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ABSTRACT

In this paper, a method of solution and some numerical resu~s of
free vibration and buckling of composite laminates are presented. All
the edges of the laminates are assumed as simply supported. Ritz's
method of solution is used with deflection surface expressed in terms
of double series in Chebyshev polynomials satisfying the simply
supported laminate boundary conditions. The numerical results
obtained using the present analysis for isotropic as well as orthotropic
plate cases, are compared with the available results. A detailed
investigation on the natural frequencies and mode shapes of four-
layered, simply supported composite laminates made up of graphite
FRP is then undertaken. Numerical results for the first few frequencies
and the critiCal buckling values of symmetric and antisymmetric
Ilm1inates so obtained, are presented here.

I. INTRODUCTION

Use of laminated composite plates as an important structural element in modem
high speed aircraft and missiles has intensified the need to study the vibration ;ind
buckling behaviour of such laminates of practically suitable, skew and trapezoidal
geometries. It can be found in the literature that considerable attention has been paid
to solve the free vibration and buckling problems of isotropic, orthotropic as well as
the composite rectangular plates. Free vibration frequencies and the critical buckling
coefficients of parallelogrammic, isotropic as well as orthotropic plates with different
combinations of boundary conditions, under individual and combined loadings have
also received some attention in the past. However, practically no experimental as
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well as theoretical results are available in the literature on the frequency and nodal
patterns of composite laminates specifically of four sided non-rectangular geometries
which are of some relevance in composite construction of the modem aircraft. As
pointed out by Leissal it can be noted that very little work has been reported even
on the studies of isotropic plates of such geometries. Chopra and Durvasula2.3 obtained
the natural frequencies and mode shapes of simply supported symmetrical and

asymmetrical, isotropic trapezoidal plates using Galerkin method. The interesting
relationship as the eigenvalues of the isotropic plate being the square of the eigenvalues
of the membrane was exploited in their analysis for simply supported plates. However,
such-relationship ceases to exist for the plate even possessing a significantly low degree
of anisotropy. For the study of the behavioursof such plates, there is an imperative
need, therefore, to employ a general formulation using simple and economic solution

techniques.
In this paper, therefore, free vibration and buckling characteristics of a simply

supported general four-sided laminates are investigated while clamped laminate
analysis has already been carried out and reported earlier4. This laminate geometry is
first mapped onto a rectangular domain employing a suitable coordinate
transformation4. A general formulations based on elastic, higher order shear
deformation, thin-layered composite plate theory is used here. In this analysis,
trigonometJic functions are used for in-plane displacements (U, V) and rotations of
middle plane (P" Pv)' whereas a double series, expressed in Chebyshev polynomials
is used here as the assumed deflection surface for out-of-plane displacements.
Numerical results obtained for the isotropic plate cases using the present analysis are
compared first with previously published results.

2. MATHEMATICAL ANALYSIS

The governing matrix equation is obtained hereby using the variational method

of Ritz, employing the admissible functions for the displacements as

(I)

(2)

(3)

(4)

M N
U = l: l: 2Amn sin m77~ sin n1T1/

m-O ,,=0

M N
V = l: E 2Bmn sin m1T~ sin n1T1/

111=0 n-O

M N
fJ.. = l: l: 2C",n sin m1T~ sin n1T1/

m=O ,,-0

M N
.8y = l: l: 2Dmn sin m1T~ sin n1T1/

",-0 n-O

M N
W = l: l: E,nnX,n(~)Yn(1/)

,n=O n-O (5)

where xm((), y n(,,) are the generated functions in Chebyshev polynomials satisfying
the simply supported laminate boundary conditions and are obtained from the
equations as given by Chakrabarti and Joga Rao6,and Kamaf and Durvasula7 which
are reported here for the sake of completeness.
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Using the properties of Chebyshev polynomials as

"

