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ABSTRACT

The methodology and software developed to reconstruct a vertical sound speed profile as a part
of studies on the marine acoustic modelling, using the ray path lengths and the travel time perturbations
in tomographic layers are outlined. For a stratified ocean, considering the range independent nature
of the medium, geophysical inverse techniques are employed to reconstruct the sound speed profile.
The reconstructed profile for a six layer ocean, with five energetic modes, is in good agreement with
that of the assumed profile thereby indicating the usefulness of the model. The effect of noise caused
by the excursions of the source and receiver moorings; When expressed in terms of travel-time
differences, results in the sound speed changes up to 0.1 per cent.

I. INTRODUCTION

Ocean acoustic tomography is a remote sensing tool
for screening the interior structure of the ocean, layer
by layer, utilising the propagation characteristics of
sound waves in the ocean t .One of the many important

features of the ocean is the presence of the sound
channel which acts as a waveguide (Fig.l ) .This channel,
also called SOFAR channel, enables propagation of
sound over large distancf'r ~Iong wholly refracted paths
traversing through many layers of the sea. Acoustic rays
passing through diverse layers of the ocean interior ,
therefore, contain history of these layers through which
they transgress. Decoding these signatures as received
at the acoustic sensors situated at known distances from
the sources of origin of known sound signals I:;ads to
an understanding of the interior structure of the oceans.
This can be examined by simulation of acoustic models
or by conducting field experiments using acoustic
transmitters and receivers mounted on mooring

systems.

in time and space. The results can be summarised in
terms of the solution of partial differential equations.

In the present study, the reference sound speed
profile as a function of depth, for a uniformly deep and
layered ocean, forms the input for integrating the partial
differential equations (for a given domain) to estimate
the ray parameters (Fig. 1). These parameters include
the ray path length, and travel time of acoustic pulse
along different rays connecting the source and the
receiver. The information on travel time perturbations
and data kernel comprising ray path lengths for a
reference ocean result from the forward model.

In the inverse problem2, the model parameters are
inferred, given a set of observations consisting of travel
time perturbations and the noise statistics over an
interior domain and the boundaries.

2. RA y ACOUSTICS

The sound propagation in the sea has been described
by a linear, second order, partial differential equation3
in the scalar form known as the wave equation.

The acoustic modelling cvnsists of a study of forward

and inverse problems. In the forward problem perfect 'V2q, = -.!.- ~
boundary conditions are used to step a system forward C 2 iJf (1)
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Schematic presentation of acoustic rays from source to receiver .

where 4> is a potential or a pressure perturbation and
Cis the speed of sound [C= qx,y,z,t»)-aiunction of
space and time.

Equation (I) can be solved following either the wave
theory or ray theory .In the wave theory, functional
solutions of linear, second order, partial differential
equations for assigned boundary conditions are sought
using standard techniques4 while the ray theory pertains
to solving 'eikonal equation' associated with wave fronts
(eikonal is a surface in three-dimensional space). An
equivalent way of formulating the ray theory is based
on Fermat's principle-path of minimum travel
time-for getting the trajectory of the sound pulse or
signal. Both eikonal and Fermat's procedures lead to
the basic Snell's law of wave refraction.

the ray, n is the index of refraction, and IJis the angle
of the ray wrt the horizontal (Fig. I).

These equations are numerically implemented as
explained in the following.

Using Eqn (3) and refractive index n = CjC, Eqn

(2) is exp ressed as

cos (J dC
d ' aC

-C- cos(J =-

ds oxds

~

iJC

ds

-c~ sinn = ~sin (J
(4)ds t5y

following chain rule

d
= -sin (J~~ cosO andIn the present study, ,the ray theory has been

preferred due to its simplicity and the convenience with
which the inverse problem could be tackled. The basic
equations governing the ray path, in two-dimensional
space are given br

ds ds

d cos (J ~~ sin (J =
(5)ds ds

now,

-.!!.- ~ l (ndy)
ds

dan an

ay

ac

ax

dC
ds

dx ac dy
+- ~

ay

-
(2)ds ds ds

= cosO~
iJx

+ sin{} ~(3)where dxlds = cos (} & dy/ds = sin (}

(6)ay
x and yare independent variables representing

rectangular spatial coordinates, C is the dependent
variable ( C = C (y) ) , s represents the arc length along Substitution of Eqns (5) and (6) in Eqn (4) leads to
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aC
-

ay

aC

ax
1 ( sin (I -cos(}~=

ds (7)

Now, the ray travel time is

c (5) ]-1 ds

I;

(8)T=

The above equations govern the ray path geometry
and sound pulse travel time along the ray paths.

