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ABSTRACT

A mathematical model for assessing the damage to an aircraft due -
to blast from conventional ammunition has been developed. The
minimum distance of the point of explosion from the aircraft for its
permanent damage for a reference explosion has been obtained
depending upon the dimensions (thin plate or thin cylindrical shell) of
the structural elements. :

1. INTRODUCTION

A military aircraft is subjected to various mechanisms of damage in a warfield.
Among these, blast from the high explosive (HE) ammunition is a significant damage
mechanism. -Since the actual vulnerability of a part of an aircraft depends to a great

‘extent on its area of presentation, the aircraft’s structure is by far the largest of the
potentially vulnerable items as it consists of nearly 80 per cent of the entire presented
area of the aircraft. ‘ '

It has also been noted! that among the various damaging agents, the fragments,
incendiary and non-incendiary bullets cause negligible damage to the aircraft structure
while the vulnerability due to HE and HE incendiary shells varies. The aircraft structure
is highly vulnerable to rods and moderate to highly vulnerable to external blasts.

The chance of survival of an aircraft is influecnced by many factors, a major factor
among them is the inherent safety or invulnerability of the airframe and its components,
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apart from its flight performance, manoeuvrability, defensive armament, etc. It is the
expressed desire of procuring agencies for military aircraft to incorporate the principle
of minimum vulnerability in new design concepts within the limitations of overall
design requirements'. Since an aircraft is usually designed within narrow limits for
flight and landing loads, its structure can withstand only small additional loads imposed
by weapon effects. In this context an accurate analysis of blast effects becomes
‘necessary for the desiggers of new aircrafts.

A mathematical model has been developed to estimate the dynamic response of
two- different structural elements, namely a thin plate with prescribed boundary
conditions (such as simply supported or clamped on all edges) and a freely supported
thin cylinder subjected to explosive blast pulse. The thin plate model is expected to
provide a reasonably accurate analytic simulation of the response of the skin panels,
whereas the cylindrical model approximates the dynamic behaviour of entire fuselage
structure. ‘

2. THE MATHEMATICAL MODEL

2.1 The Thin Plate Model

We have modified Bauer’s formulation? for the non-linear response of thin elastic
plate to pulse excitations to take into consideration the blast loads with realistic -
parameters®. In order to obtain the results faster and more easily, the perturbation
method used by Bauer2 has,been replaced by fourth order Runge-Kutta method.
Further a yield criterion, based on von-Mises criterion has been incorporated which
indicates the onset of plastic deformation®. This may be used to predict the region of
permanent damage. The basic equations for large deflection of a thin plate subjected
to a time dependent pressure loading are?

v =E{(23§) -5 3;'2"}

T 32w = Plxy.0) % dw 321«* a2w 9% dw| (o
Viw + ph 2" D + - {3y2 aé“auz Py 2&:8)' axz?y} )

where w is the deflection of the plate of thickness h and mass density p;
D= Eh3/12( 1~)is the bendmg stiffness, Eis Young’s Modulus and v is Poisson’s ratio.

4 4
V4 gx -+ 2-.-‘2-55 + L. Y s is the biharmonic operator and t denotes the time.

¢))

-

and

Fis the Airy’sstress function defined by oF _ N 2 N, and - 9%

9y2 x axz &xay Nl‘ﬁ ’

N,, N,, N,, being th¢ membrane stresses.
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The externally -applied load has been taken to be the normally reflected blast
pulse (assumed to be uniform over a panel of small dimensions) given by the following
relations’ : .

p(x, y )= p(] - L)e‘“"" ' ' )

P = spg(grg + THE /(s +. D p ‘ @
[T N -

where P,, P, and P, are the reflected blast pressure for normal incidence, incident
blast pressure and ambient pressure respectively, and @ and t, being the wave form
parameter and blast pulse duration respectively (assumed to be same as those for the '
incident blast pulse). The values of the blast parameters may be obtained from the ‘
blast chart for conventional weapons or may be generated using Bode-type equatnons
Using the standard scaling laws, the results may be obtained for any given ammunition.

The problem lies in determining the Airy’s ‘stress function F and the plate
deflection w satisfying the Eqns (1) and (2) subject to the prescribed boundary
conditions. We have taken the panel bounded between consccutive pairs of stringers
and ribs as a rectangular plate. Following Bauer?, the solution has becn obtained for
both simply supported and clamped plates which may be appropriate for various
conditions occurring in the aircraft structure.

