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ABSTRACT

The results of flight path reconstruction using UD factorisation-based Kalman filtering algorithm
are presented. The algorithm was implemented using PC-MA TLAB functions and validated for
simulated as well as real flight data. It is of considerable relevance to analysis of aircraft accident data
and general flight data for aerospace vehicles.

I. INTRODUCTION avoids time-consuming square rooting operations,
numerical reliability, stability and accuracyl-5.

The UD filtering algorithm was initially
implemented on NAL's UNIV AC computer for linear
state estimation problem6. It has been used for analytic
sensor failure detection and for correction studies for a
fighter aircraft 7. The application of the algorithm was
then extended to handling nonlinear kinematic
consistert~y checking for aircraft dataK.

In this. paper, the re~ults of flight path reconstruction
implemented using PC-MA TLAB functions are
presented. It is programmed in interactive manner for
PC A T 386/387 microcomputer. For linearisation of
nonlinear functions, a finite difference method is used.
The aircraft data is simulated using a nonlinear model,
including bias, scale factors and random noise. Th~
filtering algorithm is validated for linear/nonline"r
models using simulated data and some real flight data.

Flight path reconstruction is the process. of
detennining the time histories of an aircraft's position
and velocity from measurements made in flight. The
results of flight path reconstruction can be used to
identify the aerodynamic model of the aircraft through
regression analysis and hence to obtain aircraft

perfonnance data.

The dynamic flight data recorded from sensors are
prone to bias and scale factor errors. Flight path
reconstruction utilizes the redundancy present in the
recorded inertial and air data variables to obtain the
best estimate of states together with scale factor and bias

errors.

Flight path reconstructiAn involves estimation of the
state of the aircraft, and errors of inertial, air data and
Euler angle measur~ments. State estimation is done
using the aircraft kinematic equations relating
acceleration, velocity and displacement and including
biases and scale factors as unknown parameters. lbus,
flight path reconstruction becomes a joint state and
parameter estimation problem. UD factorisation-based
Kalman filtering algorithm is used for state and
parameter estimation. UD factorisation has certain
advantages: triangular structure of matrices, which

2. FLIGHT PATH RECONSTRUCTION PROBLEM

Using the accelerometer and rate gyro

measurements and the kinematic equations of motion of

the vehicle, its states are reconstructed and the scale

factor and bias errors are estimated. The reconstructed

states are used to compute the flow angles and velocity

and compared with the measured angles and velocity.
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The mathematical model used for flight path
reconstruction, in general, is described by kinematic
equations with state variables consisting of three linear
velocities, u, v and w ,and three Euler angles «1>,9 and <p.
The input variables are the linear accelerations, ax, ay
and az, and the angular rates, p, q and r. The
observations are the flight path velocity, V, an~le of
attack, a, and sideslip angle, 13. The following are the
state and observation equations used :

vector

UT = [ nv, n~, na] is the measurement noise vector

The vector 8 contains the unknown parameter: scale
factors and bias errors in the measurements. Given the
above nonlinear model and a set of noisy input and
output measurements, the flight path reconstruction
problem involves estimation of the system state x and
the unknown parameters e. This is done by UD
factorisation-based extended Kalman filtering
algorithm for the present case.

State equations

q w + r v + ax -9 sin 9u=

3. EXTENDED KALMAN FIL TERING AND UD

FACTORISAnON
v = -r u + p w + ay + 9 cos ~ sin 4>

w = -p v + q u + Qz + 9 cos 6 cos <I>
Extended Kalman filter is a sub-optimal solution to

a nonlinear filtering problem. The nonlinear functions
are linearised about each new estimated/filtered state
trajectory as soon as it becomes available.
Simultaneous estimation of states and parameters is
achieved by augmenting the state vector with the
unknown parameters and applying the filtering
algorithm to the augmented nonlinear model9. 10

The new augmented state vector is

tf> p + qsin 4» tan 9 + rcos4» tan 9

6= q cos 4> -r sin 4>

q sin ~ sec e + r cas ~ sec e1!1=

Measurement equations.

