
Received 14 September 2012, revised 08 February 2013, online published 23 March 2013

Defence Science Journal, Vol. 63, No. 2, March 2013, pp. 214-222, DOI: 10.14429/dsj.63.4267
 2013, DESIDOC

NOMENCLATURE

API Application programming interface
ARINC 653 Aeronautical Radio, INC. (ARINC) –
 Avionics application software standard

 interface
BSP Board support package
HAL Hardware abstraction layer
IMA Integrated modular avionics
MC Mission computer
OS Operating system
OSAL Operating system abstraction layer
PCD Processing module control database
PM Processing module
POSIX Portable operating system interface
RTE Real time executive
RTEMS Real-time executive for multiprocessor

 Systems
RTOS Real time operating system
SSAL System software abstraction layer
SSP System software package
XML Extensible markup language

1. INTRODUCTION
The increasing avionics domain demands fast development

and quick integration of software and hardware components.
Portability of software components is a key issue, which
becomes essential to achieve fast deployments of large and
complex systems in current scenario.

The operating system abstraction layer (OSAL)1,12
is a small layer of software used in the real-time software
environment since many years. The main use of this layer is
to isolate the embedded software from the real-time operating
system (RTOS) so as to make it portable across all possible
RTOS. It allows programs to run on different operating systems
besides different hardware platforms. Hence it is independent
of the underlying RTOS and hardware and is self-contained.
Since many RTOS are not conformance to POSIX or other
standards and also portability features of POSIX have its own
limitations, the portability of the application is hard to achieve
without such an abstraction layer. In addition, these standards
will not make application developer free from RTOS jargon.

The fast and efficient development of software application
demands the application developer to focus more on system

System Software Abstraction Layer - much more than Operating
System Abstraction Layer

Sunita Awasthi Singh*, Bineesh P.K., and Satish Shetty K.
Defence Avionics Research Establishment, Bangalore– 560 093, India

*E-mail: sunitaawasthi.singh@gmail.com

ABSTRACT

Current and future aircraft systems require real-time embedded software with greater flexibility compared to
what was previously available due to the continuous advancements in the technology leading to large and complex
systems. Portability of software as one of the aspects of this flexibility is a major concern in application development
for avionics domain for fast development and integration of systems. Abstractions of the hardware platform which
have been already introduced by the operating system community allow the software modules to be reused on
different hardware and with different physical resources. Now operating system community has come up with
an abstraction layer called operating system abstraction layer (OSAL) which along with the hardware abstraction
unifies the OS architecture too. It provides a common set of primitives independent of the underlying operating
system and its particular architecture. Factors such as reliability, scalability and determinism of any application
largely depend on the design and architecture of the application. This is the most important and critical factor of real
time systems such as mission computers of avionics systems, missile control system or control computers of space
shuttle. It demands developer to perform feasibility of different software architecture to select the best alternative.
Authors’ analysis shows that to make any real time application more secure, scalable, deterministic, and highly
portable, OSAL has to be extended to more than just operating system abstraction. This new view of OSAL will
be called as system software abstraction layer (SSAL). In this paper, authors attempt to highlight the efficiency of
SSAL as well as detailed description of its main features and design considerations. Authors have implemented the
SSAL on top of two well known OS (WinCE and Vxworks) and performed extensive evaluations, which shows
that it effectively reduces portability efforts while achieving simplicity, predictability, security and determinism.
This paper presents in brief, the API functionalities, its components, implementation, interfaces, advantages and
overheads along with a case study.

Keywords: Abstraction layer, API, Portability, secured, scalable, predictability, deterministic

REVIEW PAPER

214

SINGH, et al.: SYSTEM SOFTWARE ABSTRACTION LAYER - MUCH MORE THAN OPERATING SYSTEM ABSTRACTION LAYER

215

requirements of the domain application, functionality of the
system and system integration rather than understanding
RTOS features to implement these requirements. Today
many commercial and custom developed RTOS are available
in the market. Tuning embedded software as per the RTOS
requirements from system to system has become a gigantic
and time consuming task. Also, since many of the systems are
developed in collaboration with many organizations across
the world, it is difficult to maintain single RTOS for multiple
systems. The best solution to these problems is to provide a
common interface to embedded software regardless of RTOS
or hardware to be used in the system. This interface is known
as OSAL.