Based on the above acoustic model, forward
problem is defined as the process of predicting the
results of measurements on the basis of a general model
and a set of specific conditions relevant to the problem
at hand. In a nutshell, this is expressed as

Reference sound speed profile for the Arabian Sea.Figure 2.

Each ray traces a unique path as determined by the

angle of emergence at the source. A single pulse emitteQ

at the source reaches the receiver as an ensemble of

multiple rays, arrival time for which differs by few

milliseconds. The (refracted) eigen rays-connecting
the source and receiver-<:omputed from the reference

sound profile (Fig. 2) are shown in Fig. 3, while the

various ray parameters computed are presented in

Table I.
Inverse problem helps determine estimates of the

model parameters.
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Eigen ray plot.Figure 3.
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Table 1 Acoustic ray parameters

-

S<,urce Loop

angle length

Rayarrival Ray tenni-

angle nation depth

Fractional No. of loops

length and rays

identifit !

Turning

depth!

Sound speed

and turning

velocity 1

(m/s)

Turning
depth 2

Sound speed

and tuming

velocity 2

(m/s)

Path

length

Travel

time

(m) (kID) (5) (deg) (m)(deg)

8.7967

7 .0020

6.~

5.7016

4 .8826

39471

2.9263

2.(Xg

-{J.7949

-1.9559

-3.3022

-3.9300

-5.3864

-5.6972

-6.3147

-6.9011

-8.8685

(km) (km) (m)

1511.ro

1505.10

1502.99

1501.33

1499.35

1497.45

1495.85

1494.81

1494.04

1494.77

1496.38

1497.42

1500.52

1501.31

1503.02

1504.79

1511.98

-3281.83

-2886.63

-2739.24

-2617.83

-2462.71

-2313.63

-2156.(1}

-2017.~

-1652.17

-1487.14

-1189.44

-1070.43

-696.82

-577.52

-340.40

-289.14

-185.65

1511.61

1505.13

1502.99

1501.33

14~.34

1497.45

1495.85

1494.81

1494.04

1494.77

1496.38

1497.42

1500.53

1501.32

1503.01

1504.78

1511.91

302.~1

301.310

300.969

300.796

300.678

300.525

300.366

300.285

300.213

300.283

300.423

300.525

300.779

300.800

300.976

J()1.237

302.124

2O1.~

200.9317

2OO.7W5

200 7528

200.~

2OO.~1

200.9112

200.9428

200.9484

200.9451

200.9149

200.9126

200.8366

200.7594

200.7675

200.8791

2O1.1(Xi9

-1!KK).63

-1799.98

-1!KK).29

-1799.05

-1!KK).09

-1799.51

-1799.61

-1799.27

-1799.76

-1799.72

-1799.22

-1!KK).51

-1!KK).86

-1799.64

-1799.26

-1!KK).22

-1!KK).73

(J).~

66.221

75.114

75.123

65.370

(J).I44

(J).195

SO.237

46.805

49.755

59.829

59.8S3

67.976

74.875

74.889

67208

59.935

59.738

35.116

74.658

74.631

38.520

59.425

59.220

48.814

19.172

1.470

0.856

0.737

28.11n

O.fNl

O.44S

31.168

0.325

4 (5,-5)

4(5,-4)

3(4,-4)

3(4,-4)

4(5,-4)

4 (5,-5)

4 (5,-5)

5 (6,~)

6(6,-7)

6 (6,~)

.5 (5,-5)

5 (5,-5)

