
Received 30 October 2012, revised 08 February 2013, online published 23 March 2013

Defence Science Journal, Vol. 63, No. 2, March 2013, pp. 223-229, DOI: 10.14429/dsj.63.4268
 2013, DESIDOC

1. INTRODUCTION
The avionics architecture consisting of modules,

sub-systems and systems in aerospace domain is complex
hardware and software centric. Such architecture of
federated era was no doubt very good in terms of
fault containment, fault tolerance and was fool proof
architecture. However, it has many disadvantages of
having resources duplicated in each system in terms of
processing, memory and peripheral systems. Advantages
being excellent fault tolerant capabilities against the
disadvantage of duplication of resources and complexity.
Also such systems have disadvantages like increased weight,
redundant computer resources in each line replaceable
unit (LRU), higher looming volume, electrical interface
complexity and physical maintenance.

Growth in the aerospace industry encouraged the
avionics systems to utilise the increased processing
power, communication bandwidth and hosting of multiple
federated applications into a single integrated platform.
This has been realized as integrated modular avionics
(IMA). The IMA emerged as a platform for integrating
multiple avionics severity applications on a common shared
integrated computing environment1,2. Such system platform
is realizable with well integrated ARINC 653 based real
time operating system with time and memory partitioning
with application executive (APEX) libraries3.

IMA integration has the advantage of affordable
low recurring expenses for software updates or upgrades
without impacting the rest of the partitioned applications.
Application partitions are well protected with time and
memory protection mechanism provided by the underlying
real time operating system (RTOS) ARINC 653 standard
application executive.

In this paper it is attempted to bring a review of
the APEX APIs and their usage. Also addresses the
four partitioned application with data flow across all
the four partitions.

2 ARINC 653 BASED RTOS APEx
2.1 Importance of Time and Memory Partitioning

for Avionics Architectures
The ARINC 653 is one of the most critical specifications

for the integrated modular avionicss definition4, where
protection and functional separation between applications are
ensured with the use of partitions. This aims at enforcing
fault containment, preventing fault propagation from one
partition to another which eases the application’s life cycle
verification, validation and certification procedures. Also
this enables to host multiple applications with varying
DO 178B/C severity levels in different partitions.

Partitioning in IMA platform is quite critical and has
strong impact on the avionics architectures like federated

ARINC 653 API and its application – An insight into Avionics System Case Study

Ananda C.M.*, Sabitha Nair, and Mainak G.H.
 CSIR-National Aerospace Laboratories, Bangalore–560 017, India

*E-mail: ananda_cm@nal.res.in

ABSTRACT

Traditionally automated systems in aircraft were realised using well defined functions that are implemented
as federated functional units. Each functional units possesses its own resources with fault containment compared
to multiple functions in single processing node. Integrated architectures are structured over the avionics cabinets
or processing cabinets which house the hardware modules and software application partitions along with system
software. These integrated modular avionics (IMA) applications supports distributed multiprocessor architecture. Both
time and memory is shared among multiple avionics functionalities across the same platform with good protection
mechanisms provided by ARINC 653. ARINC 653 is an additional layer of protection being embedded as part of
real time operating systems supporting the partitioning protections using well defined application executive, and
application programming interfaces (API). IMA uses set of partitions, which are scheduled across a major frame
M consisting set of partitions Ptn and each partition having set of task/process τn/Psn. The number of partitions and
number of processes in each partition is a trade-off between the real time requirements and the resource. The paper
also presents in brief, the API functionalities, its components, implementation, required interfaces, restrictions based
on criticality of the avionics application. Error detection, control mechanisms for data integrity and validity for
reconfiguration is also addressed. The experimental and simulation studies related to the API utilization as part of
case study is addressed with four partitioned case study demonstrating the normal and failure scenario.

Keywords: Integrated modular avionics, application programming interfaces, memory partition, application
 executive

REVIEW PAPER

223

DEF. SCI. J., VOL. 63, NO. 2, MARCH 2013

224

and integrated. Traditionally avionics systems are more
functionality centric with dedicated algorithmic and
architectural methods for performance enhancement5. Avionics
architectures are classified as two major sectors
(a) Federated architectures
(b) Integrated architectures.

