
Defence Science Journal, Vol 43, No 2, April 1993, pp 139-144
@ 1993. DESIDOC

Object-oriented Real-time Simulation Environment for

Analysis of Real-time Software Architectures

K.R.S Iyyengar and R. Srinivasan

Naval Science and Technology Laboratory, Visakhapatnam-530 027

ABSTRACT

The problems associated with real-time software development are discussed and a design of
real-time simulation environment (RTSE) to model real-time software architectures is presented.
RTSE can be used to model software structure and can dynamically simulate the behaviour of
multi-tasking, pre-emptive priority-based real-time software systems. RTSE can, be used to identify
RT software anomalies like deadlock, starvation, lockout, signal queueing, race conditions, etc with
the help of RTSE Report Analyzer. The modeller can fine tune his design by re-orienting the timing
and system specification to remove anomalies and improve performance and reliability.

A number of schemes and methodologies have been
suggested for real-time software modelling. The most
accepted and popular design methodology was proposed
by Ward and Mellor3. Real-time software design
involves of (a) identification of real-time tasks, (b)
coordination between real-time tasks, (c) processing of
system interrupts, (d) 110 handling to ensW"e no data
loss, (e) specifying internal and external constraints of
the system, and (f) ensuring accuracy of data.

I. INTRODUCTION

The software designer identifies the real-time tasks,
and ensures coordination between tasks, external device
servicing, etc. , to cater the problem requirements. The
software architecture thus evolved is made to work in
a required scheduling policy, 'which can be a
round-robin, pre-emptive priority or non-pre-emptive.
Task synchronization and interrupt handling are time
critical and ot;'ten RT software structure optimization is
bogged down with problems of mixed signal problems,
deadlock, starvation, race conditions, etc.

Real-time software systemslrespond to external
asynchronous/synchronous events immediately. The
response time depends on the RT O/S and the
application architecture. Real-time systems normally
perfonn high speed data acquisition and process
infonnation under severe time and reliability
constraints. RT systems are nonnally used for a
dedicated applications, viz. , military , process control,
industrial automation, medical and scientific research,

computer graphics, communications, aerospace
systems, computer aided-testing, and in industrial

instrumentation.

Single task execution systems (like DOS) just load
a program into its memory and then pass control tJ
execute the program. A multi-tasking system2 has
multiple tasks to be executed simultaneously. It involves
selection of a task from a set of tasks for execution. RT
O/S has to manage communication and synchronization
among the different processes. It has a kernel for
accomplishing the above job. The (iesigner has to ensure
that tasks of applications are created, and inter-task
communication and synchronization are planned

properly to avoid any deadlock, starvation, lockout,

etc.

The requirements of RT system modelling and
analysis are discussed below and an Environment to
model the system based' on Ward and Mello~
methodology is presented" Afte"r modelling. the
specifications, the dynamic simulator visually shows the

Received 26 October 1992

139

DEF SCI J. VOL 43, NO 2, APRIL 1993

behaviour of the system. Then the software system can
be fine tuned to show the optimal performance.

2. RT SYSTEMS DESIGN REQUIREMENTS

The RT O/S kernel has got some mcmory
management routines and semaphores for task

synchronization .

With the above basic constructs a complctc RT
software system can be designed.

3. DESIGN OF RT SOFTW ARE SYSTEM

To accomplish the job to respond to the external
inputs, the software design4 should have the
characteristics: (a) task detinition and resource
handling, and (b) task communication and
synchronization. Typical RTOS constructs are
presented here with examples from popular pSOSs and
iRMX6 RTOS kernels.

A real-time software consists of a set of tasks -

separate processes/tasks that compete for access to the
CPU and a master process that schedules CPU access.
Each task can have a priority attached to it, depending
on the importance of the task or the timing of the task.
Similar tasks can also be grouped together to have more

protection.

Let us consider a problem in which the following

activities are to be met: (a) data will be received from

a sensor at constant intervals, (b) system has to process

the data, (c) monitor keyboard input, and (d) display

the earlier processed data as per the key board input.