4(4,--"

4(.,-4)

4(4,-4)

4(4,-5)

5 (5,-5)

-188.10

-282.(i)

-341.47

-575.46

-830.88

-1(Xi5.85

-1270.03

-1479.72

-1847.41

-2010.88

-2216.86

-2311.19

-2557.09

-2616.76

-2740.92

-2865.51

-3303.91

Source depth (m) =-1750; Receiver depth (m)=-I~; Range (tm)~300

application of inverse methods in ocean acoustic
tomography has been suggested by Munk and Wunschl
and later implemented by Comuellel1, and Comuelle,
etaP.

Considering a single source-receiver system,
separated by few hundred kilometers, with eigen rays
covering i paths and j layers located in a stratified ocean,
close to the (deep) sound channel axi~, the travel time
along a ray path i is given by

In the present context, the inverse problem is to use

the acoustic travel times along resolvable ray paths and

any other data (amplitudes could also be used) to obtain

an estimate of the model perturbation, i.e. , sound speed

perturbation, against a reference profile.

The travel time differences (between predicted and

observed through field experiment) of sound signals are

operated by the generalised inver~e operators2 for

reconstruction of sound speed fluctuations.

3. MA THEMA TICAL FORMULATION OF INVERSE
PROBLEM

T = 1: R IC.
I J ij J

Inverse methods have been treated widely for a

variety of problems in geophysical literatures-7 for

determining the distribution of some parameters in the

earth's interior. The generalised inverses and the
regularising techniques are used in these studies to

measure quantities on the earth's surface that are

functionals of the distribution of physical parameters at

depth. Many papers have also appeared on the

application of inverse methods to ocean circulation

studies 11-10, using known field of horizontal densi~y
gradients to compute geostrophic velocity. The

where Rjj is the path length of ray i in layer j and q is
the sound speed corresponding to layer j.

The general model of sound speed field can be

written as

C(x,y,z,t) = Co(z) + ($ C(x,y,z) + t.C(x,y,z,t)

where Co(z) is the mean reference sound speed, the
deterministic refractive term, t5C (x,y,z) represents the
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departure in sound speed due to mesoscale eddies and
fronts which can be modelled deterministically and ~ C
(x,y,z,t) indicates the random fluctuations caused by
internal wave phenomena, small scale turbulence, etc.
The approximate size scales are Co = 1500 m-l, tSC

smaller than Co by a factor 10-2 and ~ C much smaller
by a factor 10-4 than Co. The last teml for modelling
the mesoscale phenomena, however, is neglected. For
a range independent case such as the one considered
here, the problem becomes limited to the estimation of
t5C (Zj) where j indicates the number of layers.

The inversion procedure developed here is based
upon the assumption that the pertuJbation in sound
speed is much less cOmpared to the mean sound speed
(t50Co « 1). Similarly, the departure of the perturbed
path from the reference path is negligibly small (t5r;lr;o
< < 1, where r; is the path length of r~y i) .

Thus for a given i number of identifiable eigen ray
paths and j number of layers, one obtains, unknowns

in t5C., viz, number of layers (NL) and linear equationsJ
having number of eigen rays (NR), in the matrix form

even-determined case will have only one solution with
no estimation error. Minimum length (l5CT l5C is as
small as possible) method solves the completely
under-detenhine:d problem and has a perfect data
resolution, i.e. , AA .1 = I. Generalised inverse \(A .I)

that solves the intermediate, mixed-determined
problems will have data and model resolution matrices
that are intermediate between these two extremes2.

So far, the solutiom of different types of system of
equations and usefulness of the generalised inverse
solution have been described. In the following, the
construction of the generalised inverse operator using
singular value decomposition (SVD) employing the
eigen function technique has been considered. The
advantages.ef this technique are: (i) it is objective and
does n6t impose a pre-determined form to the data, (ii)
provides an objective means of ranking uncorrelated
modes of variability to determine weak signals or noise
from the data, and (iii) provides the modes of variability
which are not correlated with one another .