The OSAL is designed to be placed on top of the OS
which translates system primitives from the original operating
system into a unified API. A well designed OSAL provides
implementations of an API for several real-time operating
systems such as VxWorks, INTEGRITY, RTEMS, etc. To
facilitate the use of these APIs, OSALs generally include a
directory structure and set of makefiles that facilitates building a
project for a particular OS and hardware platform. In particular,
it addresses the discrepancies among different OS with respect
to their functional API, hardware configuration mechanisms,
resource management and handling of peripherals. At the
same time, it also allows embedded software to be developed
and tested on desktop workstations, providing a shorter
development and debug time.

To make embedded software more secured, scalable,
predictable and deterministic in addition to portable, OSAL
can be extended to more than operating system and hardware
abstraction. This new view of OSAL will be called as system
software abstraction layer (SSAL). SSAL can be viewed
as a layer above OSAL where it extracts system specific
requirements. It allows developers to develop and maintain
same version of the embedded software across different
systems of the same functionality but with different hardware
and different OS. It also provides the desktop environment for
the development of embedded software to the developer which
in turn reduces the impact of potential hardware delays.

This concept has been implemented only for one system
currently. We have attempted to address restrictions and scope
of future expansion keeping in mind variety of systems.
Also analogy of SSAL concept with ARINC6532 concept is
addressed in brief.

2. OBjECTIVE
The main objective of SSAL is to create only a single

instance of abstraction layer which provides static or dynamic
configuration of the system at start-up provides functionality
services to the application such as memory, timer, message
queue, and semaphore and spawns all instances of modules
including other resources. It also provides an interface to
configure the platform and its domain as per the system
requirements.

The layers of the system which use SSAL are illustrated
in Fig. 1. The SSAL is the top layer of the system software
package (SSP) which completely isolates hardware and system
software from real time application.

The objective of this layer includes following main
goals:
• Provide different infrastructures or frameworks for

the application which can be configured based on
system requirement.

• Provide static configuration mechanism to configure
the resources to meet real time requirements of hard
real time system.

• Provide simple or common API’s for all device driver
access isolating the complexity of the devices.

• Provide debug/control mechanism such as system
monitor.

• Provide mechanism to develop and test embedded
software in desktop environment with respect to the
system functionality to achieve shorter development time
and reduce hardware or RTOS IDE dependencies.

3. ADVANTAGES
• The developer is free from most of RTOS complexity

and Software Architecture. As a result an avionics
software developer can concentrate on Avionics
functionality rather than Software terminology

• Allows reuse of software for different mission
program with different hardware.

• Porting of application developed for one system to
another with minimum or no changes.

• Maintenance of single version of the software for
different RTOS or Hardware platform.

• Extending the software features without modifying
the existing features

4. IMPLEMENTATION OUTLINE
The SSAL layer will contain a set of libraries or

source code for interfacing to different RTOS. All these
libraries will provide same API and functionality but

Figure 1. System software package layers.

DEF. SCI. J., VOL. 63, NO. 2, MARCH 2013

216

internally use API of different RTOS. The developer will
select the required library through simple configurations
based on RTOS used in the system. The layer will also
contain different application frameworks or infrastructure
files (library or source code) on which application is
developed.

To select the required application framework, developer
will update the configuration file. The layer will add most
common device driver APIs like PCIe, Serial, ARINC429,
and MIL–STD–1553B used in general avionics application
and select required drivers in the configuration file. The
specific device driver can be added in SSAL which will
not demand any changes in application since the API
will not change for any specific device.

SSAL will also have built-in debug system called
system monitor which can be used by the application
to monitor or debug the system. The system monitor
will have PC based user interface software which will
be communicating to the target system through serial or
Ethernet. It will enable system engineers and software
developers to have an insight view of the system. It
will provide a utility to override normal behavior of the
system for debug or lab purposes.

The configuration file can be a simple extensible
markup language (XML) or C header files. The developer
will configure the configuration file and using simple
tools like make files or batch files can build SSAL layer
in the form library or object file and will add this file
to the application. The framework details are addressed
in section 10 - Application framework.