The designer has to know the quantum and

frequency of the data the system is going to receivt: and

the timing of receiving data. The data flow diagram

according to Ward-Mellor approach for the above

real-time problem is given in Fig. 1.

Usage

Create task

PSQS

spawn-p

iRMX

CREA TE- T ASK

Activate task activate-p

Change priority priority-p SET -PRIORITY
dynamically

Make pre-emptive mode-p
task

A task can be suspended for some time, or it can

be suspended and resumed later. If the task is

suspended, it does not get a CPU share until it is

resumed. Suspension and resumption of process can be

done among the same group. This ,provides some level

of protection.

Usage pSOS iRMX

Suspend process for pause-p SLEEP
some time

Figure I. Data now diagram.
Suspend process suspend-p SUSPEND-

until resumed TASK

Resume process resume-p RESUME-
TASK

Inter-task synchronization is achieved by means of

shared variables, signals, waits and mailbox messages.

Usage pSOS iRMX

Signal a process signal-v SEND-SIGNAL
about occurrence
of some event

Wait for some event wait-v RECEIVE-SIGNAL

Create message create-v CREATE-MESSAGE

Send message send-x SEND-MESSAGE

Request for message req-x RECEIVE-MESSAGE

The tasks and the thread of events are conceived by

the designer. The data receive task is given a higher

priority, as the task should not miss any data. As soon

as the receive task receives data, it gives a signal to

process data task.

The display task has a lower priority than other tasks.

It waits for signal from input unit. The code

corresponding to it in pSOS will be as shown in
Appendix A. ,

The anomalies can be manually analyzed for the

entire activity. The first look at the system seems to be

perfectly correct. Consider the case in which the

140

IYYENGAR & SRINIVASAN: REAL-TIME SOFIWARE ENVIRONMENT

the RT system. The specifications are entered into the
system through the graphical user interface (QUI) in
an interactive manner. The QUI environment provides
selection of task, signal, wait, create-task, suspend-task,
resume-task and othf)r constructs needed for building
a real-time software system.

Tasks are represented by circles. Creation of the
task and the relationship among tasks are represented
by thick lines. Rectangles represent different entities
like signal, wait, suspend, resume, pause, etc. The
specifications of the tasks and external devices are
described by using task description windows and device
description windows.

external data is received by the Input-Process
continuously. In such cases, the signal queue increases
considerably, finally leading to missing of signals or

system hangup.
If the designer can foresee the problem, he can tune

his design by allowing external input to proceed only if
the display process is waiting for external input, or the
external input buffer exceeds two inputs in the queue .

Analysis and testing of the real-time software system
are very difficult if we follow manual debugging method.
This is particularly true in the case of large projects
where it has to cater for more inputs, and a number of
tasks and interrupts are working on the system
asynchronously. An analysis tool will help the designer
to tune his model while designing a real-time software

system.

4.1.1 The Task Description Window

The circles represent different tasks of a problem.

The task characteristics are described in a task

description window. An interactive dialog window

appears in which the designer has to enter the

specifications of the particular task in the form of (a)

timing (approximate execution time), (b) interrupt or
normal task, (c) priority of the task, (d) group to which

the task belongs, (e) sequence of sub-tasks and their

approximate execution time, and (f) scheduling policy .

The model creates a task description block (mB)

structure associated with each task described (Fig. 2).

The priority of the task can be selected between O

and 255, 255 being the highest priority. Group specifies

the Task group to which the current task belongs. Only

4. REAL- TIME SIMULATION ENVIRONMENT

The real-time simulation environment (RTSE)
developed by the Computer Centre, NSTL, resolves
the problems of real-time software modelling7.8 and
verifies the design by dynamically simulating the design;
it also reports the anomalies. The RTSE has four
components (a) modelling real-time system and GUI,
(b) dynamic simulation, (c) report analyser, and (d)
Fine tuning the system.