SVD is a factorisation of the operator matrix (A)
into a set of orthonormal eigen vectors and associated
eigen values. The observations are decomposed into
linear combination of orthogonal eigen vectors, which
in turn determine a linear combination of model
parameters. Comprehensive reviews <:ould be seen from
the works of Wigginsli, Lanczosl3, Jacksonl4, Wiggins
et af5, Wunschl6 and Tarantolal7.

(11)A{)C ={)T, {)C = t5Cj} , t5T = {t51;}

4. GENEItALISED INVERSE SOLUTION

Equatiott (11) is solv"ed by SVD of the matrix A

consisting path lengths f)f eigen rays i in each of the

layers j expressed as a product of three matrices2.13.18

12
VT

(R x NL)

A
(NR x NL)

= J

(Rxk)(NR x R)

where NL is the number of (tomographic) layers. and

NR is the number of resoivable rays.

The columns of the U and V matrices are

orthonormal. i.e.. UTU= land V TV= I.Uand Vare

the respective coupled eigen vector matrices for the

eigen value problems defined as

where A is data kernel ( -R.IC2 , obtained irom the
II 01

initial (forward) model, set in a matrix form, ()"T are
I

deviations of the measured travel times from the
reference values, and t5Cj are desired model parameter
perturbations in the form of a column vector which are
to be determined.

The system in Eqn (11) can be separated into (i)
over-determined problem (more data than unknowns),
(ii) even-determined problems (same number of
equations as unknowns), and (iii) under-determined
problems (more unknowns than data). The solutions of
the equation are of the form

Over-determined case: t5C= (A T A)"I. A Tt5T

(minimises data error)
Even-determined case: t5C = (A"I) t5T
Under-determined case: t5C = A T (AA T}I t5T

(minimizes model error)

Le~st square method solves the completely
over-determined problem by minimising the squared
Euclidean lellgth, i.e. , e T e [ where e = t5T- A t5q, and

has a perfect model resolution, i.e., A"J A = I. The 3)(AA1) u = l2u
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(ATA)v = (14) For better estimates the resolution in the model
space vy T of Eqn (19) is improved. This is done by

juditiously selecting the p eigen vectors or ranking the
singular values of the data kernel in a descending order .
The noise in the data kern(.! (matrix A) prevailing in
the form of small eigen values increases the rank of the
matrix apart from amplifying the solution. This,
however, does not provide any additional or useful
information on the sound speed perturbation. So, it can
be trusted that the solution to the present problem is
obtained through considerations of optimisation.

So far the solution for the generalised inverse
pertains to the case of noise-free environment. In
the following, solutions where acoustic noise cannot
be overlooked particularly while making field
observations, have been considered.

.v

5. SOLUTION IN THE PRESENCE OF NOISE

In Eqn (12) r is a diagonal matrix of non-zero

singular values (J1 of A, and R (R ~ min (NL, NR»

is the rank of the matrix A. Obviously the rank of all

the three component matrices will be R and hence all

diagonal elements of r are squares of the singular ,

non-zero values. Here, th~ computational details of the

SVD of a rectangular matrix alone are outlined since

only standard numerical routines4.19 exist to compute

the eigen values and corresponding eigen vectors of

square matrices.
In general, the number of layers in the ocean is

usually less than the number of eigen rays. This leads

to a situation of over-determinacy which arises when

one attempts to predict the data, It would be also much

easier to solve the first eigen value problem (Eqn 13)

than the second (Eqn 14).

Equation (13) yields U and r, while Vis calculated

using the equation

VT= r UTA (15)

Having got U, r and V, the model parameter JC

can be determined. Premultiplying Eqns (13)-(15) by

U T, the following is derived

UT A/JC = UT /JT

= > U T U TV T /JC = U T/JT

= > v T b"C = u Tb"T

= >VT b"C =r-1 UT b"T (16)