5. CURRENT STATUS
At present, the SSAL is in early development stage.

The SSAL has been partially implemented for Windows CE
and VxWorks RTOS. Currently it provides only event and
message oriented infrastructure for the application layer.
System configuration is implemented only through header
files. To evaluate the SSAL layer, a control computer
application for an avionics program was developed over
the SSAL. This development process proved that using
SSAL, it is possible to achieve considerable reduction
in application development time.

6. DIRECTORY STRUCTURE
The abstract directory hierarchy of SSAL is illustrated

in Fig. 2. The options under each directory are not restricted
to two or three levels or stages or adaptations. The figure
shows a sample directory hierarchy. For example, OS
components may include RTEMS, INTEGRITY, Linux,
RTE in addition to VxWorks, Windows CE.

7. STANDARD API
The basic services provided by API are establish

standard tasks, enable standard messaging mechanism,
dynamic use of memory pools, enable timers and real
time clock, exceptions handling, device drivers support,
restart and watchdog mechanism. The sample API’s for
different functionality are listed in the Table 1.

Figure 2. Directory structure.

Table 1. SSAL services

SSAL services Application programming interfaces

Initialization SysInit , SysMain
Task/Thread SysActivateAllThreads, SysAttachWdHndls,

SysCreateAllThreads , SysGetMyThrdId ,
SysGetMyThrdIdx , SysGetThrdIdByName,
SysGetThrdIdxByName ,
SysGetThrdNameById

Queue SysAllocMsg , SysFreeMsg , SysGetMsg,
SysSndExMsg, SysSndMsg , SysSndMsgEx

Semaphore SysSemGive , SysSemTake, SysCreateMutex

Event SysRstTimeEvent,SysSetEvent, SysSet Time
Event, SysWait4 Events

File system SysFileInit, SysFileCreate, SysFileOpen,
SysFileClose, SysFileRead, SysFileWrite,
SysFileSeek, SysFileCopy, SysFileMove,
SysFileRename, SysFileRemove

Misc SysWait4Start, SysWatchDogRefresh,
SysWatchDogStart ,
SysWaitForMultipleObjects ,
SysGetMyObjctDat

8. METRICS
Executable lines of code: 3500 approximately
Number of distinct BSP’s: 2
Number of OS’s supported: 2 – VxWorks, WinCE
Number of processors supported: x86, PPC, MIPS

9. OVERHEAD
9.1. Memory Overhead

The memory overhead of SSAL layer will be minimal.
It may range from few kbytes to Mbytes. The current
SSAL library which is for VxWorks RTOS with event
based framework is only 54 kB size. The size of this
version may not exceed 256 kB even after adding the
new features.

9.2. Code Overhead
The SSAL use few internal data structure to maintain

scalability and determinism. In addition to this, SSAL
has code to implement RTE, framework, debug system

SINGH, et al.: SYSTEM SOFTWARE ABSTRACTION LAYER - MUCH MORE THAN OPERATING SYSTEM ABSTRACTION LAYER

217

and other features. These modules may not be considered
as overheads. It has few coding overheads to implement
some API’s which has different implementation across
RTOS.

10. APPLICATION FRAMEWORK
The current framework design is based on events. In

event driven framework, software modules are grouped
into processing modules (PM). Each processing module
has one master thread and various optional service
threads. The communication between PMs is only through
configured events and messages. The master thread of
a processing module can send/receive message to/from
other processing module. This will make each processing
module independent from other. The master thread of all
processing modules has identical structure. The SSAL
also provides API’s to maintain synchronization between
processing modules. Basic services provided for processing
modules are PM management; inter PM communication,
intra PM communication and error handling. Figure 3
shows the architecture of this framework.

Figure 3. SSAL Events Driven Framework.

10.1 Messaging
Messaging is the method for communication between

PMs. Each PM can send a message to any other PM
utilizing SSAL services. A message contains the originating
PM, destination PM, message length, and message code
and payload data. Each PM has an incoming queue of
messages; the size of the queue is statically configured
during PM creation. The message queue holds the pointer
to messages allocated from message pools that are
pending to the PM. Sending a message to a PM is
signalled to the PM by raising the message event to
the receiving PM.

