
Defence Science Journal, Vol 43, No 2, April 1993, pp 121-127
@ 1993, DESIDOC

S. Srikumar and V. Rajaraman

Computer Science and Automation, Indian Institute of Science, Bangalore.560 012

ABSTRACT

This work is concerned primarily with implementing a CASE tool to convert an application
specified by using data flow diagrams to an object-oriented program. An integrated set of tools and
techniques for design, development and implementation of software for business applications is
presented. The methodology uses prim&rily data flow diagrams alongwith decision tables. The
object-oriented programming techniques have been applied in the methodology for developing the
applications using these tools. An inheritance diagram has been evolved. A data flow diagram processor
has been developed which generates an equivalent C-+-+ program. A graphical user interface to paint
the data flow diagram has been developed. A decision table processor that generates a C++ program
has also been developed.

I. INTRODUCTION 2. OVERVIEW OF THE CASE TOOL

Block diagram of the CASE tool designed by the
authors is shown in Fig. 1. The tool can be divided into
two parts. One part is a decision table processor or the
decision table converter. It takes a decision table in a
format specified in Fig. 2 as input and produces the
C++ function for that table. The C++ function is
directed to the standard output and can be redirected to
a suit?hl.., file, which can be included in the application.
The second part of the tool is the data flow diagram

There has been a growing need for data processing,
as many organizations are computerising their
operations. With the advent of powerful workstations,
there has been a growing interest in computer-aided
software engineering (CASE). This paper deals with an
application generator on the lines of the CASE

methodology using object-oriented approach.
Work on the same lines was done by Gopikrishna

and Rajaramanl. The specifications were presented in
the form of data flow diagram~ , which are encoded in a
language BDPas (Business Data Processing Pascal).
Their work generated a Pascal program. In the present
work also, the specifications are given as data flow
diagrams. A graphical user interface has been developed
using which the user may draw the diagrams on the
screen instead of encoding them. The user enters the
details of each process using the graphical user interface
(GUI). Once this is complete, the data flow diagram
preprocessor is called and the code is generated hI C + + .
There is also a facility to embed mixed entry decision
tables in the code. Another advance in the current work
is the use of object-oriented programming3 in the

m~thodology for developing the system.

APPliCATION
SOFTWARE

Figunl Block diagram or CASE tool.

~---

Received 26 October 1992

121

DEF SCI J, VOL 43, NO 2, APRIL 1993

proces~or and the GUI. The data flow diagrams are
drawn using the GUI in a top down fashion. The top
level data flow diagram is the first diagram.

algorithms used in these operations are the same
whether it is an array or a file. The only difference is the
object on which these operations are done.

Table I. Functions used In business data processing

Function name

CRTFILE
FSORT
FSEARCH
FBATCH

no-of-conds no-of-rules no-of-actions else-present?

name: < name >

parameters :

< parameter > r

conditions

< conditions >

actions

< actions >

, < parameter >

FAPPEND

FDELETE

CRTARRAY
SORT

SEARCH
APPEND

BATCH

DELETE

Figure 2. Fonnat of the decision table for the preprocessor,

3. USE OF OBJECT -ORIENTED APPROACH

Description

Create a file of records

Sort a file

Search for a record occurrence in a file

Batch all recbrd occurrences satisfying a condition in

afile

Append a record after a particular record in a file

Delete a record occurrence in a file

Create an array of records

Sort an array of records

Search an array for a record

Append a record after a particular record in an array

Batch all record occurrences in an array

Delete a particular record in an array
One of the advantages of using the data flow diagram

is the identification of reusable functions. These
functions have to be data-type independent. .1 nere
should preferably be no globally declared variables.
Two types of data structures that are commonly used in
business data processing are the array and file. Thus, we
can treat the array and file as objects. The functions
related to business data processing that can be used for
an array and a file are listed in Table 1. It is seen from
this table that similar operations are done for an array of
records and a file of records. Operations like create,
sort, search and delete are common to both. The

Hence, all these functions can be placed in a common
object from which both the array object and the file
object can be derived. This common object is called by
us the base object. Figure 3 shows the inheritance
diagram. The file object is split into more objects.
All these objects, except the base object and the filevars
object, are available to the user. For example, all the
files in the user's system can be derived from read-write
file.