~-+ W2

J3 = tan-l [V I u]

a = tan-l [W I u]

(4)

(5)y (t) = ha (xa, u, t)

Ym (k) '= y(k) + u(k) , k=l,

where

,n

fA (I) = [ f I OT] ; G.r = [ GT I OT ]

The estimation algorithm is obtained by linearising
Eqns (4) and (5) around the prior/current best estimate
of the state at each time and then applying filtering
algorithm to the linearised model. The linearised
system matrices are defined as:

(3)
k = I, 2, ,N

8fA

8xa

u, v, w, ~, 9, "' is the state vector
A (k) =

Xa = fa (k), U = U (k)T - [U -

and the state transition matrix
<1> (k) = exp [- A (A (k) .d71

where
dT = tk+l -tk.
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For the sake of clarity and completeness, the

filtering algorithm is given in two parts: (i) time

propagation, and (ii) measurement update.

Since Eqn (11) is numerically ill-conditioned, UD
factorisation-based implementation of Eqns (8)-(10) is
used for fligi!t path reconstruction.

3.1 Time Propagation 4. UD FACTORISATION FILTERING

The current estimate is used to predict the next
state, so that the states are propagated from the present
state to the next time instant.

The predicted state is given by
lk+l

ia (k+ l/k) = xa (k) + fA [fa (1), u(k)] dl (6)
tk

The UD factorisation filter has the following merits2.
(a) It is numerically reliable, accurate and stable,
(b) It is a square root type algorithm, but does not

involve square rooting operations,
(c) The algorithm is most efficiently and simply

mechanised by processing vector measurements
(observables), one component at a time, and

( d) For linear systems, UD filter is algebraically
equivalent to the Kalman filter .

In the UD filter, the covariance update formulae
and the estimation recursion are reformulated, so that
the covariance matrix does not appear explicitly.
Specifically, we use recursions for U and D factors of
covariance matrix p = UDUT, where U is a unit upper

triangular matrix and D is a diagonal matrix. Computing
and updating with triangular matrices involve fewer
arithmetic operations and thus greatly reduce the
problem of round off errors which might causelO
ill-conditioning and subsequent divergence of the
algorithm. The filter algorithm is given in two parts:

In the absence of knowledge of process noise, Eqn
(8) gives the predicted estimate of the state based on the
initial/current estimate. The covariance matix
propagates from instant k to k+ 1 as

P (k+ l/k) = ~ (k) P(k) ~T (k) + GA (k) QA GT (k)

(7)

where p (k+ llk) is the predicted covariance matrix for
instant value of k+ 1, G A is the process noise related
coefficient matrix, and Q is the process noise covariance
matrix.

3.2 Measurement update

The Kalman filter updates the predicted estimates

by incorporating the measurements as and when they

become available as follows :

4.1 Time Update

We have for the covariance update,

p (k+1/k) = cI> p (k) cl>T + GA Q Gl (12)
..

Given p = O D OT and Q as the process noise

covariance matrix, the time update factors O and D

are obtained through modified Gram-Schmidt

orthogonalisation process.
We may define W = l

with WT =

(8)

where K is the Kalman gain matrix.

The covariance matrix is updated using the Kalman
gain and the linearized measurement matrix from the
predicted covariance matrix P(k+l/k) as

[<1>(JIGA]D diag [D, Q

[ WI, W2 Wn

p is reformulated as f> = wDWT. The U, D factors of

W D WT may be computed as described below.

For j = n, ...,1 the following equations are recursively

evaluated.

P(k+1) =[I-K(k+1)] H(k+1) P(k+1Ik)T \
[I-K(k+1) H(k+1)] + K (k+1) R (k) KT(k+1) (9)

The Kalman gain is given by

K.(k+1) = P (k+1Ik) HT(k+1) [ H(k+1)f> (k+1Ik)
-I

HT(k+1) + R] (10)

[) = < Wj
Wj>D

0 = (l/DJ < Wj , W; > D i = I, 2
,j-

O;;w;w=w
I I

where < Wj , Wj > D = wr D Wj is the weighted inner

product between Wj and Wj.
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4.2 Measurement Update For a small perturbation dx in each of the unknown
variables, the perturbed values f (Xi + dxJ of each of the
unperturbed values f = xi are computed. The

correspondi!1g elements of Aii are given by the finite
difference in functions to chang~s in that parameter. A
step size of E = 10-5 is considered to be adequate.

