
Defence Science Journal. Vol 43. No 2. April 1993, pp 151-158
@ 1993. DESIDOC

Jaidev, G. Ravi Prakash

Artificial Intelligence Laboratory, Department of Computer Science and Engineering

Indian Institute of Technology, Madras-600036

and

N. Parameswaran

School of Computer Science and Engineering

University of New South Wales, P.O. Box 1, Kensington, NSW 2033, Australia

ABSTRACT

OPS5 is one of the most widely used Production System languages. The control strategies provided
in OPS-Iike languages are extremely weak and consequently during problem solving, frequently
dead.ends are encountered. We have made an attempt to perform dependency~directed backtracking
within the framework of an OPS-Iike interpreter which employs a Truth Maintenance System for
reasoning with past actions. The conditions for backtrack are characterised by the violation of a set of
domain-specific constraints and signalled as contradictions in the Dependency Network (D-Net). We
have developed a system, called OPS91 , which comprises an enhanced match-select-act cycle operating
on a D-Net as working memory. This cycle is explained with reference to the D-Net structure and the
correlation between the D-Net and Rete-Net operations. The revision algorithm and null conflict set
resolution strategy are detailed. The performance of the system is evaluated and broad guidelines on
the programming strategy are presented.

strategies provided (such as MEA and LEX) are
extremely weak, and suffer from the problem of local
maxima unless guaranteed heuristics are available for
the problem being solved. This issue is further
compounded by the inability of OPS to keep track of the
problem solving logic and the history of the working
memory (WM) and hence, its inability to explore
alternative options during constraint violations and
dead-ends.

PRODUCTION SYSTEMS FOR PROBLEM
SOLVING

The advantages of performing a dependency-
directed backtrack over utilizing a chronological
backtrack have been well established. Dependency-
directed backtracking (DDB) is often easily
incorporated in backward chaining inference schemes.
For instance, in Prolog, variable bindings received from
achieved subgoals can be revised in order to satisfy other
currently unachievable subgo~ls5. However, in forward
chaining systems such as OPS5 (where backtracking is

Problem solving in artificial ir..-:ligence (AI) refers
to the numerous techniques developed to instil in
machines, specific intellectual capacities hitherto
performed only by humans. The concept of General
Problem Solving started with the advent of the
information processing paradigm I, and has since
diversified into many generic frameworks for
representation and reasoning. One such framework for
general intelligence is the Production System (PS). The
PS model has been used to solve & variety of problems2,3
and these experiments have resulted in many PS
languages, OPS54 being one of the most widely used
ones.

In problem solving using OPS-Iike languages (as in
many problem solving systems) , the focus lies in the
contror of reasoning. Unfortunately, the control
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problem solving is often based on switching contexts

based on heuristic preferences.

2.2 Choice of Truth Maintenance System

There are basically two kinds of Truth Maintenance

Systems: the Justification-based TMS [hereQn simply
called Reason Maintenance System (RMS)] and the

Assumption-based TMS (A TMS). The issue that next

surfaces is obviously the choice of a system for reason

maintenance. An RMS is a single context mechanism

that is particularly appealing for synthesis tasks.

However, there is always a likelihood that contexts may

have to be switched for several reasons (such as upon

discovering constraint violations) and the RMS does

this by a costly and unnatural process. A TMS, on the

other hand provides a very efficient way of handling

multiple contexts, corresponding to exploring

alternatives in parallel. But these systems become very

cumbersome when the number of contexts is very large

and a single thread of reasoning is required (as in the

case of planning).

particularly necessary), DDB is not directly

performable, since data dependencies are not obviously

visible.

In the present study, we have made an attempt to

perform DDB within the framework of a forward

chaining inference scheme by employing a Truth

Maintenance System (TMS) for reasoning with past

actions. The conditions for backtrack are characterised

by the violation of a set of constraints specific to the

problem domain and signalled as contradictions in the

TMS network. The TMS affords a convenient

representation for maintaining a complete history of the

actions performed, and consequent changes to working

memvry , while avoiding multiple copies of the world.

