.

The non-vanishing coefficients for all the twenty-one non-centrosymmetric classes
are given in the Table 1. For point groups in column 1 [Riiu]  tensor is of the same
form as [qti,J  the piezorefractive tensor. Column 2 gives cases of optically active
classes where [RJ and [qijM]  differ. Column 3 refers to cases which are normally
optically inactive.

Even in the most symmetric of the point groups ?3m,  this stress induced optical
activity is not easy to observe, since we cannot escape from stress-induced linear
birefringence. Thus piezorotation can be seen only along the optic axis of the stressed
crystal. Careful analysis shows that the stress should not act along any symmetry
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direction. Only then one may reveal the effect along the optic axis. Generally
photoelastic birefringence is small and sometimes it even vanishes at a characteristic
wavelength. In these systems at such wavelengths, stress-induced optical activity can
be more easily observed. The effect can even be demonstrated beautifully in another
way. We subject the ?3m crystal to an ultrasonic stress wave propagating along (100)
direction. Then at the wavelength of zero photoelastic birefringence, an incident
circularly polarized plane wavefront travelhng along (010) emerges as a sinusoidally
corrugated wavefront. This results in the familiar Raman-Nath diffraction pattern
which will have totally different intensities for right and left circular waves. This is
attributable to stress-induced optical activity. On the other hand, a plane wavefront
of linearly polarized light gets split into two differently corrugated wavefronts of
opposite circular states. This results in a Raman-Nath diffraction with the different
order elliptically polarized. This is in striking contrast to diffraction when only
photoelasticity is present, where the different orders are linearly polarised.

4. PIEZOABSORPTION

If [a] is complex but the system absorbs light, then

E = [AID = ([a] + qb])D (19)
It is quite easy to show that [b] represents the absorption property of the solid

if it is a second rank symmetric tensor. This may in general be again represented by
an ellipsoid. If one is to describe the propagation of light in an absorbing crystal one
has to consider the central elliptic sections of the index and absorption ellipsoids,
normal to the direction of propagation.

In uniaxial crystals the two ellipses have their principal axes parallel; but this is
nor necessarily so in the general biaxial case. When absorption is present refractive
index is complex given by A = R - ik or t = E - fi then s=,z-k2andq=
2nk.  In a general crystal

eii  = nip npi  - kip kpi,  qj = 2nip  kti

The effect of stress or strain on an absorbing crystal is to distort the index and
absorption ellipsoids. In the first order theory we can describe these effects by

where w] and [9] are fourth rank photoelastic tensors with complex components.

It may be mentioned that in 23 and m3 cubic class with stress along (110) and
direction of observation (100) both the elliptic sections are tilted with respect to the
direction of stress. Thus we have two photoelastic classes in absorbing cubic crystals
as well. The tilt of the absorption ellipsoid is different from that of the index ellipsoid
(Fig.1).  The method of measuring the piezorefractive and piezoabsorption coefficients
requires a measurement of birefringence and dichroism (Ramaseshan, et al.*‘).

We can similarly think of piezoabsorptive rotation or piezorotatory dichroism
when 9 is made complex. Here also we find stress to induce circular dichroism in
the six point groups which exhibit stress-induced optical rotation.
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(iii)

(ii1

(iv)

IAGt-jt-I
I

Figure 1. Sections of the index ellipsoid  (full line) and absorptioo ellipsoid (dotted line).

(i) before deformation; (ii) after deformation in isotropic and all  cubk  crystals
with  stress along (111) and (100); (ii) Tand Tb class with  stress plans  (110)
and direetioo  of observation (100).  Note the tilt of both the elliptic sections
with respect to direction of stress; and (iv) same as (iii) but in Td, 0 and
4 chsses  with no tilt in principal  planes.