10.2 Events
Events are the main trigger of processing module

to become ready from wait state. A processing module
may wait for multiple events at once; the first event
comes, wakes the PM and starts a process.

10.3 Software watchdog
The SSAL software watchdog subsystem is used to

monitor the processing modules and verify that processing
modules are capable of handling events. Each processing
module defines the maximum time, in milliseconds, in
which the PM must signal that it is ready to handle
events, this is done by calling the watchdog service
routine. The SSAL verifies that all processing modules
serve the software watchdog and if a processing module
watchdog expires, it is a software watchdog event that
causes a software restart.

The below code segment is the outline of the master
thread of any processing module.

void PM_xyz_master(void)
{
 /* Prepare this PM for working */
 PM_xyz _Init();
/* Wait for other PMs to be ready – if Sync. Flag is true
for this PM, then this call will be blocked till all the PMs
in the system become ready else return immediately*/
SysWait4Start();
/* Start the software watchdog monitor for PM*/
SysWatchDogStart();
/* Start the event handling */
while(TRUE)
 {
 /* Wait for events from SSAL */
 event = SysWait4Events (…);
 /* Refresh the software watchdog */
 SysWatchDogRefresh();
 /* Handle the event */
 switch(event)
 {

/* High Priority Msgs */
 case HIGH_PRI_MSG_EV:
/* Get the msg Pointer */
msg_ptr= SysGetMsg();
/* Handle the Message */
PM_xyz_HandleHighPrioMsgs(msg_ptr);
/* Free the message buffer */
SysFreeMsg(&msg_ptr);
break;
/* Low Priority Msgs */
case LOW_PRI_MSG_EV:
 /* Get the msg Pointer */

 msg_ptr= SysGetMsg();
 /* Handle the Message */
 PM_xyz_HandleLowPrioMsgs(msg_ptr);
 /* Free the message buffer */
 SysFreeMsg(&msg_ptr);
 break;

 /* Timer Event *
 case TMR_EV:
 /* Handle Timer Event */
 PM_xyz_HandleTimerEvent();

DEF. SCI. J., VOL. 63, NO. 2, MARCH 2013

218

11.1 Initialization
The global PM file holds all PM information and first

entry of PCD is always ‘InitThread’ which is responsible
for complete system initialization and activating all other
PMs of the PCD. The API - sysMain will activate only
InitThread. The OS user entry function (WinMain –
Windows, usrAppInit - VxWorks) will call SSAL entry
function ‘SysMain’ and this will create first PM of PCD
(highest priority task) which is the InitThread.

11.2 Start-up Sequence
The start-up sequence is described in the Fig. 5 given

below. The OS_UserEntry depends on OS used in the
system. For example in VxWorks it is usrAppInit().

11. PROCESSING MODULE CONTROL
DATABASE
All processing modules (PMs) of application are

defined in the form of PM control database (PCD). This
static configuration ensures reliability of the software.
The PCD will be generated using a data structure. The
PCD data structure as an example is shown below in
Table 2.

Figure 4. Processing module master thread architecture.

Table 2. PCD Data Structure

Member Description
pm_type Application/socket/system
stack_size Stack requirements for PM in bytes
pm_param PM name, entry function, etc
priority Priority of master thread of PM
thread_h Handle of master thread
wd_flg If Software watchdog required
wd_timeout watchdog timeout

sync_flg If this PM needs to wait for other PMs to
get ready

sync_done Sync done
ev_fil[EV_NOE] Event information of this PM
msg_q Message queue of PM
io_info I/O device attached to this PM

sock_info Network info if PM of socket type

eol To mark the end of the PM in PCD list

Figure 5. start-up sequence.

11.3 Monitoring
The InitThread will start monitoring master thread

of all PM after it activates all threads. The watchdog
handler of InitThread will handle time out of any PM
based on criticality of the fault occurred in PM.