Premultiplying the Eqn (16) with V we get

In the acoustic field experiments, uncertainties
prevail in the range estimations between the source(s)
and receiver(s) over the observation time. These are
due to the presence of currents at various level surfaces,
along the vertical, eddies of various sizes, internal
waves, etc that cause undesirable vertical and horizontal
excursions of the moorings. Such movements (10 to
20 m over 4000 m in the vertical and 25 to 50 m over
500 km along the horizontal) though small, apparently
contribute to changes in the ray arrival times, and in
turn, in the model parameter (/JC). With the help of
accurate position keeping systems such as the
inclinometers and bottom mounted acoustic
transponders, these errors could be minimised. The
results could be improved further by. incorporating a
correction factor for travel-time data in Eqns (18) and

(19).
The true travel-time data could be considered as the

sum of perturbation and noise in the travel time. That is
(jC = VVT (jC =

p
vr-1 UT) /JT (17)

If WT equals 1 (if the rank of the matrix A = NR),

the ~olution of Eqn ( 11) is
(20)t5~rue = t5T obs + t

Operating generalised inverse operator on either
sides of Eqn (20) the following solution is obtained.

UT)JT=(A-g
p

/JCp = /JC = (V r b"T (18)

Vp r-1 U: (t5 ~rue) = Vp rpl UpT(t5Tobs)

Vp r;1 UpT (e)
If VVT = I (a case in the presence of noise in model

space)
(21)

The sequence of operations of the above procedure

in the form of a flow chart is given in Fig. 4.(19)= (5C = ( V r UT) JT= (A -8) JT
p

(5(
p
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~

function (in rank) describes the residual mean square
data. The closeness ratio is expressed in percentage in
order to enable one to judge the contribution of
different modes, arranged in descending order, for
better reproduction of the model profile.

REAO

T, A, NL, NR, NF

ANO OELN

6. V ALmA DON OF THE MODEL

From the technological point of view, preliminary
tests need to be carried out before the conduct of a
practical tomographic study. These tests include
demonstration of some essential properties of ocean for
long range propagation. Of these tests, resolving the
rays (eigen rays) and means to observe and identify
them to sufficient accuracy is amongst the most desired.
These rays must also be checked for their stability.
Various measuremcnt errors are to be estimated.

COMPUTE COVARIANCE MATRIX B

(ALL EIGEN FOR DECOMPOSITION

ur VT

COMPUTE

V r-1 UT

vr- U1 (T+DELN)

ESTIMATE 6 C

OUTPUT

STOP

FIgure 4. I'low chart of sequence of operations for the procedure in
Eqn (21).

Ooseness ratio: The ratio between the sum of the factor

model and that of the data matrix is considered as the

measure of closeness of the model data.

Measure of closeness = }:;k r I }:;p r
;=1 i i=1 i (22)

For identification of the rays, one must compare the
observed pattern with a prediction based on available
sound speed profile-archived or exclusively collected.
This would enable realisation of the fact that some peaks
would be attenuated and some unresolvable. For ray
prediction and identification, the mean profile is used.

In the present study, environmental hydrographic
data from the Arabian Sea, available in the form of
seasonal mean values of temperature and salinity at
standard oceanographic depths has been utilised to test
the software in respect of the acoustic model described
hitherto. Using the internationally accepted formula of
Chen and Millero20 for the determination of sound speed
based on this data, vertical profiles depicting the sound
speed distribut.v.ls (computed) have been drawn. From
these profiles a mean profile considered as a reference
profile has been worked out (Fig. 2). The mean sound
speed profile shows higher speeds, around 1542.6 m/s
at the surface and 1523.6 m/s near the bottdm. A
minimum sound speed of about 1493.9 m/s occurs
around 1750 m depth.

Considering this reference sound speed profile as
the base, the range-independent nature of the ocean
forward model is solved for preparation of data kernel
and predicting travel times (Table 2 (a).