We describe a system called OPS91 * that interfaces

an OPS-Iike interpreter with a TMS, and study its

performance as a specific problem solver. In Section 2,

we present some of the recent work on TMS-based

problem solvers and issul.:~ involved in selecting a

specific truth maintenance mechanism. The

modifications necessary in the dependency network due

to a common action-belief framework are then

discussed. The architecture of OPS91 is detailed and

some of the implementation mechanisms are outlined in

Section 3. Performance evaluations presented in

Sections 4 and 5 show that OPS91 is a better problem

solver than OPS5, with some overhead in terms of time

and memory .

2.3 A TMS.based Production System Methodologies

Morgue and Chehirel2 describe the efficiency of PSs

coupled with an A TMS. Two approaches have heen

proposed, based on the phase (of the match-select-act

cycle) into which the ATMS has been integrated.

Morgue emphasizes the inherent problem of A TMS-

based systems in the form of control of contexts, and

proposes a few solutions with respect to the PS scenario.

However, an important issue left unaddressed is that of

representing and reasoning with actions7 in this

framework. This issue particularly manifests itself in a

problem solving activity such as planning, where the

nature of revocable actions brings about obvious

non-monotonicity at the level of heuristic search.
Freitag and Reinfrank 13 have also described an

(A)TMS-based problem solver that makes a restricted

use of variables in the productions. Freitag's framework ,

just as Morgue's, reasons only with beliefs and not with

actions.

2. RMS-BASED PROBLEM SOL VING SYSTEMS

2.1 Related Work

Probably the earliest attempt at a common

representation for actions and beliefs was the work on

Plan Nets6. Modelling actions in an Assumption-based

TMS ( A TMS ) was discussed by Morris an~ N ado 7, whi le

Kulkarni and Parameswarans presented an enhanced

RMS with action nodes which had their justifications in

preconditions, backtrack and plan decision nodes. The

concept of encoding planning events and plan events has

been mentioned by Beetz and Lefkowitz9, and Jaidev

and ParameswaranlO described a Dependency Net

(D-Net) representation for coding the logic of a

subgoaling planner. The REDUX architecturell

discusses the use of TMS for maintaining the validity of

the reason for context choices and rejections, since

3. OPS91: AN RMS-BASED PRODUCTION SYSTEM

We propose14 an enhanced PS architecture based ~n

an RMS mechanism, keeping in view single-context

problem solvers (specially planners). An interpreter

which accepts an OPS-Iike syntax is proposed. Concrete

problem solver actions are modelled as productions,*Called so because it was first developed and described in 1991
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constrained to be an action of one type. This action
makes a special working memory element called
contradiction and invokes the RMS Interface Module to
add a contradiction node in the D-Net.

MA TCHING, SELECTING AND

FIRING PROGRAM PRODUCTIONS

3.2 OPS91 Workin~ Memory

OPS91 architecture.Figure 1

The structure and functions of the working memory
remain unmodified over the original OPS5 system,
except for the special element contradiction. Creation
of this element triggers the contradiction resolution
procedure, which then attempts a minimal revision in
order to recover to a consistent state. The normal OPS91
cycle can proceed only from a consistent state.

The match on the working memory elements is done
using the Rete-Ner5. When a node is labelled IN (OUT)
in the D- N et, it is passed as a token with make (remove )
status to the Rete-Net. Thus, the current state (and the
history) is stored in the D-Net, and the alpha and beta
memories of the Rete-Net point to corresponding object
nodes of the D-Net.

It may be noted that OPS matches negated
preconditions by checking for the absence of satisfying
elements in the working memory , while the RMS
models these as OUT labelled nodes in the D-Net.
While backtracking it could occur that any of these
nodes could be relabelled IN, preventing the previously
selected instantiation from being matched (since a
negated condition element is present in the WM). It
thus becomes imperative to invalidate the data
dependency for this instantiation. Consequently, all
previously created object nodes* that are currently
OUT and are capable of satisfying negated
preconditions have to be matched and need to feature as
nonmonotonic antecedents for the selection decision
node. These nodes appear in the Rete Memory as
additional alpha-memory and constitute the overhead
incurred in order to perform automatic verification of
data dependencies in the event of a revision.