12. APPLICATION FRAMEWORK - A CASE
STUDY
Fig. 6 shows the major processing modules of the

application software and the data flow between them.
This framework implemented in one of control computer
(CC) and figure describes interfaces of CC to external
sub systems.The developer should avoid OS API calls
and OS dependent header files in application software
with the current framework. However, developer is free
to use standard header files like string.h, stdio.h, etc.

12.1 Handling Outgoing Message
As an example we would explain the concept of

handling an outgoing Message from the system. The
outgoing messages are handled using a set of SSAL
threads called PMR (PM Routers) and two set of tables
–one global SSAL Route table and one local outgoing
messages table for each PM Router (communication
interface).

 break;
 default:
 break;
 } /* Event Handling */
 } /* While */
} /* PM_xyz_master */

SINGH, et al.: SYSTEM SOFTWARE ABSTRACTION LAYER - MUCH MORE THAN OPERATING SYSTEM ABSTRACTION LAYER

219

12.2 SSAL Route Table
This table is used by SSAL to decide where to send

the external messages. This table should be updated
with the entries so that the messages for the external
computers interface can be send to required PMR (R1553,
RARINC or RSERIAL). For example if system has to
send a message to a mission computer (MC) and if this
message has to go through 1553B which is handled by
R1553, then an entry has to be added in the SSAL route
table to send the messages from PMMC to R1553. If
this is done, then PMMC can send the message to MC
(using SysSendExMsg API) and this will internally come
to R1553, who handles it depending on the outgoing
message table entry.

12.3 Outgoing Messages Table
This table consists of information regarding the outgoing

messages in the system. It has multiple instances based
on the number of priority levels supported by PMR. The

contents of the table are inserted in the system initialization
through function ‘PMR_Register_Ext_Msg’.
Example Scenario

Consider that PMMC has to send a message to MC
(External computer) namely MSG_PMMC_2_MC_LIFE_
ACK through the 1553B interface (Controller-1, SA–2).
The following steps are to be done:
1. In SSAL route table, an entry has to be made so

that messages to MC are routed to PMR. This is
done when SSAL is built (the route table is built
into the SSAL)

2. Register the message – Add entry in outgoing
message table

a. lr_msg_hdr.sq_msg_code = MSG_PMMC_2_MC_
LIFE_ACK;

b. lr_life_ack.sq_chnl = MUXBUS_CHNL_0;
c. lr_life_ack.ub_SA = 0x02;
d. lsq_dpr_err = PMR_Register_Ext_Msg(“PMMC”,

&lr_msg_hdr, MSG_TYPE_PMR_MED, DRV_IF_
MUXBUS, & lr_life_ack, &lsq_drv_err);
Once this step is done successfully, the PMMC can

send message to MC and this will go through PMR as
shown in the fig. 7.

Member Description

PM_Name Name of the application PM which is
registering

Message header when the message comes to PMR, how it
can identify it

Priority level Priority for the message

Hardware interface
message will go to which hardware
interface (since single thread of PMR
can handle multiple hardware interface)

Hardware interface
specific parameters

It will vary based on the hardware
interface, for ARINC it can be the
transmit or receive channel number, For
1553B, it can be which controller number
and which sub address etc.

Table 3. PMR outgoing message table

Figure 7. PMMC to MC (driver interface) message transfer
through PMR.

Figure 6. Application framework architecture.

12.2 Handling Incoming Messages
The incoming messages are handled using the

table,
1. PMR incoming message table – Separate tables are

maintained per interface basis
a. ARINC incoming table (separate table for each

Receiver channel)
b. 1553B incoming table (separate table for each

controller)

DEF. SCI. J., VOL. 63, NO. 2, MARCH 2013

220

Incoming Messages Table
This table consists of information regarding the

incoming messages in the system. It has multiple instances
based on the number of hardware interfaces supported by
PMR (R1553, RARINC or RSERIAL). The contents of
the table are inserted in the system initialization through
‘PMR_Register_PM_forData’.

Example Scenario
Consider that PMMC has to receive a message from

MC (External computer) namely MSG_MC_2_PMMC_LIFE
through the 1553B interface (Controller - 1, SA – 2).
The following steps are to be done:
1. Register the message - Add entry in Incoming

Message Table

Table 4. PMR incoming message table

Figure 8. MC to PMMC (driver interface) message transfer through PMR.

