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1. INTRODUCTION
To perform frequency analysis on a discrete-time signal 

x[n], it is necessary to convert the time-domain sequence to an 
equivalent frequency-domain representation1. Fourier transform 
X (ω) gives the spectrum of the sequence x[n]. However, X(ω) 
is a continuous function of frequency and therefore is not a 
computationally convenient representation of the sequence x[n]. 
For computational purposes, we consider the representation 
of a sequence x[n] by samples of its spectrum X(ω) Such a 
frequency domain representation leads to the discrete fourier 
transform (DFT), which is a powerful computational tool for 
performing frequency analysis of discrete-time signals4.     

The DFT plays an important role in many applications of 
digital signal processing including linear filtering, correlation 
analysis, and spectrum analysis. The number of complex 
multiplication and addition operations required by simple 
forms of both the discrete fourier transform (DFT) and inverse 
discrete fourier transform (IDFT) is of the order of N2 where 
N is the number of data points to calculate, each of which 
requires N complex arithmetic operations. The fast fourier 
transform (FFT) is another method for calculating the DFT. 
The FFT decomposes the set of data to be transformed into a 
series of smaller data sets and decomposes those smaller sets 
into even smaller sets. There are two different approaches to 
find DFT of a sequence:
(1) Divide and conquer approach.
(2) Linear filtering approach.

In the former approach, a DFT of size N, where N is a 
composite number, is reduced to computation of smaller DFTs 
from which the larger DFT is computed. FFT algorithms 
(Radix-2, Radix-4 and Split Radix) fall into this category. The 
latter approach is based on linear filtering operation on the 
data. Two algorithms, the Goertzel algorithm and the chirp-
transform algorithm compute the DFT via linear filtering of 
the data sequence2.

In this paper, 512-pt Split Radix FFT (SRFFT) 
implementation is presented. SRFFT algorithms exploit both 
radix-2 and radix-4 decomposition in the same FFT algorithm to 
reduce the number of multiplications. Even numbered samples 
are implemented using Radix-2, where as odd numbered 
samples are implemented with Radix-4 FFT algorithms4.

2. FFT ALGORITHM
SRFFT algorithm for the fast computation of the DFT 

is developed by Duhamel and Hollmann for data sequences 
having a length which is integer power of 2 (N=2m). Radix-2 
decimation-in-frequency indicates that the even-numbered 
points of the DFT can be computed independent of the odd-
numbered points. So, there is a possibility of using different 
computational methods for independent parts of the algorithm 
to reduce the number of computations. Given a sequence xn 
of length N (integer power of two), the computation of the 
coefficients Xk using the SRFFT algorithm with decimation-in-
frequency is done by observing that the even coefficients can 
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be expressed by the following equation3:
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and odd coefficients are expressed by the following 
equation:
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Figure 1 explains the operations required to implement 
Eqns. (1) to (4). X(2k) and X(2K+2) are calculated by Radix-2 
Eqn. (2), which require only complex additions.  X(4k+1) and 
X(4k+3) are calculated using Radix-4 Eqns. (3) and (4).  {x(n), 
x(n+N/2)} and {x(n+N/4), x(n+3N/4)} are subtracted and then 
multiplied with -j & j respectively. Addition is applied and the 
resulting data is multiplied with the twiddle factors, which are 
taken from ROM.

and 4-point transforms using the L-shaped dragonfly yield 
2-point outputs. For 2-pt transforms, simple Radix-2 FFT 
butterflies are performed.

3. FPGA IMPLEMENTATION OF SRFFT
Figure 3 shows the block diagram of the 512-pt SRFFT 

implemented in FPGA. The classic SRFFT algorithm proposed 
by Duhamel and Hollmann for 512-pt requires 3076 real 
multiplications and 12292 real add-sub operations1, performed 
in 9 stages. This needs 9222 DSP48Es for implementation in 
FPGA. 

Contrasted with the above, our algorithm for 512-pt 
SRFFT is implemented using only three building blocks- 
dragonfly computing block, commutator block and ROM, with 
their connections between adjacent blocks. The implementation 
is achieved using seven stages i.e. seven dragonfly computing 
blocks, seven commutator blocks and six ROMs. Only 336 
DSP48Es have been used to implement the building blocks and 
achieve a 1500 MSPS throughput.

The incoming data is multiplexed on to four parallel buses 
by retiming with a suitable lower clock and stored in four 
FIFOs for processing. To handle the throughput of 1500MSPS, 
stage-1 needs to be completed within 64 clock cycles, which 
is accomplished by reading the samples simultaneously from 
all the four FIFOs and sending to dragonfly stage – 1. 512 
data points are covered within 32 clock cycles using pipelined 
architecture. The twiddle factors, which are stored in ROM2 

Figure 1. L – Shaped dragonfly.

Each L-shaped dragonfly contains one Radix-2, and 
one Radix-4 butterflies. In Fig. 2, each column represents 
one stage. The algorithm has a recursive nature. This means 
that the algorithm is first performed as an N-point L-shaped 
dragonfly, and then the results are fed to one N/2-point and 
two N/4point stages, that themselves can be performed as an 
L-shaped dragonfly. This continues until all the points have 
been fully transformed3,4.  Near the end of the process, 8-point 

Figure 2. L-shaped dragonfly structure of SRFFT.