,= 4.~~3
An-1, (&+1) = An+l. (&+1) + 2nAn.&and

Differential equation for a cylindrically orthotropic plate is given as

N-4
1:' [«{An,tttt + (3/2)(An-l,tttt + An+l,tttt) + (3/2)(An-2,tttt

n-O

+ 2An,tttt + An+2,tttt) + (1/8)(An+3,Cttt + 3An+l,tttt

+ 3An-l,tt~t + An-3,tttC) + 2(An-l,ttt + An,ttt + An+l,ttt)

+ (1/2)(An-2,ttt + 2An,ttt + An+2,tCt)}

-{An,tt + (1/2)(A,,-I,tt + A,,+I,tt)} + An,t]T n(')

N
= 1:' '\'{(5/32)All + (15/138)AII+I + (3/6'4)AII+2 + (1/128)An+3

11-0

+ (1/128)AII-3 + (3/64)An-2 + (15/128)An-I]TII(') (6}

By virtue of a:xisymmetry of the geometry and boundary conditions, it follows that
at the centre the conditions for such plates (at r. = -1) are

{7)

(8)

N
1:' AnTn(~) = O

n-O

N-3
1:' An,tttT n(~) = O

n-O

For a simply supported plate edge conditions to be imposed ( at r. = -1) are

(9)
N

2" AnTn(') = O
n-O

N-2
2" {An,tt + (1/2)(An+J,tt + An+l,tt)}T n(')

n-O

(10)
N -I

+ .8 1:' An,tT n(') = O
..-0

where

~' = pw2/D22 for, = :1:1; ~ = Drl/D22

for ~ = ::1:: 1

R R (D " D " D .' D " )/(D " D " D " D " )I"' = 1"'1 = 33 12- 13 Z3 II 33 -13 13

for, = ::1:1
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= /32 = (D33D[2 -DI~D2!)/(D22D3~ -D2!D23)

for "I = :1: 1
~

Equations (6-10) are of the form

[CI}][An -'\'[An = 0

which can be solved using eigenvalue subroutines and { Aj } can be obtained for
v-arious values of )..'

The admissible function which can be used for the displacement W is as

Xm(~) = E' AtT:(~)
1-0

y n(7]) = E' A}T;(1'J) ,
}-0 ' , !.:

where ~ and Aj are the coefficients of the shifted Chebyshev polynomials ~ and 1}

respectively. The coefficients Amn, Bmn' Cmn' Dmn and Emn in Eqns (1-5) are then
determined on minimising the Lagrangian L of the system as

(aLlaAm") = 0; (aLlaBm") = 0; (aLlaCm") = 0; (aLlaDm") = 0; (11)

(aLlaEm") = 0

Equation (11) then results in a set of linear, homogenous, simultaneous algebraic
equations of the form

r Arl
I Brl Erl

Crl

L Dr.

[8] -k~[M] =0

J

The elements of stiffness matrix [5] are expressed here7 in terms of stretching, bending-
stretching and bending stiffness matrices, mapped onto a sQ-uare domain employing
the mapping function [~] as

«1 «2
[Aq] =

OC3 «4

where

(15)

«1 = -a COS r/s1/[sin r/sJ(h2 cos r/s2 -bJ cos r/sJ)

+ cos r/sJ{bJ sin r/sJ -(a -b2 sin r/s2)}]

«2 = a sin r/sJ[sin r/sJ(h2 cos r/s2 -bJ cos r/sJ)

+ cos r/sl {bJ sin r/sJ -(a -h2 sin r/s2)}]

«3 = a(h2 cos r/s2 -bl cosr/sJ)/[bJ sin r/sJ(h2 cos r/s2 -bl cos r/sl)

+ bJ cos r/s1{bJ sin r/sl -(a -h2 sin 4sv}]
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~4 = a{bl sin 1/11 -(a -b2 sin 1/12)}/[bl sin I/IJ(b2 cos 1/12

--bl cos I/Iv + bl cos l/It{bl sin 1/11 -(a -hz sin 1/12)}]

a, bJ, hz, 1/11,1/12 as defined in Fig. 1.