The boundary conditions for a simply supported rectangular plate of lcngth a,
width b and thickness h are :

dw 9w _+a
a":ro-vayz--0atx--:t2
P, %W -
w=0, aﬁ” =Oaty :bg- o )

whereas for clamped plate, these are given by : 7

w=0,%=0&tx= +4

2
M _ o b ' |
w=0, Y Oaty iz ©)

The mid plane displacements u, vin x and y directions respectively are

qu %:p_ a=p) _(aw)}
fEgl
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In accordance with the conditions :oocurrmg in aircraft structure, the panel is
considered rigidly framed®. Hence the edges of the plate have been ‘taken to be
immovably constrained, giving further the conditions :

u=0-§c-5- ’(’)atx-k-i:-z-

b ' |
v= =0aty = -, o :
0, 2L 4'3' Y Fg | : | (8)
The exact solution for large deflection in the general case is unknown®. Following

Bauer's formulation, approximate solutions may be assumed. which result in a
non-linear ordmary dnffcrenual equat:on in an unknown funcnon of time.

2.1.1 Simply Supported Plate

‘ Here the solution has been assumed in the form (sansfymg the boundary GOI'IdltIOﬂS
in Eqn ®)

Wy = w)cos-—cosﬂ , e

To separate the spaoe and time vanable the A:ry s stress funcuon is assumed in
the form ‘

Feyn=meo a0
Substituting the expression for w and fo:om Eqns (9) and (10)in th (1), we obtain

vipe = Eixt (cos 2, cbs 2”)
a

2a°b* b | an
Using Eqns (7-9), the exptessi()n for F* (x,y) is obtained as
22 (v .1 1. v
F*x,y) = == 32 [——--—-—--V2 {(—;; + bz)"z + (a — + -l-,-z-) 2}
T _?_Q -
_‘(b’ cos p + 2008 a2

Now, substituting the values from Eqns (9) and (12) into Eqn (2), the reszdue is
obtained as ;

R= [D;r ( L+ ——-) hf + ph’f] {cos %cos% + M—f’]

a? 8

1 (1. 2v 1Y . (1 209 1 2m :
[1 v’( * 2b2+37)+('&7°°37+b4°°s'7)] ’

s ,
cosacosb p(t)

(13)
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Employing thz-Galerkm method to solve Eqn (2) we obtain the condmon
j J’ Rm'&mﬂwyw o o u

Carrymg out the double. mtegratlon as mdtcated in Eqn (14), the equauon of
motion is obtained as ,

ph2F 4 _Qu(l " j £+ Eh‘ [u + 2 (az/bm

1-v?

2(l+b‘)]!3=}%”(') o S )

Once this non-linear équatlon i unknown time function K1) is solved, the stress

function F(x,y,t) and the dynamic deflection of the plate w(x,y,t) can be determmed‘ :

from Eqns (9) and (10) respectlvely
2.1.2 Clamped Plate

The approximate solution assumed in this case satnsfymg the boundary condition
in Eqn (6) is :

w(x.w)aw)cos’-"j,"—c<>s=’~’,,2 a6

The Airy’s stress function is again assumed as in Eqn (10) and substituting nto
Eqn (1), we get '

2 .4 2 2 2
VAF*(x, =_Ek= [ 27:x y = ny
(x.y) PYTE) cos , + co8 b +2cos o == cos b

+oosﬁa£+cos4:y+cos2 ccs—’ga-uos4 cosg-'b-‘z-]

a b a "7)

4
Adopting the same procedure as in the previous case, we get the equation of
motion as

~

l(m Dh a2  .a*),. Entzt |0+ 20(afb?) + (a b‘))
phzf"' [3 + zbg + 3‘—4-]! “ [[ . 8- V2) /

a

1)a* . 9 _a_4_ Aa*/bY (a"'/b“) .
*9 {b‘ *st et t U @b s Ao

@y 1] 16 | | ,
* {4+(a’/b’)1’}]’ B as)
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Once, this equation is solved, the stress function and the deflection of plate are
obtained from Eqns (11) and (16) respectively.

2.1.3 Method of Solution

Bauer’s original procedure suggests a perturbanon tcchmque to solve the
non-linear differential-equation arising in the equation of motion [Eqns (15) and (18)).
Due to inclusion of cubic terms, this became quite cumbersome and virtually
impractical for real applicationss Also, the perturbation parameter ¢ does not appear
to be less than unity as claimed by the author, hence the accuracy of Bauer’s original
solution remains doubtful.

We have proposed a numerical scheme using fourth order Runge-Kutta-Gill
method to solve Eqns (15) and (18), hence the deflection of the plate at any instant
is immediately obtained and may be plotted very conveniently using a computer. The
plate deflection and its velocity are assumed to be zero initially (i.e., {0) = f{0) =0).