Figure 3. FPGA implementation of SRFFT – block diagram.
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are read in pipeline and sent accordingly to dragonfly stage. 
Input data is read from four FIFOs in pipeline and provided 
to the dragonfly. Each dragonfly contains 4 L-shaped dragons 
to process 16 data points at a time. Original SRFFT algorithm 
is modified into 7 stages by executing the 4-pt dragonflies 
and 2-pt butterflies in earlier stages to maximise the resource 
reusability. At every stage, decomposition of the half- and 
quarter-length DFTs leads to full split-radix structure. As 
512-pt SRFFT output is in bit reverse order, the output is stored 
in output RAM by giving bit reverse ordered addresses2.

4. COMMUTATOR BLOCK
Dragonfly needs data in the format of {x(n), x(n+N/2) 

and x(n+N/4), x(n+3N/4)}. To take dragonfly input in required 
format, data is stored in 4 FIFOs in the same order and data is 
provided simultaneously from FIFOs and given in pipeline to 
the next stages2. To ease this data formatting, commutator is 
used. Figure 4 shows the block diagram of commutator logic. three complex add-sub operations and two complex 

multiplications as shown in the Fig. 5. Since each stage contains 
four L-shaped dragonflies, 48 DSP blocks are utilized. Thus, a 
total of 336 DSP blocks are used to complete 7 stages of 512-pt 
SRFFT.

6. SIMULATION RESULTS
The SRFFT algorithm is developed in MATLAB with 

fixed point tool box for 12-bit input and the results are verified 
with built-in MATLAB FFT function. VHDL simulation has 
been carried out using Modelsim SE. Xilinx ChipScope is used 
for verification in the hardware.

For N-pt FFT, the output data width is [input data width 
+log2(N) + 1]. For an input data width of 12, FFT output data 
width will be 22-bits. Growth of fractional bits created from 
the multiplication is truncated after the every multiplication 
to 22-bits. For an input sinusoid of frequency 500 MHz, the 
VHDL outputs shown in Fig. 7 are compared with the results 
of MATLAB in-built FFT function outputs shown in Fig. 6.

ChipScope capture of the FFT output shows maximum 
peak at xk index 323, which is same as the MATLAB output’s 
peak index. Error in magnitude between MATLAB’s built-in 
FFT and the FPGA implemented 512-pt SRFFT is shown in 
Fig. 8. Maximum error in magnitude is ±23, which is due to the 
fact that MATLAB functions in 64-bit operating environment 

Figure 4. Commutator.

Commutator has fifos to store data from and to the 
dragonflies1. Data is stored in commutators one after the other 
and read at the same time for parallel operation. Commutator 
logic comprises of time division multiplexing (TDM) of 
available data at individual stages. TDM employs writing of 
different stage outputs from previous stage and reading of the 
inputs to next stage. Commutator logic also includes reading of 
twiddles from a particular ROM.

5. DRAGONFLY COMPUTING BLOCK
Because of the limitation on the number of DSP blocks 

available in FPGA, all the dragonflies cannot be implemented 
at a time1. To overcome this limitation, four dragonflies are 
used for computation of a stage and the same dragonflies are 
reused by employing pipelined architecture. Input is provided 
in sixteen parallel data buses, and output is taken in sixteen 
parallel data buses. In every stage, the first output is available 
after 12 clock cycles, and the final output is available at the end 
of 44thclock cycle. Similarly, subsequent stages get completed 
within 44 clock cycles each, taking the total latency to 300 
clock cycles.

L-shaped dragonfly requires 12 DSP blocks to compute 

Figure 5. L-shaped dragonfly.

Figure 6. MATLAB inbuilt FFT output.
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buses of 12-bit width. The algorithm outputs the transform 
coefficients over 16 parallel data channels with a latency of 
300 clock cycles. The computing elements have three complex 
add-subtract blocks operating in parallel with two complex 
multipliers, which have been implemented with the DSP48Es 
available within the FPGA in order to attain the highest possible 
operational speed. For a clock rate of 187.5 MHz, a latency 
of 1.65 µs is achieved in implementing the 512-pt SRFFT. 
split radix-based FFT algorithm for 512-pt FFT has been 
implemented by using 7 stages instead of 9 stages in FPGA 
for achieving a throughput of 1500MSPS. The output has 
been compared with Matlab simulation results and validated. 
Verification is done on Xilinx XC5VSX95T by feeding a single 
tone.
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whereas in VHDL, only 22-bit output width is used. Fixed 
point results from MATLAB shown in Fig. 9 are matching with 
VHDL results shown in Fig. 7 for 12-bit input.

7. FPGA RESOURCE USAGE
Implementation of normal 512-pt SRFFT algorithms 

in XC5VSX95T FPGA is not feasible due to the limitations 
on the resources available. However, the modifications to 
the algorithm proposed by us have made the implementation 
feasible. Table 1 gives the actual FPGA utilisation for a 512-pt 
SRFFT for a clock rate of 187.5 MHz.

Table 1. Performance of 512-pt SRFFT 

No. Parameter Value
1 Number of points 512  
2 Output data width  22-bit
3 Number of slice registers 51,192
4 Number of slice LUTs 27,547
5 Number used as memory 7,000
6 Number of DSP48Es 336
7 Initial latency  1.65 µs 
8 Frequency  187.5 MHz
9 FPGA family device XC5VSX95T

8. CONCLUSIONS
This paper describes the design and FPGA implementation 

of a 512-pt pipeline SRFFT. The inputs are four parallel data 

Figure 7. SRFFT output in xC5VSx95T chipscope.

Figure 8. SRFFT error plot.

XK INDEX

ER
R

O
R