5. PIEZO-FARADAY ROTATION

Skaggs and Broersma have found stress to alter Faraday rotation in crystals. This
rotation tensor given by f is asymmetric unlike the classical optical rotation tensor
4 which is symmetric. Thus  results in transverse Faraday rotation, i.e., magneto optic
rotation perpendicular to the magnetic field, in the point groups 1, i,2, m, Urn,  3,3,4,
3, 4/m, 6 6, and 6/m (Ranganath”). Under stress f changes and the phenomenon
can be described by a fourth rank polar tensor & which is not symmetric in i, j.
Also we can expect transverse Piezo-Faraday rotation in classes exhibiting only classical
Faraday rotation in the unstressed state. A problem closely connected to this
phenomenon was studied by Bhagavantam, the effect of stress on the optical properties
of magnetic crystals. Magnetic crystals in general show a Faraday-type of rotation.
Interestingly, in certain magnetic point*groups,  the magnetic symmetry forbids this
effect. Bhagavantam has found the surprising result, that in these point groups, Faraday
rotation is induced under stress. This effect has been predicted in cubic crystals
belonging to m3 and m3m.
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6. PIEZOROTATION IN POLYCRYSTALS

The extraction of Piezorotation and Piezo-Faraday rotation components would
be generally difficult due to the Piezooptic birefringence that always accompanies the
measurements. The optical rotation has to be measured along the optic axis of the
stressed crystal. In view of this limitation, only a few of the tensor components can
be extracted. However, as we have already seen a polycrystalline aggregate has a
simple photoelastic behaviour which can be exploited to get more tensor components.
A measurement of rotation along the stress direction yields an average of tensor
components which can be used as additional data.

7. PIEZOOPTICS DUE TO BODY TORQUES

So far we have expressed the deformations in the index, absorption or gyration
surfaces as a linear function of the stress or strain components. However, what we
really impose on a crystal is the displacement gradient uij. If we express deformation
as a linear function of this parameter, then

A  qj  = &I  ‘k.1

This can be rewritten as

A aij = P~H xkl + @kl  ekl

where xkl and e,, are the symmetric and the antisymmetric strain tensors, i.e.

4 = 1/2(uk,, + u,,k)

eH = lR  bk.1  - ul,k) WI

and pijk, is the piezooptic tensor already discussed. The effect of ekl is to bodily rotate
the crystal. When we compute the contribution of this body rotation to Aa,,  we get

As is to be expected, pijkl  is antisymmetric in k 2 1 interchange of indices. In a static
experiment however, this is a very trivial effect which can be taken care off. Nelson
and Lax4 have pointed out for the first time, that the effects of such body rotation
cannot be ignored when the shear strain is inhomogeneous as in an acoustic wave.

It is easy to see that pGkl  does not exist in isotropic and cubic symmetries. In
lower symmetries we find some of the piezooptic constants to change. For example,
in uniaxial crystals it changes pea, while in the orthorhombic symmetry pu, pSS and
pM get altered. It is also clear that these corrections will depend on aii. Hence it would
be very important in highly birefringent crystals.

Nelson and Lazay”  have experimentally demonstrated that these corrections to
the classical piezooptic constants in the case of photoelasticity are measurable through
Brillouin scattering. It is easy to show that in the case of an uniaxial crystals with the
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incident light propagating along the crystallographic x-axis and with the electric field
polarized along the unique z-axis, the scattered intensity as seen in the x-direction
for the y-polarization state and in the y-direction for the z-polarization state, are
entirely different, due to this rotation effect of the crystallites.

8. PHOTOELASTIC PHASE-MATCHING IN HARMONIC GENERATION

It is well-known (Schubert and Wilhelmiz4)  that in optically nonlinear media for
an efficient generation of a higher harmonic, phase-matching is a very important
criterion. For example, for second harmonic generation in uniaxial crystals, the
ordinary (or the extraordinary) refractive index for the fundamental wave should be
equal to the extraordinary (or ordinary) refractive  index for the second harmonic.
This is generally achieved by sending light along a particular direction of propagation.
In uniaxial crystals that have just missed the phase-matching conditions, one can, in
principle, phase-match the waves by applying a hydrostatic stress or a uniaxial stress.
Stress changes the ordinary and extraordinary indices and may even alter them by
the right amounts. Incidentally, from the practical point of view, it is desirable to
have this direction of phase-matching perpendicular to the optic axis. There are
possibilities that an apptication of stress may even change the direction of
phase-matching to this orientation. Measurements of photoelastic constants together
with their frequency dispersion are therefore very valuable for these applications.

