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ABSTRACT

The convective magnetohydrodynamic flow past a uniformly moving infinite vertical plate, with
the magnetic field and the suction velocity applied normal to the plate has been analysed. Presence
of heat source or sink has also been considered. The findings are expected to throw light on some
problems of defence applications in the areas of aeronautical designs and also flow and heat transfer
problems of a chemically reacting fluid.

l. INTRODUCTION infinite vertical plate oscillating in its own plane and

with wall temperature.
Unsteady free and forced convective magnetohydro-

dynamic (MHD) flow past a vertical porous plate has

been studied widely because of their importance in

aeronautics, missile aerodynamics, etc. When the

difference between the wave temperature anc .~le

ambient fluid temperature is quite appreciable, it causes

free convective currents to flow in the boundary layer

and consequently the skin friction and rate of heat

transfer at the walls are affected. The transverse

magnetic field and suction or injection at the walls also

influence the flow pattern and hence the skin friction

and the rate of heat transfer at the walls to a large extent.

Stuartl studied the oscillatory flow over an infinite

porous plate with constant suction at the plate. Earlier

a systematic study of the effects of the free stream

oscillation on the laminar skin friction and heat transfer

on semi-infinite plate and cylindrical bodies was carriej

out by LighthiW. Soon after this work there has been

a host of papers in the literature using Lighthill's

technique. Soundalgekar3 studied the flow past an

Messiha4 studied two-dimensional incompressible

fluid flow'problem along an infinite flat plate with no

heat transfer between the fluid and the plate when the

suction veiocity normal to the plate as well as the

external flow varies periodically with time. This work

was an extension of Stuart'sl problem of constant

suction to periodic suction velocity.

Vajravelu" made a systematic analysis of convective

steady flov and heat transfer of a viscous heat

generating fluid past a uniformly moving, infinite,

vertical porous plate taking into account the source and

sink effects.

This paper aims to extend Vajravelu"s-' works to

unsteady and MHO case by considering a uniform

transverse magnetic field. Vajravelu solved the problem

numerically adopting Runge-Kutta-Gill method. In this

study a perturbation technique was adopted to solve

the problem giving stress on analytical solution.
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nondimensionalthe followingWe introduce

quantities:
2. BASIC EQUA TIONS

Let us consider the combined free and forced
convective motion of a viscous incompressible
electrically conducting fluid past a flat infinite- and
uniformly moving porous plate by making the

assumptions (i) all the fluid properties except density
in the buoyancy force term are constant; (ii) the
magnetic dissipation term in the energy equlrtion is
negligible; and (iii) the Eckert number E and the
magnetic Reynold number are small so that the induced

magnetic field can be neglected.

v = OIUo; v = vlUo'u = ii/Uo;y = Yvo/V;

(J) = iiJVIVO2; M = U BO2VlpvO2;t = vo2f!v;

2
8 = (T- Too)/Too; G = vgPToo/Uovo ;p = JlCp/K;

a = Oy2IKvO2 (5)2 -.
E = Uo /CpToo,

The x-axis is taken along the upward vertical plate
and y-axis perpendicular to it into the fluid region.
All quantities except the pressure p are independent of
x. The velocity vectorq and the applied magnetic field
:8 may be taken as q = iu + jv, :8 = .Bo j where i, j

are the unit vectors along.x-axis and y-axis respectively.
With the foregoing assumptions and closely following
Soundalgekar6 and Messiha4, the equations governing
the flow and heat ~ransfer of the problem become

and (2)

where Uo is the mean stream velocity.

The nondimensional forms of the Eqns (

are
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Now Eqns (6) and (7) are to be solved subject to

the bo~ndary conditions
(I)p

fw- f~

f~

0= m =y=O vI.!
(8)

pEp! ()Si
(9)u -+ u. 0-+ 0r-oc

<>2f

<>y-2
(2)K

3. METHODS OF SOLUTION

To solve the Eqns ( 6) and (7) subject to the boundary

conditions given in Eqns (8) and (9), velocity profile u,

stream velocity U, temperature profile (} and plate

temperature m are broken into the following :

where p is the density; Vo is the mea~ suction velocity;
a the electrical conductivity, g, the acceleration due to
gravity; e is a small reference parameter, Cp' the specific
heat at constant pressure; K, the thermal conductivity.
A is a positive real constant such that e A < 1; j.t. the
coefficient of viscosity; p is the coefficient of volume
expansion given by p = Poo [l-P (t- t 00)] and the other

symbols have the usual meanings.