4.1. ModeUing Real-time System and Gill

The environment provides an interactive
user-friendly interface for defining the specification of

PROCESS NAME OEVICE NAME

PRIORITY PRIORITYGROUP

DEVICE TYPESCHEDULING POLICY

~

PERIODICITY

SERVICE TIMEMODULE-1 TIMINGS -1

MODULE-2 TIMINGS- 2

TASK DESCRIPTION BLOCK (TDB) DEVICE DESCRIPTION BLOCK (DDB)

Figure 2. Task description and device description blocks.

[41

DEF SCI VOL 43, NO 2, APRIL 1993

the tasksub-tasks, which
characteristics.

inherit parentcanthe tasks that are in the same group can be deleted,
suspended or resumed by the task.

The scheduling policy also can be specified. The
policy can be priority-based scheduling,
non-pre-emptive multi-tasking or r('1und-robin
scheduling. If the priority of all processes is same, then
the task switching takes place in a non pre-emptive
first-in first-out scheduling.

4.1.3 The Build

Once the design is complete, the system provides a
build check on the completeness of the design. Any
clash in the signals and waits of tasks can be detected .
A check is made on the signals and the corresponding
waits of the tasks. Any task which is trying to violate
group rights can be checked. Any unconnected tasks
or devices are intimated to the modeller by build. Any
,static anomalies detected are reported. The designer
can correct his design at this stage itself .

4.1.2 The 2xtemal Device Description Window

The real-time system always interacts with some
external units. The external device is described in the
external device describtion window. An interactive
dialogue window appears in which the designer can
enter the specification of the external devices in the
form of (a) input or output device, (b) asynchronous
or synchronous device, (c) interval of occurrence, (d)
service time, (e) priority/no priority, and (f) coupled
with interrupt or normal.

The external units can provide input to the system
or to output data to another system. The asynchronous
events happen at random time intervals and the
synchronous events happen at fixed time intervals. The
interval of occurrence of an event can be set to random,
or the time interval can be specified. Service time
specifies the amount of time the device takes to perform
input/output. Priority specifies the priority associated
with the device. The specification includes whether the
interaction happens through interrupt mode or through
normal mode. The description of devices is loaded into
a device description block (DDB).

The first level of the task diagram can be drawn as
described above, and if the designer is interested in the
next level, he can further 'explode' the task into

4.2. Dynamic System Simulation (DSS)

Once the preliminary design is syntactically and
semantically (to a little extent) verified, the designer
can view the performance of the system.

The DSS is a scheduling manager and checks the
validity of the design. The DSS does (a) CPU

sched.uling, (b) asynchronous/synchronous
communication with external devices, (C) manages
inter-task communication and synchronization, and (d)

handles interrupts.

The tasks created can be in any of the three states,
namely, ready state, blocked state or running state. The
ready state indicates that the task can be allocated to
CPU; and blocked state in(.tcates that the task is
expecting some other task or external device to signal.
Running state indicates that the task is currently
allocated to CPU .

DSS maintains a ready queue, blocked queue and
running queue, The queue containing the entities is
shown in Fig. 3.

T ASK NAME/DEVICE NAME TASK NAME/DEVICE NAME

s ERVICED TIME SERVICED TIME

POINTER TO ITS MODULE POINTER TO ITS MODULE

Figure 3. Typical queue structure.

142

IYYENGAR & SRINIVASAN: REAL-11ME SOFIWARE ENVIRONMENT

4.3.4. Multiple Signal Queueing

Even if the process is given a signal, due to some
other reasons if the process is not able to service it
before the arrival of the next signal, it leads to a signal
queueing which might lead to signal or data loss. The
report analyzer checks signal queueing at regular
intervals and reports such conditions.

DSS initializes all the queues and the root task (main
task) is selected and put in the ready queue, with initial
execution time set to zero, and the pointer points to
the first module of the task description Table. As and
when a task is initialized, it is added to the ready queue.

DSS selects the appropriate task from the ready
queue, depending on the scheduling policy opted for .
DSS allocates CPU for a time unit (execution of an
instruction) for the task and then checks the status and
updates the status of different tasks and schedules CPU
again. Periodidrandom inputs are simulated by DSS
and fed to the RT software. The complete control flow
sequence is recorded by the DSS.