(17)

r
with

YI

/ IJYI

~-=

L~IJX1//7llllll7 IJXIYI/
xI x

Figure 1 General quadrilateral laminate showing the coordinate axes and in-plane
stress system in terms of oblique components.

3. NUMERICAL RESULTS AND DISCUSSION

Numerical calculations for the critical buckling values, natural frequencies and
the corresponding modes for the four-layered antisymmetric laminates with simply
supported edges are obtained. These results are shown graphically as a function of
the ratio of the length of two sides, top and base of each laminate.

Natural frequencies and the critical buckling values of compOsite laminates are
obtained as dimensionless parameters. The buckling parameters for the example cases
are reported in Tables 1 and 2. The variation of the values of the frequency parameters
of these laminates are shown in Figs. 2 and 3. From these figures, it can be noticed
that as the general four-sided laminate configuration becomes a square, the pair of
vibration modes become degenerate. However, a slight asymmetry into a system is
found to remove this degeneracy .This feature of the laminates is in conformity with
the earlier observations on the degeneracy of these curVes for isotropic plate caseslO.
Similarly, the frequency crossings between pairs of modes belonging to skew symmetric
and skew antisymmetric cases are also apparent. It can be noticed that such crossings
are more pronounced amongst the higher modes for these laminates. In the cases of
laminates considered, it is also noticed that the frequency and buckling parameter
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Table I. Comparison or critical buckling load or 0"190°190"10° ply, square simply supported composite
laminate with in-plane stress ax

[I)" I9fJO 11)"19fJO]

41

EllEz Phan & ReddyB 3-D elasticity9 CPT.Present
solution

36.16

11.492

40.0
10.0

23 .804
10.171

23.34

9.774

22.88

9.762

Note: alfo = 10; G1f~ = 0.6 : Gd~ = 0.5; v12 = 0.25

.Classical plate theory

Table 2. Convergence study for critical buckling load of quadrilateral laminate with simply supported
boundary (SI -SI -SI -SJ for in-plane stress ay.

f45°/-450/450/-458j

Skewanglelp1(degrees)
15 30

Nature of
(m + n) roMN Matrix size 0

Note: sIb = 1.0; Ry = qytJ2ltl&; Ell& = 40; V12= 0.25; 01/& = 0.5

20
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"i" 10
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Figure 2. Variation of frequency parameter with material properties.
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values as expected, decreases almost exponentially with the ratio of top and base
length (da) of the composite laminates. The nodal pattern of a representative case is

presented in Fig. 4.
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Figure 3. Variation of frequencies with ratios of (a) two parallel sides of simply

supported cross-ply.graphite fibre reinforced plastic symmetric trapezoidal
laminates with (i) aIb = I, and (ii) aIb = 2 respectively, and (b) ~ides of top

and base of simply supported antisymmetric-ply unsymmetri~1 trapezoidal
laminatb with (i) aIb = I, and (ii) aIb = 1/2 respectively.

4. CONCLUSIONS

In this paper, a method of solution and the numerical results of free vibration
and the buckling parameter values for four-sided non-rectangular composite laminates
using variational method of Ritz e~ploying Chebyshev "series are presented. While
the frequencies and the buckling values for several different configurations are
obtained, the results for only a few illustrative cases are reported here for the simply
supported laminates. It is believed that apart from providing the source of new data
for comparison with other solution techniques, the importa~t features such as the
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60.83 66.1044.22

MODE
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2

144.27108.08 166.96

3

224.03 210.39150.13

4

229.83162.25

179.85

6

230.0

\:::::

7

8

342.96

S
45° 145° 145° 1 -45°0°/90%°/90°

( i i )

Figure 4. Nodal patterns of (i) symmetric-ply, (ii) cross-ply, and (iii)

antisymmetric-ply, graphite fibre reinforced plastic, simply supported
symmetric trapezoidal laminates.
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occurrence of crossings and quasi-degeneracy of frequency curves, practically for the
first time are observed for composite laminates during this study.
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