3.3 RMS Module

and the data dependencies are recorded on a
dependency network. In the event of a contradiction, an
unlabelling and relabelling procedure is utilized to
redirect search. A chronological backtrack mechanism
forms a backup in the event of a null conflict set situation
and provides completeness to the algorithm.

The main components of the OPS91 architecture
(Fig. 1) are the OPS91-Interpreter operating under an
enhanced match-select-act cycle, the Partitioned
Production Memory , the OPS91 Working Memory , and

the RMS operating on a D-Net.

3.1 Partitioned Production Memory

A constrained search by the OPS system can be
perfornled by means of explicit representation of
domain constraints as productions, and an interleaved
contradiction resolution cycle. For this reason, the
Production Memory is partitioned into two distinct
memory spaces: the Program Production Memory
(PPM) and the Contradiction Production Memory
(CPM). The PPM is similar to the conventional OPS5

Production Memory .
The RMS module comprises the truth propagation

and revision algorithms operating on the underlying
dependency network. This dependency network is an
enhanced D-Net (over conventional belief networks) 10,
because we provide justificC\tions to maintain status
assignment on the productions fired and/or revoked.

CPM is also a set of productions having the same
structure as PPM. These productions when fired do not
cause any change in the state of the world. They,
however, are meant to signal new contradictions
introduced as a result of the previous Acr phase
( actions performed in the last cycle) .The LHS of these
productions are a collection of condition elements, as in
the case of the PPM. The RHS differs in that it is

*There are many nodes for the same object, since OPS creates objects
with new time tags each time a modification is made.
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Note: Object Nodes A and B represent objects that matched positive
condition elements, while Object Node C represents an object

(deleted in the past) that can satisfy the negative condition element,
on the LHS of the production represented by Production Node PI.

Mi, M2: Maintenance Nodes SDi, SD2: Selection Decision Nodes
Pi, P2: Production Nodes D: Deleter Node
0: Object Node that is added (labelled IN) by Production Pi and

and deleted (labelled OUT) by later Production P2

Representation or the addition/deletion or an object by productions in the D-Net.Figure 2.

thus labelling the corresponding object node OUT.
The procedure of adding and deleting an object is shown
in Fig. 2.

Production nodes refer to instantiations of
productions that were fired anytime in the past. These
are supported by a single justification with a selection
decision node as monotonic antecedent. Selection
Decision nodes signify a decision to select an
instantiation from the conflict set. These receive support
from two kinds of justifications: a Data Dependency
Justification (DD-Justification) and a Maintenance
Justification (M-Justification), as shown in Fig. 2. The
DD-Justification has the object nodes matching the
condition elements, as monotonic or nonmonotonic
antecedents (depending on whether the condition
elements are positive or negative, respectively) and a

The D-Net consists of five categories of nodes: object
nodes, production nodes, selection decision nodes,
maintenance nodes and contradiction nodes. We briefly
describe each of them below and typical ~~presentations
can be seen in the scenario in Fig. 2.

Object nodes correspond to working memory
elements created ( these being labelled IN) and deleted
(being labelled OUT) by the RHS actions. All object
nodes are named by the time tag corresponding to the
working memory element they represent. A deleter
nodee is used to label an object node OUT
( corresponding to deleting an object from the working
memory). The deleter node (labelled OUT by default)
forms a nonmonotonic antecedent on any supporting
justification for an object node. During a delete
operation, the deleter node is given a valid justification,
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maintenance node ( described below) as a nonmonotonic
antecedent. The M-Justification has the Maintenance
Node as the sole nonmonotonic antecedent, and is used
to maintain the status of the Selection Decision node
even after its antecedents do not hold. This solution to
NeIl's problem has been discussed in detail by Jaidevl6.
Contradiction nodes are indicative of an inconsistent
state and are introduced when the CAct phase
(described below) creates contradiction elements in the

\Vorking Memory.