This factorisation algorithm has been implemented
in MA TLAB (PC A T 386/387) using the existing
functions of MA TLAB as well as newly developed
functions.

The measurement update in Kalman filtering

combines a priori estimate i and error covariance P with
a scalar observation z = aT x + \I to construct an updated

estimat~ and covariance given as:

K = Pa/a,

i = i + K(z-aT i),
-TAa-a ra+r

P=P-KaP (14)

where P = a fJ oT, a = measurement matrix, r is the

measurement noise covariance, and z = noisy

measurements.

5. V ALmA TION WITH SIMULATED DA T A

To validate the code developed and to assess the
performance of the filter, three cases are considered.

Case I: Short period dynamics of an aircraft is simulated
using the following state and observation equations.

Kalman gain K and updated covariance factors O

and t> can be obtained from the following equations :

-T ff=Ua; =(fl' 'fn)
v={)f; v; d; ;d i=1,2, ,n

dl= dlr/o.l,O.I=r+vlh; (15)
State equations,

Za

Uo

Fori = 2,

evaluated:

, n recursively the following equations are + q + bl + WIa=

(18)q = Maa+ Mqq + M&Oe + b2 + W2

ObsefVation equations

a.j = a.j-l + Vjh

dj = 3j a.j-Ja.j

t1j = dja.j-l/a.j

(16)ai = iii + Aj kj, Ai = -hla.i-l

Ki+l = Ki + vi iii

where (J = [al , , an]

am = a + VI

qm = q + V2 (19)

-Z II
n = (I + bias +v
z .9 3

The system equations are written in state space form

asand Kalman gain is given by K = Kn+t/an

where 11 = is the predicted diagonal element, and Jj is

the updated diagonal element of the D matrix.

:x = Ax + Bu + noise

(20)z = Hx + noise

As already mentioned, calculation of the matrices
A(k) and H(k) for nonlinear systems is accomplished by
finite difference method. In the present mechanisation,
A and H are computed by finite difference method as
against the analytical method, so that there is no need to
make any programming changes when alternative
nonlinear models are to be used.

where x = [a q] is the state vector

z = [am. qm. nz) is the measurement vector

Matrices A, B and H are given in Appendix 1 (Data
file lisimdat.m). A doublet is used as input to generate
the responses. Simulated dat.. is generated by using
function DLSIM with a sampling time of 0.03125 s.
Ramdom noise with variances equal to 20 per cent of the
true signal variances is generated using RAND, and
added to the states and measurements. The appropriate
noise statistics are fed into the filtering algorithm along
with the simulated data trajectories and the states are
estimated. Figures. 1 and 2 show simulated true and

8/;

8x;

/;(Xj + AxJ -/; (xJ

(17)A;j = =
4xj

, m ; andj = I, 2,fori = 1,2, n;

Axj = perturbations step size = EXj
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-TRUE .NOISY
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-0.1
1050

0.2

noisy states and measurements. The results of UD
filtering are presented in Figs. 3 to 6. In Fig. 3, the
estimated measurements are plotted against the noisy
measurements. In Fig. 4, the estimated states are plotted
along with the standard deviations. Figure 5 shows
residuals with their bounds computed frOm the
estimator results. Only 2 per cent of the samples exceed
the bounds. In Fig. 6, the autocorrelations of the
residuals are plotted with the bounds. Less than 5 per
cent of the autocorrelation values are out of the bounds,
confirming that the filter residuals are white.

For the estimated states, the bounds shown in Fig. 4
are the standard deviations computed from the

estimated covariance p .
0.1
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Figure 2. True and noisy measurements (Case I),-.
-.