Transiting from federated architecture to integrated
architecture demands enormous effort with well defined
domain understanding and platform support6. ARINC 653
time and memory partitioning mechanism as provided
by supporting RTOS is very essential and mandatory.
Partitioning uses appropriate hardware and software
mechanism to restore strong fault containment to the
maximum extent in such integrated architecture7. Partition
can contain one or more application processes and each
process having attributes like
• Period: Processes can be periodic or aperiodic.

Periodic process has fixed period defined between
successive releases of the process. Aperiodic processes
are set with a unique value to indicate that they
are not periodic and hence they do not have fixed
period.

• Time capacity: Each process has fixed time for
execution and has a deadline by which time the
process should complete execution, which is a
constant value.

• Priority: Each process has fixed priorities. This is
the base and current priority of the process, based
on the selection. The priority of the processes is
pre-fixed as part of static scheduling.

• State: Process state can be dormant, ready, waiting or
running based on the actual execution condition.
Process state can be dormant, ready, waiting or running

based on the actual execution condition. With the above

discussions, it is mandatory that the partitioning in IMA
is critical and hence there is a guideline for partitioning
if not a contract rule. Jon Rushby7,8 ddefines and details
spatial and temporal partition as;
• Spatial partitioning must ensure that software in one

partition cannot change the software or private data
of another partition (either in memory or in transit),
nor command the private devices or actuators of
other partitions.

• Temporal partitioning must ensure that the service
received from shared resources by the software in
one partition cannot be affected by the software in
another partition. This includes the performance of
the resource concerned, as well as the rate, latency,
jitter, and duration of scheduled access to it.
With this partitioning system, the architectural difference

in terms of complexity, modularity, inter operability
and most important the recurring reduced efforts for
certification is highly motivating factor for aerospace
avionics system design and development.

Typical avionics architectures with and without
partitioning if realized looks like as shown in Figs. 1
and 2 for federated and Integrated respectively. Hence,
the partitioning system has tremendous potential in
realization of efficient and cost effective avionics suite
for civil aircraft requirements and in particular to gain
advantage of recurring efforts for application design,
and development.

The avionics application software is designed, developed
and certified to DO 178B9 with varying severity in each
partition as required based on the failure hazard analysis
(FHA), failure mode effect analysis (FMEA), and system
safety analysis (SSA)10.

Figure 1. Typical avionics federated architecture.

REDDY: APPROACHES TOWARDS IMPLEMENTATION OF MULTI-BIT DIGITAL RECEIVER USING FFT

225

3. ARINC 653 PLATFORM
Typical avionics systems are scheduled with major

frames. Each major frame has set of partition. Each
partition is grouped in to a set of processes, each having
modular sub-functionalities. As software components, each
process consists of set of low level functions called the
tasks as depicted in Fig. 3 and as in Eqn (1).

Figure 3 shows the set of partitions P, which are
scheduled across a major frame M consisting of a set of
partitions and each partition having a set of tasks/process.
In some applications, task and process are interchangeably
used, but it is better to use them separately under the
multi-process operating system.

Each task (Ps) = { }1 2 3 4 n, , ,τ τ τ τ τ (τ is
single task)

Figure 4 shows the ARINC 653 multiple partitioned
block diagram showing the typical blocks with layered
interfaces from hardware up to the application. Application
software hosted on each partition has one or more
processes and these use the services provided by APEX
using set of ARINC653 primitives. Apart from application
partition, system partition also uses the services provided
by the core software layer and may or may not use the

Figure 2. Typical Integrated architecture based avionics suite.

Figure 3. Typical IMA partitioned schedule table with frames,
process and tasks.

Consider a major frame M having a set of partitions
Pti..Ptn based on functionalities as in Eqn (1). Each
partition Pti consists of a set of process Psi..Psn based on
the applications sub-functionalities. Each Psi consists set
of tasks (τ1.. τ2). The number of partitions and number
of processes in each partition is a trade-off to get the
real time response based on capabilities of the hardware
and software together. Normally the memory is statically
allocated for each partition.