4.4. Fine Tuning of RT Software

If anomalies are found in the design, the design can
be re-tuned by changing the specifications of the
required task or module. Fine refinement is possible by
adjusting the specifications on getting the feedback of
system performance by repeatedly running DSS.

4.3. Report Analyzer

The report analyzer goes through the execution
sequence of the tasks. The task execution sequence is
graphically shown on the display. Conditions like
deadlock, starvation, multiple events queueing are
detected and reported by the report analyzer .

5. CONCLUSION

The RTSE has been implemented in C++ .under
MS-WINDOWS. The choice of L++ made the design
simpler. The usage of virtual contructs in C+ + has
reduced the burden of programming repeatedly.
MS-WINDOWS provided an excellent GUI and
constructs for building the modelling part of RTSE.
The environment simplifies the job of the software
jesigner and eliminates the necessity of manual RT
software probing.

4.3.1 Deadlock Detection

Deadlock occurs due to a task expecting some
signaVresource that is not released by another task
which may be waiting for the earlier task to
signaVrelease resource. On analyzing the blocked queue
at regular intervals, the deadlock situation is reported.
Report analyzer displays in a window as to why the
deadlock has occurred and the tasks involved when the
deadlock occurred in real-time.

ACKNOWLEDGEMENTS

The authors thank Rear Admiral RS Chaudhry ,
A VSM, VSM, IN, Director, NSTL, Visakhapatnam for
the support provided for the work and Dr DK
Chattopadhyaya, Deputy Director for giving
constructive guidance at every stage of development of
this work.4.3.2. Starvation

Starvation is defined as a task not getting CPU share,
because some task of higher priority job always takes
CPU. The indefinite wait for CPU is called starvation.
The report analyzer checks CPU allocation, the task
description blocks and the ready queue at regular
intervals and reports the tasks that are starving for CPU .

REFERENCES

Pressman. Software engineering, Ed. 2.
McGraw-Hill, New York, 1988. pp. 368-99.

Milkinov, Milan. Operating systems-concepts
and design. McGraw-Hill, New York, 1987. pp.
70-168.

Ward, P.T. & MelIor, ~.J. Structured
devl,;lopment for rpal-time systems, 3 V.
Prentice-Hall, EnglewO;od Cliffs, 1987. 468 p.

Ripps, David L. An impiementation guide to

real-time programming. Yourdon Press, Reading,
1989.

2

4.3.3. Race Conditions 3

The report of execution sequence provides

important infonnation al--~llt the order of execution of

simultaneous tasks. The over-run of time by some

process may lead to clash with the continued execution

of the system, resulting in hangup in several iterations.

4

43

DEF SCI J. VOL 43. NO 2. APRIL 1993

75 pSOS 68 K user manual. Software Components
Group Inc., California, 1988.

Lewis, Ted. & Reisman, Sorel. Tools fair. IEEE
Software, 1990, 67-76.
Falk, Howard. CASE tools emerge to handle
real-time systems. Computer Design, 1988, 27 ,
53-57.

8.
iRMX user manual. Intel Corporation, California,

1985.

6.

APPENDIX A

pSOS PSEUDO-CODE FOR rnE SAMPLE PROBLEM

root()
Process-Data()

Wait-for signal from ReceiveData.

Process data. I. computation 1.0 ~cc .1

Input-process () ,. Random Data Input .,

I. Receive-Data is assigned the highest priority .1

spawn-p(Receive -Data,Priority 255.Group 0);

activate(Receive Data);
spawn-p(Process -Data.Priority 254. Group 0);

activate(Process -Data);
~pawn-p(Display -Process, Priority 254, Group I);

activatep(Display -Process);
spawn-p(lnput -process, Priority 254, Group I);

activate-p(lnput -Process); Wait for signal from external dcvicc.

Collect Data. I. computation 0.25 s .1

Send signal to Display proces.o;.

Receive-Data() I. Receives data every 3 s .1

Display-process()

Wait-for signal from external device.
Receive Data. I. computation 0.5 s .1

Signal to Process Data.

Wait-for signal from Input Process.

Display Requested I. computation 2.0 s .1

144