Member Description

PM_Name Name of the application PM which is
registering

Message header Message header to be attached while
sending the message to the PM

Priority level Priority for the message
Message ID ID for the message

Hardware interface
specific parameters

It will vary based on the hardware
interface, for ARINC Table this field
is not required, for 1553B which Sub
Address

a. lr_msg_hdr.sq_msg_code = MSG_MC_2_PMMC_
LIFE;

b. lr_life.sq_chnl = MUXBUS_CHNL_0;
c. lr_life.ub_SA = 0x02;
d. lsq_dpr_err = PMR_Register_PM_forData (“PMMC”,

&lr_msg_hdr, MSG_TYPE_PMMC_MED, MSG_ID_MC_
LIFE, DRV_IF_MUXBUS, & lr_life, &lsq_drv_err);
Once this is done successfully, the PMMC will

receive message from PMR whenever the controller 1 (at
SA 2) detect any data activity happening. In such event,
MUXBUS driver will generate the data event (generated
by the handler attached to MUXBUS driver by PMR)
to PMR, which in turn will collect the data and send
to PMMC using SSAL message interfaces.

13. ANALOGY WITH ARINC 653
Continuous growth in the aerospace industry has

encouraged the avionics systems to utilize the increased
processing power, communication bandwidth and hosting
multiple federated applications into a single integrated
platform. This technology has been realized as integrated
modular avionics (IMA) which has emerged as a platform
for integrating multiple avionics applications of varying
severity levels on a common shared integrated computing
environment5,6. IMA platform is realizable with well
integrated ARINC 6533 based real time operating system
with time and memory partitioning with application
executive (APEX) libraries4.

SINGH, et al.: SYSTEM SOFTWARE ABSTRACTION LAYER - MUCH MORE THAN OPERATING SYSTEM ABSTRACTION LAYER

221

ARINC 653 defines an API called application
executive (APEX) to decouple the RTOS platform from
the application software. It provides an abstraction layer
managing the timer and space partitioning constraints of
the platform and an interface to configure the platform
and its domain.

Each application software is individually contained
in a partition and has its own memory space. It also
has a dedicated time slot allocated by the APEX API.
Within each partition multitasking is allowed. The APEX
API provides services to manage partitions, processes
and timing, as well as partition/process communication
and error handling.

The main goals for designing IMA based systems8

are technology transparency, scheduled maintenance and
incremental updates. Basic features of an IMA system8 are
layered architecture using standard programming interface
layers to hide hardware and applications from one another,
static or dynamic reconfiguration of applications, protection
mechanisms among applications, to allow applications
to be inserted or altered without impact on the rest of
the system, flexible scheduling to meet the deadlines of
all the applications, for each viable configuration and
when system is upgraded, code re-use and portability,
an operating system to manage the applications, physical
integration of networks, modules and IO devices and
design for growth and change.

As of now, SSAL cannot be considered to be
ARINC 653 compliant. It is currently designed for
non ARINC653 systems. It does not provide partition
management kernel in OS hence cannot fulfil basic
requirements of spatial and temporal partitioning. It
fulfils only standard API requirement similar to ARINC
653 APEX from configurability, portability, flexibility,
reliability, security and determinism point of view.
Also it gives a future scope of growth and changes in
design. It provides configuration mechanism including
error management while allocating resources during the
start up of the system. It can be used in systems where
higher determinism is required with a custom real time
executive to avoid RTOS overheads in run time.

14. FUTURE PLAN
To make real time application development avail

powerful features of SSAL, many functionalities have
to be implemented in future. Some of the functionalities are:
• Provision in SSAL for many RTOS environment

selection such as Integrity, Windows.
• The configuration through XML file or simple

graphical user interface (GUI).
• Different types of frameworks selection for different

levels of real time application should be provided
in future versions.

• SSAL can be extended to provide real time executive
in simple real time systems where no OS is used.