Each major frame (M)={ }1 2 3 4, , ,
nt t t t tP P P P P (1)

Each partition (Pt) = { }1 2 3 4, , ,
ns s s s sP P P P P Figure 4. Typical Multi partitioned ARINC 653 APEx

platform.

DEF. SCI. J., VOL. 63, NO. 2, MARCH 2013

226

APEX interface11. Operating system Kernel handles the
major services like process scheduling and management,
time and clock management as well as inter-process
synchronization and communication. Avionics functionality
in a given partition is strictly governed by the time and
memory partitioning mechanism and hence any faults
in that partition is contained inside the partition. This
is the strength and integrity of the ARINC 653 based
platform for fault containment.

The application executive (APEX) interface services
are mapped12 into
•	 The	RTOS	kernel	services	like	process	management,	time	

and clock management, inter-process synchronization
and communication.

•	 The	system	specific	operating	system	and	processor/
platform functions are like hardware interfacing,
device driver functions, facilities for application
downloading and support for BIT.

•	 ARINC	 653	 functions	 like	 partition	 management	
and inter-partition communication.

3.1. Critical API’s for Reconfiguration of Task or a
Process
The APEX-Interface aims to provide services

for: Partition management, process management, time
management, intra-partition communication, inter-partition
communication, and health monitoring. The complete list
of APEX interfaces are detailed in the standard13.

Intra-partition communication and Inter-partition
communication in ARINC 653 platform is very critical
and enables the secured data flow inside and across the
partitions. Inter-partition communication uses sampling
port services and queuing port services via messages.
Intra-partition communication is for those communications
and synchronization across processes present inside the
partition. Intra-partition communication uses buffer services,
blackboard services. The processes can be of aperiodic
or periodic processes and is managed by APEX.

4. CASE STUDY WITH FOUR PARTITIONS

Attempt was made to experiment the time and memory
partitioned mechanism for four partitioned system using
VxWorks ARINC 653 environment.

The applications were implemented with task
reconfiguration capability in the event of limited failure
scenarios using reconfiguration algorithm14,15. Four partition
systems have been implemented with sixteen tasks in
each partition as shown in Fig. 5. These partitions are
scheduled to execute at a frame time of 25 ms and are
fixed priority static table driven schedule with time loading
of approximately 50%. The execution time of each task
in all four partitions was measured and is tabulated as
shown in Table 3. Process attribute table is created for
sixteen processes, and then processes are created with
CREATE_PROCESS service and started with START
service. Each partition is activated with NORMAL mode
using SET_PARTITION_MODE service. Later these
sixteen processes are called; time of execution of each

The CREATE_PROCESS service is used to create a
process with defined attributes and allocate resources for
it. Each process is created only once during the life of
the partition. Also, all the processes in a partition must be
defined in such a way that the necessary memory resources
for each process can be determined at system build time.
The field names in a PROCESS_ATTRIBUTE_TYPE
structure are very critical and are an argument to the
CREATE_PROCESS service. Field names are specified in
Table 1. The current priority of a process can by changed
dynamically through the SET_PRIORITY service.

Figure 5. Four partitioned avionics function.

Table 1. Attributes of PROCESS_ATTRIBUTE_TYPE
structure

NAME String	identifier	for	the	process.	It	
must be unique within the partition.

ENTRY_POINT Starting address of the process.
STACK_SIZE Size (in bytes) of the stack allocated

to the process.
BASE_PRIORITY Process initial priority.
PERIOD Delay between two activations
TIME_CAPACITY The elapsed time within which the

process should complete its execution.
DEADLINE Type of deadline (SOFT, HARD, or

no deadline).