3.4 OPS91Interpreter

EM SA Cycle

productions comprising the CPM. This yields a set of
productions whose RHS indicates potential
contradictions. The CAct phase fires all the productions
output by CMatch. This creates new contradiction
elements in the working memory and the corresponding
IN labelled contradiction nodes in the D-Net (through
the RMS interface). Following this, the DDB
procedures are invoked and the contradiction is resolved
by making the elective (the only elective being the
maintenance node) IN. The complete revision
procedure that follows DDB is given below (featuring in
parentheses are comments).

It may be noted that a backtrack in the current
scenario really involves a transition from one point in
the state space to an entirely unexplored point in the
state space, and hence the new state of the Rete-Net has
also to be restored. We do this by passing all the positive
tokens in the revised state and the negative tokens with
time tags less than the largest time tag in the revised
state to the Rete-Net, which then yields the conflict set.
Importantly, for negated condition elements, when a
token with a remove status appears, the matching token
is deleted, but the current token is stored with a remove
status.

Based on the partitioned Production Memory
structure, the Match-Select-Act (MSA) cycle of OPSS is
modified into an Enhanced Match-Select-Act (EM SA)
cycle. The EM SA cycle schematic is shown in Fig. 3. As
is clearly discernible, three possible cycles are present.
The normal OPS91 cycle is one in which no
contradictioIf productions are matched. A summary of
the other two cycles is given below.

3.4.2 Domain Contradiction Resolution

The CMatch phase functionally involves matching
the working memory elements with the LHS of the

ct> CSR

(MATCH)- ""
""f

OOB

\
(SELECT

/

/

~

"'"-
ACT

Represents the phases of the original OPSS MSA cycle.
All others pertain to the OPS91 EM SA cycle

procedure revise ( elective) ;
al. Make-in (elective, CRJ);

{Make the maintenance node IN by giving it a
contradiction resolution justification -CRJ}

a2. RMS-propagate (D-Net);
{Propagate the effects of making the elective IN}

a3. for all consequent productions do
{Make all consequent productions OUT so that the
current state of the world (i.e. at the retracted
production) is restored}
a3.1 Make-in (maintenance-node (production),

CRJ)
{The function "maintenance-node" returns the
maintenance node for a given production node.
Making the Maintenance node IN, labels the
corresponding production node OUT}

a3.2 RMS-propagate (D-Net);
{Propagate the effects of retracting the

production}
a4. for all consequent produc~ions in sequence do

a4.1 Remove (maintenance-node (production),

CRJ)
{Remove the contradiction resolution justifica-
tion for the production so that the validity of theFigure 3. The OPS91 EM SA cycle.
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OPS91 has been coded in C on a SUN 111160. The
data obtained from a run of the OPS91 interpreter for
the problem above are given below. (The significance of
some of these is discussed in the next section).

data dependency can be checked}

a4.2 if the DD-Justification for the production is

invalid then

{If the data dependency does not hold now}

a4.2.1 Make the corresponding maintenance

node IN by giving it the same

contradiction resolution justification;

a4.2.2 RMS-propagate (D-Net);

4

10

2

3.4.3 Null Conflict Set Resolution

Importantly, we consider a null conflict set also

as a contradiction, which is resolved by the single

loop gCSR cycle. The resolution of this form of

contradiction is currently done by a chronological

backtracking procedure. However, we can add

heuristics to the processing of this contradiction, which

is backed up by a chronological backtrack in case the

former fails. Born the domain contradiction resolution

procedures and the null conflict set resolution

procedures are costly procedures and rely upon the

productions of PPM and CPM being correct and

complete. If the program is not correct or complete,

OPS91 would continue to perform a large amount of

unnecessary time and memory intensive work. Ensuring

that PPM and CPM are correct and complete is an

important issue and some partial solutions to this

problem, have been offered by Ravi Prakash et a117.

: 21

: 85

: 21 (11 + 10)

53

17

11ms

4ms

1400 rns (10)

: 405 ms (1)

816.4 ms (12)

133 ms (2)

1.4242
4. PERFORMANCE

0.6097

286

6

9

We present portions of the trace of a sample session.
The problem scenario comprises two rooms, Rl and R2,
connected by door D and an agent in room R2 initially.
The goal is to paint all the walls of the rooms Rl and R2
and the door D, as well as have the door closed.