• Conversion from thread model to process model
• Shared memory API
• Extensive monitor and debug system

15. CONCLUSIONS
The SSAL project is started with a vision of bringing

all real time application development across DRDO labs
under a common platform. This will avoid work duplicity
and facilitate porting of applications developed for one
system to other with minimum or no changes. SSAL
interface with ARINC 653 has to be thought carefully.
The SSAL development is tightly coupled with RTOS.
Since it is capable of providing real time executive to
systems without RTOS, it resembles a custom minimal
RTOS in many features. This feature of SSAL has led
to the development plan of a common in-house RTOS
for all the real time application development in research
organizations across the nation. This will avoid not
only long term dependency on RTOS vendors but also
overheads of RTOS. However to achieve the vision of
SSAL, the research community across the nation has
to provide many contributions to this project. We are
looking forward to suggestions and ideas from scientist
community to make SSAL project a vision to reality.

ACKNOWLEDGMENTS
Authors thank Shri P. M Soundar Rajan, Director

DARE, for his continuous moral support and motivation
and also Wg. Cdr Sendhil Kumar for his technical
support and valuable comments on this paper. Authors
acknowledge their gratitude towards the members of
System Software Division (SSD), Technology Group of
Defence Avionics Research Establishment (DARE) for
their interactive support from time to time.

REFERENCES
1. OS abstraction layer. http://osal.sourceforge.net/

(Accessed on 20/12/2011)
2. 653P3 - Avionics Application Software Standard

Interface, Part 3, Conformity Test Specification.
https://www.arinc.com/cf/store/catalog_detail.cfm?item_
id=704(Accessed on 14/06/2012)

3. ARINC Specification 653-1, Avionics Application
Standard Interface, Published by Aeronautical Radio
Inc Software, October 2003.

4. ARINC. ARINC Specification 653-2: Avionics
Application Software Standard Interface Part 1 -
Required Services. Aeronautical Radio INC, Maryland,
USA. 2005.

5. ARINC Specification 651: Design Guidance for
Integrated Modular Avionics. Aeronautical Radio,
Inc, Annapolis, MD, November 1991. Prepared by
the Airlines Electronic Engineering Committee.

6. DO 297: Integrated Modular Avionics (IMA) Development
Guidance and Certification Considerations, RTCA
Inc, RTCA Inc, November 2005.

7. John Rushby, Partitioning in Avionics Architectures:
Requirements, mechanisms and Assurance, SRI
International, Menlo Park, California, NASA/CR-
1999-209347, June 1999.

8. What is integrated modular avionics (IMA)? http://
www-users.cs.york.ac.uk/~philippa/IMA.html (Accessed

DEF. SCI. J., VOL. 63, NO. 2, MARCH 2013

222

on 15/01/2012)
9. José Rufino and Sérgio Filipe, AIR Project Final

Report, DI-FCUL, TR–07–35
10. Wind River Systems Inc, Wind River System Viewer

user’s guide, ver 4.7, 2005.
11. An operating system abstraction layer for portable

applications in wireless sensor networks. http://rts.eit.
uni-kl.de/fileadmin/publication_files/SERNA_SAC10.
pdf(Accessed on 05/07/2011)

12. OS abstraction layer (OSAL). http://opensource.
gsfc.nasa.gov/projects/osal/index.php(Accessed on
06/10/2011)

Contributors
Mrs Sunita Awasthi Singh obtained her BE
(Elect. Instrumentation Engg.) from BIET,
Jhansi, India in 1996. She is working as
a Scientist at Defence Avionics Research
Establishment (DARE), Bangalore. Her
area of expertise is development of real
time embedded system software for various
Fighter Aircrafts. Her core areas of interest
are: Integrated modular avionics, board

support package development, RTOS, device drivers.

Mr Bineesh PK obtained his BTech (Computer
Science & Engg.) from NSSCE, Palakkad,
in 2004. He is working as a Scientist at
DARE, Bangalore, on real time embedded
system software development. His areas
of interest includes: RTOS, device drivers,
and board support package.

Mr Satish Shetty K has obtained AMIETE
(Computer Science & Engg.) from IETE
New Delhi, India in 2010. He is currently
working as Senior Technical Assistant at
DARE, Bangalore. His areas of interests
are: RTOS, device drivers, and avionics
communication standards.