After completing the above, in order to provide the
necessary test data on travel-time perturbations for the
inverse model, the winter mean profile has been chosen
as the assumed profile to generate pcssible
perturbations in travel times. Numerical experiments
have been conducted considering different ocean layers

where k is the number of factors and p is the rank of

the data matrix A (kernel). The eigen functions

associated with the largest eigen value represents the

data best in the least square sense, while the second
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Table 2(8). ResuIU of computations In DOise-~ data

No. of rays = 17; No. of layers = 6; No. of factors ,. 5

Travel-time data

.0262 .0330-.0552-.iI71-.0377-.0377 .0035 .0007 .0330

.0388 .01~ .0383 .0369 .0381 .0317 .0287 .0262

Data- kernel

.28485E+02 .33904E+02 .29815E+02 .53191E+02 .84437E+02 .72057E+02

.30233E+02 .55343E+02 .41340E+02 .64383E+02 .10081E+03 .(xxxx)E+OO

.29458E+02 .67507E+02 .39682E+02 .60598E+02 .10352E+03 .(xxxx)E+OO

.(xxxx)E+OO .86665E+02 .49406E+02 .67874E+02 .96650E+02 .(XXXX)E+OO

.(xxxx)E+OO .(xxxx)E+OO .11769E+03 .96955E+02 .85835E+02 .(xxxx)E+OO

.(XXXX)E+OO .(xxxx)E+OO .73707E+02 .13498E+03 .91633E+02 .~E+OO

.(xxxx)E+OO .(xxxx)E+OO .(xxxx)E+OO .22513E+03 .75040E+02 .(xxxx)E+OO

.(xxxx)E+OO .(xxxx)E+OO .(xxxx)E+OO .26601E+03 .34072E+02 .(xxxx)E+OO

.(xxxx)E+OO .(XXXXJE+OO .(xxxx)E+OO .3(:MX)lE+03 .(xxxx)E+OO .(xxxx)E+OO

.(xxxx)E+OO .(xxxx)E+OO .(xxxx)E+OO .27320E+03 .26888E+02 .(xxxx)E+OO

.(xxxx)E+OO .(xxxx)E+OO .2(XX)4E+02 .19358E+03 .86640E+02 .(xxxx)E+OO

.(xxxx)E+OO .(xxxx)E+OO .71623E+02 .13724E+03 .91464E+02 .(xxxx)E+OO

.(xxxx)E+OO .48621E+02 .58087E+02 .77594E+02 .11628E+03 .(xxxx)E+OO

.(xxxx)E+OO .84992E+OZ .49533E+02 .69466E+02 .96612E+02 .(xxxx)E+OO

.28825E+02 .66808E+02 .39553E+02 .61975E+02 .10362E+03 .(xxxx)E+OO

.24251E+02 .46156E+02 .33821E+02 .59513E+D2 .13730E+03 .(xxxx)E+OO

.28151E+02 .33439E+02 .29498E+02 .53364E+02 .83148E+02 .74325E+02

Sum of the diagonal elements of matrix A = .63403510E+(Kj:

E(I)

.490E+06.

.113E+06

.148E+OS

.102E+05

.463E+04

Closeness ratio

.77329440E+OO

.95130920E+00

.97463330E+OO

.99078120E+OO

.99808370E+00

EigenvalueNo.l

Eigen value No.2

Eigen value No.3

Eigen value No.4

Eigen value No.5

Eigen vectors

-.3764E-Ol -.1240E+OO -.18l5E+OO -.8832E+OO -.4117E+OO -.2813E-Ol

.1240E+OO .3976E+OO .3705E+OO -.4597E+OO .6858E+OO .8720E-Ol

-.2362E+OO -.5730E+OO .7311E+OO -.4425E-Ol -.1399E-Ol -.2814E+OO

.2066E+OO .4329E+OO -.6364E-Ol .1579E-Ol -.5762E-Ol -.8731E+OO

-.l064E+OO .5558E+OO .5113E+OO -.7j98E-Ol -.5667E+OO .3023E+OO

Sum of 5 eigen values =.6328201OE+~

Matrix V(trrsspose) XV

.100JE+O1 -.1288E-(Xi

-.1288E-(Xi .100JE+O1

.9529E-07 .2235E-(Xi

-.1969E-07 .3148E-07

.3920E-07 .5716E-07

.9529E-m -.1969E-m

.2235E-{X' .3148E-m

1(XX)E+O1 .1966E-m

.1966E-m .1(XX)E+O1

.2367E-{X' .5399E-m

.3920E-07

.5716E-07

.2367E~

.5399E-07

l(XX)E+Ol
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Generalised solution

-4.852344E-OOl ;

-6.755120E-002;

9.722964E--00l

--8.519714E-00l

1.1879250;

.5.458165E-OO1

(4 to 8) to infer the optimum number of layers for
reproducing the sound speed profile with utmost

accuracy.