-0.1 The Values :t: ~e (k + 1 hi are plotted in Fig. 5 as

bounds for residuals. If the covariance estimates are

reasonabi~, 95 per cent of the samples should lie within
the interval II. .

-0.2
1050

TIME (s)

The bounds for the autocorrelation function, which
are used as a check for whiteness of residuals, are
computed using :t 1. 96/YN , where N is the number of

samples.

Figure I. True and noisy states (Case I).

(21 Case 11: The following fourth order non-linear model

was used to simulate the aircraft data by giving a doublet

to the elevator. Fourth order RK integration method is

used for simulation and the sampling time is chosen

as 0.03 s.

Standard deviation = V ( U D UT);;-

Covariance of the residuals is computed using

Re(k+l) = H(k+l) * P(k+l/k) * HT(k+l)

(22)+ R (k+l)
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Figure 4. Estimated states with bounds (Case I).
00
N
c

State equations.

..qs u , w
u = .qw -gsm 9 + -(Cx + Cxu- U + (x~-;--) + Fe/m

m " " u"
5 10

TIME (s)

&timated and noisy measurements (Case I). ~

m

w
Figure 3. w = -qu + 9 cos 6 cos <I> +

u
(23)

The values of the derivatives used in simulation are

given in Table I.

Table I. Derivatives used in simulation or non-linear longitudinal

a/c data (Case I)
--~-~c

Derivative

Qxm

Value

(24)CxO

Czu

Czw

CxO

Czu

Czw

CmO

Cmu

Cmq

Cmw

CmM

qm =q

For longitudinal flight path reconstruction, the

following third order model was used.

u = -qw + a.. -'- 9 sin O

qu + Qz + 9 cos 6w=
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BOUNDS
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Fagure 6. Autocorrelation of residuals with bounds (Case I).Figure 5. Residuals with bounds (Case 1).

State equationsMeasurement equations

v = v ',I + ~ + ~ -A.Ax) -9 sin 9

-A.Az) + 9 cos 9

it = -(qm -dq) w + (Axm

w = (qm -dq) u + (Azm
(w-qxa + PYa)/U] (25)a = Tan

e = (qm -~q)
6 =6

m

Biases were added to the accelerations ax, az, q and
V ant: scale factors applied to a measurement. Random
noise with 20 per cent of signal variance was added to
each of the states and measurements. Figures 7 and 8
show the true simulated states and measurements
plotted against the noisy states and measurements.

The following model was used for the filtering :

Observation equations

6m = 6
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TRUE NOISYFor the above model, the augmented state and input

vectors are given by:

~=[u,w,O;Mx,Mz,£\q,V,£\a,KCl'] (29)

U~ = [Axm, Azm, Om]

!
>

-TRUE .NOISY

0.4

0.2

-0
tU
...

~

0
0.2

-0.2
0.1

-0.4

,..

,

a 5 10 0

40 -0.1

20 -0.2
5 100

";;;'--
5
~

0

-20

J

10

-40
5a

-0
~
...

't)

~

!
"'

TIME(!i)

FIgure 8. True and noisy measuremenis (Cue II).

estimates. From the autocorrelation function of
residuals plotted in Fig. 12, it is evident that the residuals
form a white process. The velocity rms error and error
in theta are plotted in Fig. 13. The velocity rms error is
computed using the relation

TIME (5)

Figure 7. True and noisy states (Case ll}.

Figure 9 is a cross-plot of estimated and noisy
measurements. Figure 10 shows the three states and
augmented states plotted along with their standard
deviations. In Fig. 11 the residuals are plotted with their
bounds. About 15 points of the residuals are out of
bounds, giving a confidence of about 5 per cent in the

v nn.s = v (u -a)2 + (V -V)2 + (W -W)2

and error in theta is (9 -9).

(30)
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-ESTM NOISY of the values and the low standard deviation bounds on
the estimated states validate the algorithm developed
for both linear and nonlinear cases.

220

215
7
!
>

2'0

Case Ill: Flight path reconstruction for real flight data
of a transport aircraft.

Flight path reconstruction of longitudinal dynamics
of a transport aircraft is done using the following seventh
order state equations and seven measurements.205

State equations

"0
:u
...