y) 1-f\(y :eu=

The relevant boundary conditions are
.r 01 (y)

f) ()()(yv; f fw (3)y=O u

7'-7',u-D; 4)v-+ 00 ill
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Substituting Eqns (10) and (11) in Eqns (6--9) and
equating the harmonic terms and neglecting G , we get

the following equations:

(}';\ + P(};\ -(ipw + a)(}11 = -AP(J~I
-2 PI;() 120

.(28)

subject to the baundary conditions
fJ" + f,' -MfJ = G(}o 14)

y = ° : ()()() = 1, ()Ol = 0, ()ill =

flo = 1, fll = 0, f211 =
l, 811 = O

, f21 = 0
12' + l2' -(iw + M)l2 = GlJ1 -All' (15)

o(X) = (JIll = (JIO = 011 = O

110 = 111 = 120 = 121 = 0
r-ooOo" + POo' -aOo = -EPfl'2

(16)

0111 + POI -(iP{IJ + a){}1 = -AP{}o' -2EPfl'f2'
The Eqns (21-28) are solved subject to the boundary

conditions in Eqns (29) and (~O) in the order of Eqns
(25), (27), (21), (23), (26), (22), (28) and (24). The
solutions are not presented here for the sake of brevity.

7)

subject to the boundary conditions

y=O il = -v, (}I (18)[2=
eo = 1

4. SKIN FRICTIONS AND REA T TRANSFERS

= 12 = 0 {}o = {}I = 0 The nondimensional skin friction Tyt is given byy~oo (19)

()u
= -=-i"

oy 10Tyt

Et ' -£ e MtJt [f ' + Ef'

11 20 21The Eqns (14-17) are still coupled for the variables
h, h, (}o and (}I. To solve them, it is to be noted that E
< 1 for all incompressible fluids and assumed that The skin friction at the plate y = O is given by

{}o(y) = {}00(Y) + E{}ol (y)

{}I(Y) = {}IO(Y) + E{}II(Y)

r (y) = f1o(y) + Efll (y)

f2(y) = f2o(y) + Ef21(Y)

ou
TO

=

y =0

-f' (0) -Ef' {0 ) -eetutIII 11'

[f211(O) + Ef2Ib(O)]

(20)

Splitting Eqn.(32) into real and imaginary parts, we get
Su~.,.:tuting values of Eqn (20) in Eqns (14)-(17),

equating the coefficients of E' and El in each equation
and neglecting E2, the following equations are obtained. r(1 = r4:' + t;1 B Icos (wt + (1tJ

where B = Br + iB; = f2C"(O) -E~

rl:1 = -f,(,'(O) -Efll'(O)

I B I = ( Br2 + B;2J 112

tan Ull = B;/Br

Br = Re(B)

B; = Im(B)

(0)+ fl()' -Mfl(J = GO(KJf1~ (21)

III"+ 111'- Mill = GOUI (22)

[20",+ [ 20' (iw + M)f2o (23)
= -Af{o + G()IO

(33
+ f2'i- (i(v +- M)f21!2 -Af(, + GB11 (24)

o;M) + ro;)(, a('fKI 0 (25) Expressions for Br. Bi are not presented here for

the sake of brevity. The nondimensional heat transfer
at the plate y = O is given byo':() + PO;o -(ipw + a)Olo = -A PfJ(NI 26)

01 + pf}, + a)OI = -APf~MI' , to I' ( 0 )Null = 0'(,(0) + EeiIP(I 27)
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w tan Uo decreases when w is increased whereas for

larger values of w, it increases steadily with wand

approaches a constant value.

Splitting Eqn (34) into the real and imaginary parts, we

get

NUo = Nuoo + t: (35)H Icos«(ot + PJ

where

NUo° = 80'(0), H = 81'(0) = Hr + iH;,

= [H,2 + H;2]1/2 (36)tan Po = H;/Hr. H

...Rure L The skin friction phase tan (Lo against

Figure 3 clearly shows that the heat transfer

amplitude IHI increases with p (curves I, II, 111),

a (curves IV, V) and (I). Figure 4 shows that the heat

transfer phase tan IJt, increases with (1). p (curves I. II.