2.1.4 Outset of Plastic Deformation

In order to accommodate the plastic deformation within the present theory, we
have proposed that with the increasing intensity of blast pulse, the deformation also
increases gradually with accompanying increase in bending moments and membrane
stresses. Visualising the outset of plastic deformation as the limiting case of the elastic
deformation at the yield point (dynamic yield stress in this case), the elastic relation
has been assumed to be valid upto this point. '

The yield criterion based on von-Mises criterion is given as*

N2 (N2 +N2 +N,N,+ 3N2)+ (M2 + N}~ MM, +3M2) -1=0 (19)

where N, = o h; M, = b2/4 o, being the dynamic yield stress of the plate material.
N, M, (k = x,y,z) are the membrane stresses and bending moments consistent with
earlier notations, and given by
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(20

At the centre of the plate,(l e,, at the point of maximum deﬂectxon), the yield
condition Eqn (19) becomes

_Y,s-—ﬁ’i‘-’ﬁ—-P @- V’)’f‘(t)+-f’(¢)] @

a*olQ v)2

The deformation remai’ns within elastic limit until Y, < 0, the onset of plastic
deformation is indicated at the moment when Y, = 0. The ultimate deflection at this
moment may be assumed to be initial values for plastic deformation.

2.1.5 Estimation of Permanent Deflection

As;suming a-symmetrical mode of plastic deformation, a thethod similar to the
method of Johnson and Mellor® has been used to estimate the plate deflection at the
moment when Y, = 0. For a simply supported plate this gives

W=MA o - (22)

604

where V, = initial velocity of plate, a’ = min(a,b). Similar rcsult may be obtained
for clamped plate also.

2.1.6 Comparzson wu‘h Crmcal Impulse Crtterzon of Damage

Sewell and Kmney have proposed a somewhat empmcal cntenon to predict the
failure of aircraft skin panels subjected to blast loading. This states that structural
failure under transient loading’ may be correlated to a eritical time duration where
the latter is assumed to be one quarter of the natural period of vxbration of the
structure. The critical 1mpulse is given by ,

CopN2 -
I, = (-g-) o, o @3

A pressure pulse having a duration of one quarter of the natural period or more,
and having an impulse at least equal to I will cause the rupture of panel at the
attachments. The minimum overpressure. required to inflict the damage is given by
the ratio of cntlcal impulse to critical time.
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2.2 Thin Cylindrical Plate Model

There are many serious difficulties in the analytical modelling for the dynamic
response of the fuselage structure of an aircraft due to the following reasons :

(a) The exact pressure distribution around a cylindrical surface is highly
non-uniform®, hence a rigorous evaluation of the structural behavmur is
_ very difficult (at least analytically).

(b) The fuselage structure being stiffened by ribs and stnngers. can be more
accurately modelledt as an orthotropic structure but this is not usable in

assessing the permanent damage as the yaeld cmenon is not known for this
type. of structure®.

To overcome such difficulties, some si'mplifying assumptions have been made :

(a) The pressure distribution has been assumed to be almost uniform around
. the cylinder. This assumption, although not realistic, gives reasonable
estimates for shell behaviour under smoothly varying asymmetric loads such

as thé one caused by explosive blast®.

(b) The cylinder has been assumed to be struct_urally isotropic in order to have
a consistency with the yield criterion available at this time.

The equation of non-linear flexural motion for a thin circular cylmder for large
deflection is 910 . :
: 3% 19%([ 9% a%w Fratw o P
DV‘w-o»ph—-—-z—-p(t)-o- &3[_&:2 > + 5 al Z&rayaxay (24)
together with the compatibility condition ’

1ot [(am)_ awow]
7g‘-’;vma ;3‘2 +[(M) -2 3y2] o @)

where w is the radial deflection, Ris the radius of the shell, thé other.notétions being
the same as those for thin plate model. The blast loading is as given by Eqns (3) and (4).

9ll

~ For freely supported boundary conditions (i.e., simple support without axial
restraints), the solution is assumed as ,

i

w = A(t) sin at,x sin B,y + -—A’(t) (1 - cos 2a,x) . (26)
where a, = mn/L,B,= /R. Substltutmg Eqn (26) inEqn(25) and mtegratmg,we get

. I 1 am ‘ 2 ~ﬁ2n2A3
F(x.,y, —_ .._.._.J....._..
(xy:).-.j/A‘—-(n 8. A cos2ﬂ,y+ e

sin SaLxﬂan _sin agsillﬁ-? + aA
OaZ+ B2 (al+pY? (a2 + BH*R

sin o x sin By :
wt ﬁ] @
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Now, substituting the values of w and F in Eqn (24), the expression for the residue
R is obtained as in the plate model.