BASE OBJECT

~~

"
.;""

,.;"
,

FilEVARS ,... "
,/

,1

-,\ARRAYOBJECT \
\
\
,
,
I

!

WRITE ONL y FILEREAD ONL y FILE

i
,
I
I j
, \
\
\

I\
,1," ", ,1,- ,/" ,

READ WRITE, ,...
,...

,...
,......

~~

FILE OBJECT

Figure 3. Inbentancediagram.

122

SRIKUMAR & RAJARAMAN: A CASE TOOL TO CREATE AN OBJECT-ORIENTED SYSTEM

decision table. If a name is not present, a

default name, dectableO, is given. However ,

there will be a clash if there is more than one

decision table. A warning is issued when the

default name is given.

Step 3: Read the parameters of the decision table. The

parameters become the arguments of the

function.

: Process the conditions. If the keyword

conditions is not present, then it is a fatal error

and the DTC stops further processing and

quits. The conditions are processed in the

following way.

As mentioned earlier, the mask method4 is

used in the resulting function. The H matrix is

first generated. The dimension of the H matrix

is the number of conditions by number of rules.

For each condition, do the following.

For each rule in the condition do the following.

1. If there is a dash for the corresponding entry of the

rule, that element of the matrix is assigned 1 (true) .

2. If there is a Y or N entry , then that element of the

H matrix is assignedO. It is ORed with one of the

following :

(a) If it is a y (yes) entry, then the result of

condition testing.

(b) If it is a n (no) entry , then the not of the

result of condition testing.

Step 4

The functions shown in Table 1 have to be used on
the right object. In other words, the correct object will
have to be read from in the case of, say, the function
search and written into in the case of, say, the function
create. This is taken care of by creating two functions,
get-record and store-record, in the base object and
making them virtual. These two functions will be
defined in the array object and file object. In addition,
virtual functions such as position (to position at a
particular record) and get-position (to get the current
position) have also been defined in the base class.

The objects have been coded in BORLAND C++ in
MS-DOS.

4. DECISION TABLE PROCESSOR

The above combines steps 1 and 2 of the algorithm
for the mask method4,

Step 5: Process the actions. Each rule is generated as a
case statement. The correct rule to be applied
is obtained by calling the function find-rule-
number. This function takes in the condition
matrix (H), the number of conditions and the
number of rules and returhs the correct rule
number or -1 in case of ambiguity. The
algorithm followed for the conversion is as
follows.

For each rule,

For each action,

1

2.

If the entry for ,the action for that rule is
a -, do nothing.
If the entry is a cross (X) , generate the
action statement.
Otherwise signal an error .

Decision table is a tool used to specify a complex
decision procedure4. A decision table preprocessor or
decision table converter (DTC) has been developed
which takes a mixed entry decision table and generates
a C+ + function for that table. The format that the DTC
understands is given in Fig. 3. The first line of the
decision table contains four integers. These are the
number of conditions, number of rules, number of
actions and O if else is not present, 1 otherwise. Next, the
name of the decision table should be present. If it is not
present, a default name is assigned. A warning is issued
in this case. There could be a clash in the default name if
there is more than one decision table. Hence, it is best
to give a name to the decision table. The parameters, if
any, should come next. These parameters are printed as
the parameters of the function. The conditions and
actions appear next. The entries in the condition entries
and action entries are separated by a colon. The
conditions and actions are identified by the keywords
conditions and actions respectively. A decision table has
to have conditions and actions. If either of these are
missing, then it is a fatal error. The DTC stops further
processing and quits after issuing an appropriate error
message. If the decision table is correctly coded it is
converted to a fuction in C+ + using the mask method.
This fuction can be included and calle from the main

application.

The algorithm used in the DTC is as follows :

Step 1: Scan the first line and read the number of
conditions, number of rules, number of actions
and the else present (boolean).

Step 2: Read the name of the decision table, ifpresent.
T}1is name will be the function name of the 3

123

DEF SCI J, VOL 43, NO 2, APRIL 1993

The code is directed to the standard output. It can be
redirected to a suitable file which can be included in
the application. The DTC has been written in ANSI C
and the function find-rule-number has been written in
BORLAND C++.

the user draws the diagrams on the screen, these
diagrams are stored in a linked ljst which contains the

following fields: type of object (whether it is a bubble,
or a line, etc), the coordinates of the object and if it is a

text object, the text and its length. To enter the details
of the bubble, the user presses the right mouse button.
A dialog box appears in which the user enters the file
name where the details of the bubble are present. The

middle button redraws the screen.