9. LIGHT SCATTERING AND PIEZOOPTICS

Generally piezooptical constants are measured using a transmission technique,
i.e., by studying the light beam coming out of the material. It is well-known (Welled
and Chandrasekhara#)  that stress birefringence can be detected by scattering
techniques. This has been applied to the study of photoelastic stress (Srinath2’)  as
well. Here one observes light scattered perpendicular to direction of the main beam
which is usually very intense. This method can be used to demonstrate the differences
between the two photoelastic classes in cubic crystals. For example, let the incident
light be a circular wave travelling along the cube edge and the crystals are compressed
along the cube edge. In one case the crystal becomes uniaxial about the stress direction
so that the main wave remains in the same polarization state all along its path. Thus
scattered light will be uniformly in the same polarization state. On the other hand,
in the second cubic class, the crystal becomes orthorhombic with the cube edge(s) as
the symmetry direction(s). In this case the incident wave undergoes changes in
polarization state as it travels through the material, so that the scattered light will
exhibit a fringe pattern which will be particularly pronounced when observed along
the face diagonal (110). This is so because for this direction of transverse viewing,
periodically at certain depths the polarization is linear with the electric vibrations
normal to the direction of viewing. Separation between the fringes gives photoelectric
birefringence. Thus the presence or otherwise of this fringe pattern can distinguish
the two cubic nhotoelastic classes.
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10. PIEZOOPTICS OF 1D AND 20 CONDUCTORS

Crystals that show nearly metallic conduction along a direction or a plane have
been reported in recent times. The piezooptics of such systems do not appear to have
been discussed in literature. We shall briefly consider this phenomenon in the case
of uniaxial crystals.

In a simple phenomenological theory we can approximate these systems to have
a negative dielectric constant E (since k will be generally very much larger than n)
along the directions of metallic conduction. It then immediately follows that the
dielectric or the index tensor cannot be any more represented by a closed surface. It
will be in general a hyperboloid of one sheet in 1D and of two sheets in 20 metallic
systems. In these symmetries even the absorption tensor [b] cannot be represented
by a closed surface. It will be a cylinder for 20 and a pair of parallel planes for 1D
metallic conduction in crystals of uniaxial symmetry.

In piezooptics we look at deformations of such tensor surfaces. The symmetry
of the index and the absorption surfaces indicate that not all the components of @]
and [d]  need be complex. The piezooptic coefficients that represent certain
deformations of these surfaces will be complex. For example, in the hexagonal system
P33 or  433 and P31 or 431 will be complex for a 1D conducting crystal, while the same
coefficients will be real for 20 conducting crystals, which will have pri or q,l  and pi2
or q,* as complex quantities. Details of this phenomenon are being worked and will
be published elsewhere.

11. THEORY OF PIEZOOPTIC PHENOMENA

At present there is no satisfactory theory explaining the various piezooptic
phenomena in crystals. Attempts have been mainly focussed  on understanding
photoelasticity. Here too only in ionic crystals has any progress been made (Mueller28,
Ramaseshan and SivaramakrishnanB,  Srinivasan30  and Ranganath, et aL31)  .
Measurement of the photoelastic constant at various wavelengths in alkali halides has
revealed many interesting features. For example, sodium halides have negative and
potassium halides have positive photoelastic birefringence and in the later  systems it
changes over to negative values at shorter wavelengths becoming optically isotropic
at a wavelength characteristic of the material. In the photoelastic birefringence there
appears to be, a contribution not only from the lattice deformation, but also from
the splitting of the absorption bands of the crystal.

However, in covalent systems it has been argued (Weinstein, et aL3*)  that a
measurement of the following parameter

x
= Z,~j~&$l(Ei-l)

3”“,
(27)

indicates the dimensionality of the covalent network. They found x < 0 to imply a
3-D network. However, x > 1 implies a dimensionality less than 3-D. This is particularly
interesting since for Ge family x < 0, while for chalcogen-based molecular solids
x > 1. For compounds with IV-VI group elements 0 < x < 1. This situation is at
present beyond the scope of the proposed model.
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