Further the simplifying assumption was made that small perturbanons in the
loading function may be expressed as

P(x.y:t) = qo(t) sin 0 sin ﬁ& : | ; (28)

Employing Ritz-Galerkin metha(hd solve"foiiag, the following condition is obtained

J , I R(x.y,z) sin a,,x sin ﬁ.y dxdy 0 | ._ . (29)

Carrying out the mtegratwns as mdncated in Eqn (29), the equatlon of motlon is
obtained as -

i3, 2 a2y 4 NP 4"‘2 '
ph3+Ef{h @, +P), . On }A+Eh[3—"---———-——a"ﬁ L }A?

1201 - v?) | (a2 + B2PR? 16 2R*aZ + p2)?

s R O 1
+ B 16R? l(9a’+[32)z (a!,?.*-ﬂf)2

}A’ = go(0) @0

which can be solved by Runge-Kutta-Gill method as in the case of thin plate model,
using similar initial conditions. ‘

2.3 Outset of Plastic Deformatio_n

The yield criterion given in Eqn (19) is applicable for shells also*. The membrane
stresses and bending moments for thin shells are obtained exactly in the similar manner
as in the case of thin plates. An exphcnt relation for the ‘yield criterion is obtained
using Eqns (26) and (27), which can be conveniently accomodated in the computer
programme for the evaluation of the dynamic deflection w(x,y,f). .

3. NUMERICAL RESULTS AND DISCUSSIONS

31 Thm Plate

~ Forill ustratnon, we have consndered a square platc of strong alumlmum alloy
with 10 cm side and 0.25 cm thickness. The material. constants are as : Young’s
modulus E = 7.5 x 10'! dynes/cm?, Dynamic yield strength = 9.7 X 10° dynes/cm?,
mass density p = 2. 8 gmlcc, Poisson’s ratio v = 0.33.

The resulting pfessure pulse on this panel has been taken to be the reflected blast
pulse due to detonation of 1 kg TNT. The dynamic deflection of the plate vs time
has been plotted in Fig. 1. The minimum distance to cause permanent deformation.
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PLATE DEFLECTION VS TIME CURVE |

0 SIMPLY SUPPORTED PLATE
A CLAMPED PLATE

DEFLECTION

‘o.‘o L § N |
00E+00 205-0& loOE 04 6OE 04 BOE 04 1.0E-03 12E-03
‘ TIME

Figure 1. Respoilse of square plate of thickness 0.25 cm and dimensions 10 X 10 cm
vs time due to explosion of 1 kg of TNT at a distance of 123 cm from the plate.

is found to be 121 cm approximately for simply supported edgés and the corresponding
maximum deflection at the centre of the plate is 0.4568 cm. The corresponding
deflection of the same place with clamped edges is 0.277 cm.

" Taking the maximum initial velocity imparted to the plate as 5200 cm/s (as obtained
from Runge-Kutta-Gill algorithm), the maximum plastic deflection is found to be
0.52 cm;, which shows good agreement with our model. However, in the case of
clampéd plate, slight discrepancy is noticed. This might be occurring as the initially
assumed deflection. profile for clamped plates may not be as good enough as in the
case of simply supported plates. : :

Following the critical impulse criterion, lt is found that for this particular_panel

under consideration critical 1mpulse (L) is 4672.0199 dynes/cm? s, critical time (t,) is
nearly 2.011 x 10*s. . :
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’ Hence the ratio of the critical reflected overpressure to ambient pressure
(p/p,) = 5.4319 which corresponds to a critical distance of 130 cm fiom the point of
explosion. The corresponding blast duration ¢, is 7.5 X 107 s >> ¢, ensuring a potential

- damage to the panel under consideration. Keeping in view of the empirical nature of
this criterion, this is a reasonably good agreement with the proposed model.

3.2 Thin Shell
o

Here we have considered a thin shell of the following dimensions: length
= 10 cm, radius = 10 cm and thickness = 0.25 cm. The material constants and blast
loading data are the same as in the previous model. The non-lincar vibrational
behaviour is shown in Fig. 2. The minimum distance to cause permanent deflection
in this case is found to be 103.cm.

0.30._ " BLAST RESPONSE OF SHELL

0:25
0.204
0,.154
0.104

0.054

DEFLECTION

0.00 r :

-0.05

-0.10-

-0.15 4

0.0E+00 20E-04 4.0E-O4 6.0E-04 B.OE-04 1.0E-03 1.2E-03
TME

Figure 2. Response of a thin cylindrical shell vs time due to explosion of ) kg TNT at
a distance of 118 cm from the surface of the cylinder.
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