The message window is only an output window

where error or warning messages are displayed.

The design of the graphical user interface is as
follows. All the three windows discussed above are

children of the root window. Each option in the selection
window is a child window of the selection window. The
pull down menu is a child of the root window, as it is too
big to be made the child of the selection window.
However, the window is positioned appropriately, so
that it appears as part of the create window of the

selection window.

s. GRAPmcAL USER INTERFACE

The GUI has been developed using X Window
Programming under UNIX5.6. This is an interface for
drawing data flow diagrams. The interface is made up of
three windows, a selection window, a drawing window,
and a message window (Fig. 4).

The selection window contains the option create for
keying in the included files, user defined functions,
global variable declarations, local variable declarations,
and object declarations. A pull down window appears
when the create option is pressed. On choosing the
correct option in the pull down menu, a dialog box
appears which asks for a file name. For example, if the
user wants to input, say, include files, he creates a file in
which he places the include files. The name of this file
has to be entered in the dialog box. In other words, the
include files, user defined functions, etc. are placed in
respective files. On choosing the option, the file name is
given. The other options include saving the diagrams,
creating the diagram and creating the C+ +' code. All
selections are done by the left mouse button.

6. DATA FLOW DIAGRAM PROCESSOR

Data flow diagrams are used in the design phase to
depict the overall logic of a system. A data flow diagram
models a system by using external entities from which
data flows to a process which transforms the data and
creates output data flows which go to other processes or
external entities or files2. The main merit of data flow
diagrams is that it can provide an overview of what data

The middle window is the drawing window where
the user draws the diagrams in a top down fashion. As

Figure 4. The grapbical user interface

124

SRIKUMAR & RAlARAMAN: A CASE TOOL TO CREATE AN OBlE(.ORIENTED SYSTEM

a system would process, what transfonnations of data
are done, what files are used and where the results flow.

the end. These f..lnctions are generated in a file
called userfuncs. cpp, which is automatically
included in the final application.

Step 2 The object definitions are generated. This is
done in the following way. Two files are
generated for each object. Each file name will
have the object name and an extension. This
object name is part of the structure for the
object linked list. The first file is the
declaration file ending in. h and the other is the
definition file ending in. cpp. The declaration
file contains the variable and method
declarations of the object. The definition file
contains the definitions of all the methods
declared in the declaration file. The
declaration file is included in the definition file
and the definition file is included in the main

application.

Step 3 The include files for the application are
generated. The include file linked list is
traversed from the beginning till the end and
generated. The include files are placed in the
beginning of the application file main. cpp .

A graphical user interface has been developed to
paint the data flow diagrams. Details of each process are
entered. When all the required details are entered, the
application is generated which can be compiled using a
suitable C+ + compiler to generate the executable code.

The data flow diagram processor captures the
interconnection diagram on the graphical user interface
onto a data structure shown in Fig. 5. These diagrams
are drawn in a top down order. The top level data flow
diagram is the first diagram. Each data flow diagram is
coded as a function, the top level data flow diagram
being main(). The data flow diagram first generates the
object definitions. These objects are entered using an
option in the graphical user interface. Then the
application code is generated.

The algorithm used for the generation of the code is
given below. The data structure (Fig. 5) is used to
generate the code. The application code is generated in
a file called main. cpp.

Step I: The user defined functions are generated first.
The linked list is iterated from the beginning to

INCLUDE FILE LIST

GLOBAL DECLARATION LIST

VARIABLETYPE VARIABLE TYPE

OBJECT DECLARATION LIST

OBJECT
TYPE

DECLARA-

TIONS

OBJECT

TYPE
DECLARA-

TIONS

OBJECT

NAME

OBJECl

NAME

USER OEFINEO FUNCTION LIST

LIST OF OFOs

STRUCTURE OF EACH PROCE~S

PROCESS
NUMBER

PROCESS
NAME

INPUT
VARIABLES

OUTPUT

VARIABLES
(ODE SUBPROCESS

Figure 5. Data structures used

12~

DEF SCI J, VOL 43, NO 2, APRIL 1993

"'
~ ~ ORDER

PRO-

(ESSING

CREATE

All

;:::J

,

BOOKS ACCOUNTS CUSTOMER STOCK ORDERS

{a)

p 4: The globals are generated using the global
declaration linked list. These globals are placed
immediately after the include files.

p 5: Finally, the application source code is
generated. Each data flow diagram is coded as
a function. The top level data flow diagram is
the main () function, as mentioned earlier .
Each data flow diagram at least has a process.
A linked list of all these processes is maintained
for each data flow diagram.