The problem specifies that if a door is painted, it
cannot be opened or closed. We characterize the
dead-ends that can result out of this, in the form of the
following constraint production :

7

2

Problem Description Specifications
No. of Object Classes
No. of Program Productions
No. of Constraint Productions

D-Net Statistics
No. of Nodes at start
No. of Nodes at completion
No. ofWMEs(deleted + added)

Rete Net Statistics
No. of l-input nodes
No. of2-input nodes
Avtime spent on l-inputnodes
A v time spent on 2-input nodes
Maximum Time/EM SA cycle

( nth cycle )
Minimum Time/EM SA cycle

(nth cycle )
A verage Time/EM SA cycle

(n cycles)
A v time/backtrack (no of

backtracks)
Max ratio of current EM SA cycle

time to the previous EM SA
cycle time

Min ratio of current EM SA cycle
time to the previous EM SA
cycle time

At completion Left Memory size
At completion Right Memory size
Additional Right Memory size

Other
Worst case no of chronological

backtracks
Worst case noofDDB
Computed time saved on worst

case D D B over worst case
chronological backtracks 5714.8 ms

(p trappedl
(agent

(room

in <rl> )
5. DISCUSSION

name <r2> < > <rl> i door <d>,
5.1 Results

(Wall painted false i room <r2> )
OPS91 affords a convenient mechanism for

programming domain constraints and provides a

backtrack mechanism within the interpreter cycle itself .

( door i name <d> i open false i painted true)

.> (contradiction»
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This leads to a simpler code and reduction in the search
due to pruning of non-solution parts of the search space
and intelligent revision. One can observe in the previous
example that the worst case number of chronological
backtracks is 7, while a similar figure for dependency
directed backtracks is only 2. An additional constraint
that prevents an open door from being painted (since
the goal of closing the door can then never be achieved)
can further reduce the number of DDBs to only 1.

The representation of objects as nodes in the D-Net,
instead of assertions, appears to model the M-S-A cycle
of OPS systems naturally, but leads to a large
accumulation of nodes on justifications. For instance,
all objects that are capable of satisfying negated
preconditions feature on DD-Justifications (as
explained in Section 3.3). However, our approach may
not be resource intensive if the number of modifications
to. a particular object is small.

We found that the additiollal bookkeeping done in
the form of increased right memory is quite low, if the
number of modifications to an object are few. As the
number of modifications to an object increases, the
overhead increases correspondingly. The time spent on
2-input nodes versus the time spent on 1-input nodes
varies widely in accordance with the examples ( over a
number of problems studied, we have observed ratios of
0.2 to 7, the ratio being 0.364 in the above example).
The time/EMSA cycle does not vary much over two
consecutive cycles, the maximum ratio being 1.4 and the
minimum ratio 0.6. The average time taken for a
revision of the production history was only 133 ms which
is much lower than the average time for a complete
EM SA cycle, which is 816 ms. The D-Net growth over a
total of 12 cycles shows a change from 21 nodes to only
85 nodes, implying that the increase in D.Net size does
not constitute a significant memory overhead.

6. CONCLUSION

We had started by noting that there are two
approaches to PS using Truth Maintenance: RMS-based
and ATMS-based. We can reasonably conclude by
stating that the choice of A TMS or an RMS for
integrating with a production system is decided
essentially by the application on hand (and it is perhaps
useful to explore the notion of a Generic or Hybrid
TMS) but the utility of either approach to developing an
enhanced PS architeccture that can reason with revocable
actions by performing intelligent backtracking is
unquestionably settled.

To utilize the power of the enhanced PS architecture
proposed, the conventional problem specifications
(such as of OPS5) must be transformed to
constraint-based problem specifications, to exploit the
facility of specifying domain constraints available in
OPS91. An important guideline for performing such a
shift in programming strategy is to analyse the problem
with a view to determining what domain situations
would never lead to a solution' state, generalizing
pattern5 of such situations and representing these
patterns as domain constraints. Ol>S91 could then
become an extremely efficient programming
methodology for AI-based prpblem solving.

5.2 Associated Issues
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