~

u = -(qm -dq) w + rm v + (axm -dax) -9 sin 9

v = -rm u + Pm w + ay + gcos 9 sin <f»

w = -Pm v + (qm -dq) u + (azm -daz)+ gcos9cos<f»

<f» = Pm + (qm -dq) sin <f» tan 9 + rm cos <f» tan 9 (31)

6 = (qm -~q) cos 4> -'m sin 4>

"' = «qm -~q) sin 4> + , cos 4» sec 6

h = u sin 9 -v sin 4> cas 9 -w cas 4> cas 9

Measurement equations

~
:-=
...

:;:,.

Vm = v U2 + V2 + ~

13m = Kp tan

(32)am = Ka tan

-I [V/U] + ~(3

-I [W/U] + ~a

0 5 10 Om = O

<1> rn = <1>TIME(s)

Figure 9. Estimated and noisy measarements (Cue 11}.
I\1m = 1\1

h =h
m

The values of the scale factors and biases used in
simulation, the starting values for filtering and those
estimated through the algorithm along with their
standard deviations are listed in Table 2. The closeness

A typical time segment of 12.0 s with a sampling time

of 0.05 s is used in the analysis. Figure 14 is a plot of.the

Table 2. Simula:ed and estimated biases and scale factors (Case 11)

Parameter Value used in Initial value Estimated value

:i: (SO)

.1a,

&I,

L\q

.1a

.1V

Ka

0.1128

0.5078

IJ.{XXJ39

0.002

5.0

1.2

0.313

0.707

0.0005

0.0005

7.0

1.0

0.1877 (0.0250)

0.5463 (0.0878)

0.{XXK>(4.36e -5)
0.0008 (0.{XXK»

5.374 (3.64)

1.2010(4.86e-5)
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FIgUre 10. Estimated states and bounds (Case II).
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BOUNDSBOUNDS
10

5

0":;:
:J
..

-5
A

-10
1050

0.1 ,
-Vi
~..
tj

~
o
U

~
:J
..c

0.05 0.5

0 0

"r-

-0.05 -0.5
1050 0 5 10

0.2 1

0.1
0.51.,

0;;:

~ 0

0
-0.1

-0.2 -0.5
10 5

.AG TIME (5)

100

Autocorrelation of residuals with bounds (Case II).

O 5

TIME (5)

Figun! II. Residuals with bounds (Case ll). Figure 12.

0.024

03
~
~
~
~
u.;

:f
;:~

-'
u.;
>

2

1
\. /'\-V""'"

-y .0.060
100

439

:::: -0.04



DEF SCI J. VOl ~3: NO ~. OCTOB~R \\}')3
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Figure 14. Estimated and real data measurements (Case 111).
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Figure IS. &dmated states and parameters with bounds (Case m).
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Figure IS. (continued)

curve fit between the measured and estimated
measurements. Figure 15 shows the estimated states and
parameters with their standard deviations. From Fig. 14
it is seen that the match between the estimated and
measured trajectory is not good. The measured
responses reveal that there is time error in considering
the a measurement. A closer look at the measurement
model shdwed that the corrections in position errors of
sensors to measure V, a and 13 v!ith respect to the centre

of gravity were not made. These corrections were
incorporated in the measurement model and Fig. 16
shows the improved response matches. Figure 17 is a
plot of the convergence of states and parameters. The
convergence of some of the parameters is poor; the
response match of some of the lateral measurements is
also poor. This is mainly because the maneuvre being
analysed is a longitudinal one and hence the lateral
mode is not excited and as such these can be removed
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Table 3. &timated scale factors and biases with their standard deviations (Case III)
.
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6. FURTHER SCOPE OF APPLICATION OF FPR

ALGORITHM
from the observations. The parameters estimated for
the transport aircraft with their standard deviations are
listed in Table 3.