For each data flow diagram the processes are
traversed.

1. Generate the local variables, if any.
2. Do the following for each process in the

data flow diagram :

(a) If there is no subprocess for that
process, then the code is generated.

(b) If there is a subprocess (which is
another data flow diagram), then a
function call with the parameters (if
any) is generated. This function will be
defined later. A prototype of this
function is placed in the file prototype.
h, which is automatically included in
the application code at the beginning.

The data flow diagram preprocessor has been written
in ANSI C.

r---
2.1.2

~

2.1.1

SEARCH

FOR

BOOK

""" \
2.2.1 2.22

SEARCH VERIFY

FOR CREDIT

: l;::'~ p

CUSTOHER CUSTOHER ACCOUNTS

~
2.3.2

VERIFY

STOCK

-A-

BACKORDERS STOCK

i'-J '--
BOOKS

@.301 SEARCH

FOR

BOOK

STOCK

7. A CASE STUDY

(b)

Figure 6. Data flow diagrams for the case study,

A case study is presented in this section. This case
study deals with the working of a bookstorel. A subset
of this problem is taken for the case study.

The first step in the problem is to identify the various
objects. All the files in this application are the various
objects. These objects are ac;counts, orders, customers,
books, stocks and backorders. The next step is to
convert any decision tables to programs in C+ + .This is
an optional step, as an application may not have any
decision tables at all. This application has two decision
tables. The last step is to generate the application. The
data flow diagrams shown in Fig. 6 are drawn using the
GUI. Once all the details are entered, the application
code is generated. The interconnection diagram drawn
using the GUI is captured in the data structure shown in
Fig. 5. The algorithm given earlier is used to generate
the code. The user defined functions are generated first
in a filt: called userfuncs.cpp. This file is automatically

included in the final application code. Next the files for
the objects are created. The next step is to generate the
code for the processes. The code is generated in the file

main. cpp.

8. CONCLUSIONS

In this paper a set of software tools are presented
suited for business applications. The object-oriented
programming was applied as the methodology for
developing applications using these tools. These tools
are non-procedural. The use: of data flow diagrams and
a graphical user interface to draw these diagrams makes
the task of developing software easy for the end user
who may be a novice. These tools are portable and easy

26

SRIKUMAR & RAJARAMAN: A CASE TOOL TO CREATE AN OBJECT -ORIENTED SYSTEM

REFERENCESto use The source code generated is in C+ + , which can
be modified by the user, if needed. 1

There is always scope for improvement in any work,
as no work is perfect. The file object in the inheritance
diagram contains a read-only file object, a write-only
file object and a read-write object. It was found that
most business applications do both reading and writing
on a file. This means that mainly the read-write object is
used. Hence, it might be better to have only the read-
write object and call it the file object. This has the
advantage that the user knows only one file object and
not three file objects.

2

3,

4

5.Currently, the process code is entered in the C+ +
language. This means that the end user has to know
C++. Designing a language that has a correspondence
to C+ + , yet simple for the end user, would greatly
enhance the utility of this tool.

Gopikrishna, M. & Rajaraman, V. Data flow
oriented software tools for business data
processing. Comput. Sci. Informatics, 1985, 15

(2),9-22.
Rajaraman, V. Analysis and design of information
systems. Prentice-Hall of India, New Delhi, 1991.

Brad, J. Cox, Object oriented programming-
An evolutionary approach. Addison-Wesley,
Reading, 1986.

Rajaraman, V. Decision tables. In Encyclopedia
of computer science and technology, VoI. 24,
Supplement 9. Marcel Dekker, Inc., 1991. pp.
85-106.

Oliver Jones, Introduction to the X window
system. Prentice Hall, Englewood Cliffs, 1989.

Eric, F. Johnson & Reichard, Kevin. X window
application programming. BPB Publications, New
Delhi, 1990.

6,

127