APEX partitions within an ARINC 653 module
communicate with each other using messages with the help
of ports and channels. Communication was established
in queuing mode with name, message size, message
range, port direction, queuing discipline and port id using
CREATE_QUEUING_PORT routine. Subsequently the
messages were sent in this specified queuing port using
SEND_QUEUING_MESSAGE service. When a partition
is created corresponding partition XML configuration file,
the application module and Core OS XML configuration
file are created. Memory for each application is specified
in application xml file which also consists of Entry Point,
Initialization time and period. Here, the port should
also be specified by the developer implicitly. The port
element in the configuration file will specify whether
the port is queuing or sampling along with the name,

process is captured using GET_TIME service.

REDDY: APPROACHES TOWARDS IMPLEMENTATION OF MULTI-BIT DIGITAL RECEIVER USING FFT

227

size, queuing length and protocol. Xml files for coreOS,
Applications, system partitions, schedules, connections
and health monitor tables are referred in the module xml
configuration file along with scheduling of partitions,
in short it deals with the entire configuration of the
project. It is possible to assign major and minor frame
for all partitions. In order to send messages through a
port, the source partition and the destination partition
are to be mentioned along with the respective port name.
This is in correspondence with the channel ID of module
configuration file.

Deadline time is the absolute time by which the
process should be complete. It starts as the return value
of the GET_TIME service (current system time) plus the
TIME_CAPACITY that is specified when the process is
created. Threads periodically evaluates deadline time to
determine whether the process is satisfactorily completing
its processing within the allotted time (time capacity).
Deadline time can be increased by issuing the REPLENISH
service. Various services for monitoring are
• Status of the process is monitored using GET_

PROCESS_STATUS service
• Process ID of calling process is read using GET_

MY_ID service.
• Process ID any process with specified process name

is read using GET_PROCESS_ID service.
• Process is started using START service and this

service will cause process to enter the READY
state.
In case study experimentation, each of the four

partitions with processes were enabled and started with
START service. The sequence of startup and execution
is captured and is shown in Fig. 6 for partition 1.
Similarly startup sequence has been verified for partition
2, partition 3, and partition 4, respectively.

The scaled time loading measurements carried out
using the System Time Viewer of VxWorks Workbench
is listed below for each partition. The real-time data for
each of the tasks in all four partitions were captured using
the debug ports of the real-time System-Viewer16.

Figure 6. Partition 1 startup.

Table 3. Time loading for each partition of schedule 1 and
schedule 2

Schedule Partitions Allotted time
(ms)

Used time
(ms)

 0

Partition 1 25 14.006
Partition 2 25 10.033
Partition 3 25 12.422
Partition 4 25 11.692

 1

Partition 1 25 14.204
Partition 2 25 11.853
Partition 3 25 12.239
Partition 4 25 11.383

The time loading of each partition are 14.006 ms,
10.033 ms, 12.422 ms, and 11.692 ms respectively for
partition 1, partition 2, partition 3, and partition 4 as
shown in Table 3.

Figure 7. Time loading of partitions for two schedules.

Figure 7 shows the pictorial representation of the
four partitions as case study with each partition’s time
loading measurements and hence the total time for each
schedule. Consider a four partitioned system which
executes in two scheduled times. Each partition consists
of sixteen processes. In schedule 0 first four partitions
will execute and in schedule 1 next four partitions will
execute. Each partition is assigned with a partition
window of 25 ms as shown in Table 3 and hence major
frame time is 100 ms.

There are two types of inter partition communication
services: Sampling port services and queuing port services.
In queuing mode each message contains different data.

Table 2. Execution time of all tasks in each of the four
partitions



















343.0675.0801.0111.0
907.0526.0700.0089.0
078.0395.2773.0995.0
745.0284.3318.0266.1



















343.0675.0801.0111.0
907.0526.0700.0089.0
078.0395.2773.0995.0
745.0284.3318.0266.1

Partition 1 Partition 2



















483.0654.0451.0576.2
544.0273.10945.0097.0
095.0085.1033.1806.2
588.0098.0864.0003.1



















409.0105.0094.0760.0
468.0482.4068.1549.0
106.0850.0950.0093.0
050.2119.0636.0324.1

Partition 3 Partition 4

DEF. SCI. J., VOL. 63, NO. 2, MARCH 2013

228

Messages are queued and overwriting is not allowed so
no data’s are lost.