32 km range (approx) due to ray bending caused by the
refraction at the upper as well as lower boundaries. The
extent of the upper and lower limits of the channel
correspond to depths of 180 and 3300 m respectively.
The duration of ray arrivals spreads over 420 ms. Rays
with emergence angles between 5° and 6° arrive early
compared to the near-axial ones. Rays with emergence
angles exceeding 6° arrive last as obtained from the
forward model.

7. RESULTS AND DISCUSSION

As expected, it has been found that the range of

variation in the ray loop lengths lies between 50 to 70

km. Ray convergence regions could ~e seen at every

Table 2(b). Computation in the of noise

No. of rays "7 17; No. of layers =4; No. of factors = 4; noise = .00)1

Travel-time data

.0330 -.0552 -.1171 -.0377 -.0377 .0035 .(XXJ7

.0190 .0383 .0369 .0381 .0317 .0287 .0262

.0262

.0388

.0330

Sum of the diagonal elements of matrix A + .71317230E(Xi

E(I)

.693E+~

.113E+~

.148E+OS

.148E+OS

Closeness ratio

.97111230E+00

.98865420E +00

.99726240E+OO

.1(XXXX)20E+00

Eigen value No. 1

Eigen value No.2

Eigen value No.3

Eigen value No.3

Sum of 4 Eigen values = .713173~E+.O6

Eigen vectors

-.4337E-Ol

-.3832E+OO

-.5486E-OO

.92l0E+OO

.7667E+OO

.2976E+OO

5558E+OO

.1208E+OO

-.6398E+OO

-.2915E+OO

-.6847E+00

-.l922E+OO

-.3049E-Ol

-.8244E+OO

-.4682E+OO

-.3l65E+Ol

Matrix V(trnspose) XV

.l(XX)E+Ol .2995E-07

.2995E-(Y7 .l(XX)E+Ol

.623lE-07 -.4702E-07

.l252E-07 -.6559E~

.623lE-07

-.4702E-07

.l(XX)E+Ol

-.16l8E-07

.1252E-m

-.6559E-08

-.1618E-m

.1(XX)E+Ol

Generalised solution

7.1S1362E-OO1; .5748040; -2.0042110 -4.939731E-00l
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Table J. SoIut~ of "ar;ous modes ror six- aIMi rour-layer numerical experiments

T~rough inversion

Deviation 5 modes

sound speed

(m/s)

Deviation 6 modes

sound speed

(rn/s)

Deviation Sound speed

gradient
(%) (s)

Reference assumed

Sound So\U1d

speed speed

(m!s) (m!s)

4 modes

sound speed

(m/s)

Tomographic

layers
(m/s) (%) (0/0)

Six-Iayer numerical experiment

0- 400 1508.32

400 -800 1500.75

800-1200 1497.55

1200-2000 1494.86

2000-3(XK) 1503.35

3000-4000 1523.00

0.1007

0.0075

0.0082

0.0020

--0.0122

--0.0167

1507.

1501.

1498.

1494.

1502.