The UD filter-based algorithm can be modified to
include the measurements from different sets of sensors,
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code is validated for both simulated and real data. It can

be extended to handle FPR for missiles and other

aerospace vehicles. The algorithm developed can be

used for aerodynamic parameter estimation as well. In

this context, it is contemplated to obtain information on

the covariances of noise processes ( control input and

measurement noise) by using time series modelling

approach.
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% cr = measurement noise covariance matrix ;

function [ud. q. cr. nx,ny.nw, np,xte] = gkfildat

nx = 9; np = 6; ny = 3 ;

xte = [208.0 18.00.15 .313 .707 .(XX)5 7.0 .004 1.0]
ud = eye (nx) ; -

uu = [9.01.0.0025.04 .04 4.0e-7 4.0 4.0e-5 .04]

fori=l:nx
ud (i, i) = uu (i) ;

end

gmat = eye (nw) ;

zs = zeros (np, nw) ;

gmat = [gmat ; zs] ;

ud = [udgmat] ;

qdiag = [0.43925.5078 .0008]; q = eye (ns)

fori = l:ns

q(i,i) = qdiag (i) ;

end

cr = [0.587000;00.00020;0 O .0008]

% END of FILE

Appendix I

% function [a, b, h, d, XO, uc] = lisimdat (N)

% data file for simulation of linear data-case I

% a, b, c, d are system matrices
%xO -initial condition on states, uc -doublet input used for %

simulation
function [a, b, c, d, XO, uc] = lisimdat (N)

a = [- 0.7530881.0 ;

-1.37662- 1.11833] ;
b = [0.0 ;

-2.4903] ;
c = [1 0 ;

01 ;
6.044 0] ;

d = [0; 0; 0] ; ku = .1 ;

xO = [0.00.0] ;
uz = zeros(1:5) ;
up = ku * ones (1:30) ;

un = -ku .ones(1:30) ;

NN= N-65 ;.
uz/ = zeros (1 :NN) ;
uc = [uz un up uz!J ;

% END of file

% Initial data for filtering realdata
% u is the upper triangular matrix for filtering
0;0 nx = total No. of augmented states

% nw order of the measurement noise matrix
% ny No. of observables. xte = initial values for filtering

% np No. of parameters
% q = process noise covariance matrix;
0;0 cr = measurement noise, covariance matrix;
% fuction [ud, q, r, nx, ny, xte] = realdat
function [ud, q, cr, nx, ny, nw, np, xte] = realdat

nx=15;nw=4;ns=4;np= II;

ny=6;
xte = [9.15- .0017 103.6.1782 -.66 .42- 5.50.041 .0712- 1.02

-21.78 -1.23.204 -.21 .86] ;
ud = eye (nx) ;
uu = [0.01 0.0001 1.0 0.01 .<XX>I .0001 0.0841 .0001 .0001 .0064 5.85

0.0196 .0001 .0001 .0001] ;
for; = I: nx

ud (i, i) = uu (i) ;

% data file for UD filtering of linear data-caseI
% function [u, nx, ns, nw, ny,xte] = lifildat

% u is the upper triangular matrix for filtering

% nx = total No. of augmented states

% ns = No. of states, nw = order of the measurement noise matrix

% ny = No. of observables, xte = initial values for filtering

function [u, nx, ns, nw, ny, xte] = fildatal

u = [.(xx)1 01 0;0.(XX)40 1] ;

nx=2;
ny = 3 ; ns = 2 ; nw = 2 ;

xte = [0.04 0.1] ;

% END of file

end

gmat = eye (nw) ;

zs = zeros (np, nw) ;

gmat = (gmat; zsl

ud=lud gmatJ;
qdjag = [4.0- 4 1.6d- 6 9.0d- 2 1.6d-41

forj = l:ns

q (j. j) = qdjag (i) ;

.6d-4 I.Od-9 I.Od

end

% END OF FILE

% function [ud, q, cr, nx, ny, nw, np, xte) = gkfildat

% data file for simulation of non linear data-case II

% u is the upper triangular matrix for filtering

% nx = total No. of augmented states

% nw = order of the measurement noise matrix

% ny = No. of observables, xte = initial values for filtering

% np = No. of parameters

% q = process noise cOvariance matrix ;
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