Messages will be there in source port until they
are send, and will be stored in destination port until
its read. Consider a two partitioned system with one
process each. Queuing ports are created in each partition
with CREATE_QUEUING_PORT service. Process1 in
partition1 will send data to queuing port using SEND_
QUEUING_MESSAGE service. Process 1 of Partition 2
will receive the data from queuing port using RECEIVE_
QUEUING_MESSAGE service. GET_QUEUING_PORT_ID
and GET_QUEUING_PORT_STATUS will return ID and
Status of the ports respectively. Fig. 8 shows the capture
of queuing port interfaces using the IDE toolset.

Figure 8. Queuing port implementation in the case study.

Figure 9. Typical partition execution with a task failure
(Test Case 2).

Figure 10. Typical failure scenarios considered in the case study
for various failure.

The System-Viewer is configured to display and
capture the required execution parameters on the terminal
window for real time monitoring. The result of time
loading for each of the four partitions proposed algorithm
functionality for different test cases is also captured
using system viewer. The case study also addresses the
failure test cases based on FHA/FMEA analysis.

Following is one sequence of failure test cases
experimented and the results were captured using system
viewer tool of VxWorks workbench.
• Test Case 1: All four partitions functioning normally

with no fault
• Test Case 2: Failure of task 12 in partition1 and

successful reconfiguration
• Test Case 3: Failure of task 02 in partition2 and

successful reconfiguration
• Test Case 4: Failure of task 09 in partition3 and

unsuccessful reconfiguration
• Test Case 5: Failure of task 14 in partition4 and

successful reconfiguration
Fig. 9 shows the Test Case 2 failure simulation and

hence the reconfiguration of the task captured using real

time system viewer. More details on the control metrics,
their validation and reconfiguration scheme along with
the control metrics are available in Ananda17.

4.1 Control Metrics for Reconfiguration
The safety feature of the above implementation is

based on four control metrics for efficient functioning
of the applications in each partition. They are
a. Reconfigurability information factor (RI)
b. Schedulability test/TL/UF (TL)
c. Context adaptability and suitability (CAS)
d. Context flight safety (CFS)

These control metrics helps the application for
proper functioning in the event of any failure and its
reversionary action if applicable for continued availability
of the applications.

However, the data handled by these control metrics
need to be clear from errors and hence error detection,
correction and validation is the critical task for such
implementation17,18. Case study also takes into account
the various failure scenario of the system as shown
Fig. 10.

REDDY: APPROACHES TOWARDS IMPLEMENTATION OF MULTI-BIT DIGITAL RECEIVER USING FFT

229

5. CONCLUSION AND FUTURE WORK
Integrated modular avionics is well integrated with the

ARINC 653 compliant RTOS including APEX Libraries.
The APEX libraries play a very critical role in the safety
and reliability issues of the system particularly for multi
partitioned and multiple application requirements. ARINC
653 platform is the technology based for civil aircraft
avionics and other systems for hosting multiple applications
of different DO 178 severity levels on the same hardware
resource. The set of APEX APIs provide handy and easy
interface across the application and the underlying RTOS
enabling quick implementation of applications with all
the included capabilities of ARINC 653.

CSIR NAL is working on programs with ARINC 653
for avionics suite implementation for typical transport
category FAR 25 class of aircraft. The result of this
implementation is yet to be collected and is in the
process of integration tests.

ACKNOWLEDGMENT
Authors thanks Mr Shyam Chetty, Director NAL, Dr

MK Sridhar, Adv (M&A) and Mr KG Venkatanarayana,
Head ALD for their moral and management support.
Authors acknowledge the interactive support from ALD
Avionics and Wind River technical support teams.

REFERENCES
1. ARINC Specification 653-1. Avionics application

standard interface. Aeronautical Radio Inc Software,
October 2003.

2. ARINC Specification 651: Design guidance for
integrated modular avionics. Aeronautical Radio,
Inc, Annapolis, MD, November 1991. Prepared by
the Airlines Electronic Engineering Committee.