1523

1507.99

1500.88

1497.96

1494.67

1503.35

1522.59

o.<m

0.055

0.051

o.~

0.056

0.029

1507.83

1501.72

1498.73

1494-79

1502.49

1523.05

0.001

0.000

0.000

0.001
0.001

0.001

1507.01

1501.76

1498.58
1494.76

1502.66

1523.26

0.055

0.002

0.010

0.001

0.010

0.014

15~.03

1499.27

1498.45

1523.10

0.078
0,075

0.136

0.032

0.1010

0.~20

0.0100

0.0170

0.037
0.009

0.028

0.064

1507.75
1499.10

1498.72

1523.54

0.005

0. (XI4

0.11.8

0.003

The closeness ratio (ratio between the sum of the

factor model and sum of the data matrix/data kernel,
presented in Table 4) indicated that the first five modes

Table 4. Eigen "alues and corresponding closeness ratio for six- and
four-Iayer

Closeness
ratio

Closeness
ratio

Eigen
value

0.693 x I(f'

0.125 x loS

0.614 x lif

0.195 x lif

0.490)'
0.113 >

0.148 >

0.102>
0.463 >

0.}21>

97.11

1.75

0.86

0.28

100.00

77.32

17.81

2.33

1.51

0.73

0.10

100.00

(arranged in descending order) gave rise to 99.8 per

cent information. This enabled reproduction ,of the

original profile. By considering six modes. a small eigen

value term which is present in the denominator of the-

Eqn ( ] 8) has amplified the noise instead of increasing

the accuracy of the solution.

The ray travel-time deviations between the reference

and perturbed cases show variations between 0.7 ms

and 117 ms (Table 2 ( a) ) .The positive perturbations in

sound speed gives rise to negative perturbations in travel

time and vice versa. The ray path lengths (km) covered

by 17 eigen rays in each of the six tomographic layers

(Table 2 (a» indicate diverse sampling by the eigen rays

in each of the layers. The upper 180 m of the water

column has not been sampled due to depth limited

nature of the sound speed profile. Realising that only

six layers are chosen and more number ( 17) of rays

prevail. the system of equations in Eqn ( II) becomes

over-determined. A solution for this can be obtained

by treating the data over the entire water column in a

way similar to that of a solution under least square

sense.
Using the data kernel, singular value decomposition

has been performed. and the generalised inverse

operator computed. Travel-time perturbations are used

by the generalised inverse operator to obtain the inverse

solution (Table 2) .

The gener~ised inverse solutions for a typical.

pre-set number of layers. viz. for 6-and 4-layer models

have been worked out considering different energetic
modes (4 to .6). The deviations between the

reconstructed and the perturbed/assumed profiles are

obtained (Table 3). From this. it can be noticed that

for the case of six-Iayer numerical experiment. by
considering five energetic modes. the reconstructed
profile of sound speed is well in agreement with that of

the assumed profile .

This is due to the fact that the eigen values are

arranged in descending order and as the singular values

decrease in size (1.1. the structure of the corresponding,
eigen vectors ( columns of U and V) becomes more

complex t:nd wavelike in nature. The eigen vectors

corresponding to the largest eigen value indicate that

the large scale features can best be determined. As the
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Figure 5. Assumed and reconstructed sound speed profiles for a six-Iayer model.
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application of a formalization for geophysical

problem. Geophys. J., 1967, 13, 247-76.

Wiggins, R.A. The general linear inverse problcm :

implication of surface waves and free oscillations
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8. Wunsch, C. The Atlantic general circulation west
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eigen vectors corresponding to smaller and smaller eigen
vectors are incorporated, smaller scale features surface
in the inverse estimates. These features cannot be
detennined like the large scale features due to the
inverse of the L 2 of r.

r
The assumed initial profile and the reconstructed

one with five modes for the six-Iayer numerical
experiment have been shown in Fig. 5. The two profiles
are close to each other. Similar exercise carried out for
a four-layer model with two modes (Fig. 6) showed
more departures indicating the usefulness of the
six-Iayer model over the foui-layer one.

The effect of noise arising from the horizontal
movements of the moorings, on which the sensors are
suspended, when expressed in tenns of travel-time
differences/perturbations resulted in negligible per cent
change in the reconstructed sound speed profile.
For example, a travel-time difference of 0.(XX)1 s
(Table 2 (b» in the fonn of noise yielded a change of
0.1 per cent of the sound speed as seen from the
corresponding values in the respective layers (Table 3)
for a four-layer Ca5e.

Roemmich, D. Circulation of the Caribbean S~-.
a well resolved inverse problem. I. Geophys. Res.,
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