111) and decreases when (I is increased (curves IV, V)

5. RESULTS AND DISCUSSION

The graphs for the skin friction amplitude 181, skin

friction phase tan ao' the heat transf,er amplitude IHI

and the heat transfer phase tan Po given by the Eqns (33)
and (36) respectively are presented in the Figs. 1-4.

From the curves I, II, III in Fig. 1, it is observed

that the skin friction amplitude 181 increases with the

Prandtl number p for small values of (V, but for larger

values of (v this property is found to be reversed. From

curves I and IV, it is seen that 181 increases with the

heat source parameter a.

Figure 1 also indicates that 181 decreases sharply,

when (,) is increased for small values of w but for larger

values 181 increases steadily with (V from a minimum

value.

181

rI ~

/-IV ft

L
L

.
...0

Figure I The skin friction amplitude 181 vero;u~ frequency parameter II
1

~

IJJ
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5

~

5. E .8M I. G I. V AIt is seen from Fig. 2 that the skin friction phase tan

Go increases with p (curves I, II, 111), decreases when

M is increased ( curves I, IV) and increases with a ( curves

I, V). Figure 2 also indicates that skin friction phase

difference Ujl -7t/2 as w -01 and for small values of

-,-,35 4.0..-, -
2.0 2.5 J.O

~
05

Thl' he:tt tr:tnsfer alnplitude I H1"'i~url. -'.
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and also indicates that tan Po -+ ° as w-+ 0+, that is

Po -+ ° as w-+ 0+. Hence the heat transfer at the plate
y = ° for w = ° has the same phase as the suction

velocity .

I II m IV
p .7 .1 .05 .7
a .5 .5 .5 .1

.M = I, G = I, V = I, A = .5, E = .8.

v
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The transfer phase tan PI Versus (J).Figure 4

5.1 Explanation for Boundary Conditions for the Plate

Temperature

Messiha4 has taken the non dimensional temperature
as O = (1' -l' ~) / l' ~ and-Soundalgekaf as O = (1'- l' ~) /

(1' w -t ~) and their boundary conditions for O at the
plate are '6O/oy = O and O = 1 respectively. We have
taken here (} = (1- t ~) / t ~ same as taken by Messiha4
but a different plate temperature Ow = m = 1 +e~.

Messiha4 has considered only the forced convection case
where the velocity component u remains uncoupled
from the temperature O and the energy equation is easily
solved for O once u is obtained from the Navier-Stokes
equation. Further. wall temperature corresponds to the
adiabatic condition at the wall, i.e. , there is no heat
exchange between the wall and the neighbouring fluid

layers.
On the other hand Soundalgeakar6 and the present

study considered free convection flow where the veloci ty
and temperature become coupled, Soundalgekar's6
boundary condition at the plate for O is same as that
chosen in the present study except for the small
oscillating ~ .Here Soundalgekar6 has considered that
steady problem for which the unsteady part eei(J)/ was
not necessary .Whereas in this paper, this added term
facilitates the decomposition of the governing coupled
equations into simple component equations

corresponding to various powers of £, that is, to the
steady and unsteady parts. Further, from physical point
of view also, this is quite reasonable. A-s in the case of
free stream veiocity, we have superimposed a small
oscillating part over a steady mean wall temperature.
It is a familiar procedure in solving oscillating problems
by Lighthill's2 technique. In fact Singh, et a17, while
studying the fluctuating boundary layer on a neated
horizontal plate, have taken the same condition where
the plate temperature oscillates harmonically in time
about a non zero mean.

Similarly, the boundary condition u = Vat y = 0 is

because of the uniform motion of the vertical plate
paralled to itself. At y ~ 00 , the condition u = U = I +

£ek'JI is same as taken by Messiha4, but different from
that considered by Soundalgekar 6. The 1:Iefinitions of
O = (1- 1 ~) / 1 ~ or O = (1- t ~) / (1..; -1 ~) have no
essential difference. By putting a = 0 in Eqn (7) and
V = 0 we recover Messiha's4 problem and by putting
V = O and omitting the oscillating part we can go back

6
to Soundalgekar's problem.
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