3. Audsley, Neil & Wellings, Andy. Analyzing APEX
applications. In the Proceedings of IEEE Real Time
Systems Symposium RTSS, 1052-8725/96 1996 IEEE,
pp 39-44.

4. D0 297: Integrated Modular Avionics (IMA) Development
Guidance and Certification Considerations.

5. Russell W. Duren, Waco, Algorithmic and architectural
methods for performance enhancement of avionics
systems. In the 28th Digital Avionics Systems Conference,
DASC 2009, pp. 1.D.4-1 – 1.D.1-6.

6. Watkins, C. & Walter, R. Transitioning from federated
avionics architectures to integrated modular avionics.
In the Proceedings of the 26th IEEE/AIAA Digital
Avionics Systems Conference (DASC 2007), Dallas,
TX, USA, Oct. 2007. pp. 2.A.1–1–2.A.1–10.

7. Rushby, John. Partitioning in avionics architectures:
Requirements, mechanisms and assurance. Computer
Science Laboratory, SRI International, FAA Technical
Center and NASA Langley Research Center through
contract NAS1-20334, and by DARPA and NSA
through Air Force Rome Laboratory Contract F30602-
96-C-0204. March 1999, pp. 1-68.

8. Rushby, John. Partitioning in avionics architectures:
Requirements, mechanisms and assurance. SRI
International, Menlo Park, California, NASA/CR-
1999-209347, June 1999. pp-1-68.

9. Software considerations in airborne systems and
equipment certification. RTCA/DO178B, RTCA Inc.,
Washington, DC, Dec 1992.

10. Analysis techniques for system reliability - Procedure
for failure mode and effects analysis (FMEA). IEC
60812, 1985.

11. Rufino, José & Filipe, Sérgio. AIR Project Final
Report, DI-FCUL, Report No.TR–07–35, Skysoft
Portugal & FCUL, Portugal, December 2007.

12. VxWorks 653 programmers Guide 2.3. www.windriver.
com/products/product.../PN_VE_653_Platform2_3_0410.
pdf. (Accessed on 12/08/2012)

13. ARINC. ARINC Specification 653-2: Avionics application
software standard interface, Part 1 - Required Services.
Aeronautical Radio INC, Maryland, US. 2005.

14. Ananda, C.M. Re-configurable avionics architecture
algorithm for embedded applications. In the IADIS
International Conference on Intelligent System and
Agents 2007, Lisbon Portugal, 2007, pp. 154-160.

15. Ananda, C.M. Improved availability and reliability
using reconfiguration algorithm for task or process
in a flight critical software. Edited by F.Saglietti and
N Oster. Spriner LNCS publication, Springer-Verlag
Berlin Heidelberg 2007, 2007, pp. 532-545.

16. Wind River Systems Inc, Wind River System Viewer
user’s guide, ver 4.7, 2005. http://www.windriver.com/
products/product-notes/PN_WB_1110.pdf (Accessed
on 12/08/2012)

17. Ananda, C.M. Reconfiguration of task in flight
critical system - Error detection and control. In the
28th Digital Avionics Systems Conference (DASC) on
Modernization of Avionics and ATM — Perspectives
from the Air and Ground. The Florida Conference
Center, Orlando, FL October 25 - 29, 2009, USA,
@IEEE, pp. 1.A.4-1–1.A.4.-10.

18. Ananda, C.M. Validation of control parameters
for a reconfigurable algorithm in a flight critical
avionics application. In the International Conference
on Aerospace Science and Technology (INCAST),
INCAST-013, Bangalore India, 26-28 June 2008.
pp. 310.1–310.6.

Contributor
Shri C.M. Ananda obtained his Masters
degree in software systems from BITS,
Pilani in 2003. He is currently pursuing his
PhD in avionics. He is working at National
Aerospace Laboratories on embedded systems,
digital autopilot, engine instruments crew
alerting systems, and stall warning system
for SARAS aircraft. His areas of interest
are: Integrated modular avionics, flight

critical system, embedded distributed system, re-configurable
avionics architectures and safety critical software.

