
Received 07 September 2012, revised 08 February 2013, online published 23 March 2013

Defence Science Journal, Vol. 63, No. 2, March 2013, pp. 210-213, DOI: 10.14429/dsj.63.4266
 2013, DESIDOC

1. INTRODUCTION
To perform frequency analysis on a discrete-time signal

x[n], it is necessary to convert the time-domain sequence to an
equivalent frequency-domain representation1. Fourier transform
X (ω) gives the spectrum of the sequence x[n]. However, X(ω)
is a continuous function of frequency and therefore is not a
computationally convenient representation of the sequence x[n].
For computational purposes, we consider the representation
of a sequence x[n] by samples of its spectrum X(ω) Such a
frequency domain representation leads to the discrete fourier
transform (DFT), which is a powerful computational tool for
performing frequency analysis of discrete-time signals4.

The DFT plays an important role in many applications of
digital signal processing including linear filtering, correlation
analysis, and spectrum analysis. The number of complex
multiplication and addition operations required by simple
forms of both the discrete fourier transform (DFT) and inverse
discrete fourier transform (IDFT) is of the order of N2 where
N is the number of data points to calculate, each of which
requires N complex arithmetic operations. The fast fourier
transform (FFT) is another method for calculating the DFT.
The FFT decomposes the set of data to be transformed into a
series of smaller data sets and decomposes those smaller sets
into even smaller sets. There are two different approaches to
find DFT of a sequence:
(1) Divide and conquer approach.
(2) Linear filtering approach.

In the former approach, a DFT of size N, where N is a
composite number, is reduced to computation of smaller DFTs
from which the larger DFT is computed. FFT algorithms
(Radix-2, Radix-4 and Split Radix) fall into this category. The
latter approach is based on linear filtering operation on the
data. Two algorithms, the Goertzel algorithm and the chirp-
transform algorithm compute the DFT via linear filtering of
the data sequence2.

In this paper, 512-pt Split Radix FFT (SRFFT)
implementation is presented. SRFFT algorithms exploit both
radix-2 and radix-4 decomposition in the same FFT algorithm to
reduce the number of multiplications. Even numbered samples
are implemented using Radix-2, where as odd numbered
samples are implemented with Radix-4 FFT algorithms4.

2. FFT ALGORITHM
SRFFT algorithm for the fast computation of the DFT

is developed by Duhamel and Hollmann for data sequences
having a length which is integer power of 2 (N=2m). Radix-2
decimation-in-frequency indicates that the even-numbered
points of the DFT can be computed independent of the odd-
numbered points. So, there is a possibility of using different
computational methods for independent parts of the algorithm
to reduce the number of computations. Given a sequence xn
of length N (integer power of two), the computation of the
coefficients Xk using the SRFFT algorithm with decimation-in-
frequency is done by observing that the even coefficients can

Field-Programmable Gated Array Implementation of Split-Radix
Fast Fourier Transform for High Throughput

P.S. Sai Pavan, B. Renuka*, and B.Vinatha
Bharat Electronics Limited, Hyderabad–500 076, India

*E-mail: renukab@bel.co.in

ABSTRACT

As the signal processing required in electronic warfare (EW) domain is complex and the sample rates to be handled
are very high, IP cores which are freely available are not of much use. A study of various fast fourier transform (FFT)
algorithms has been carried out and spit-radix FFT has been chosen to be implemented due to fewer multiplications3.
This algorithm is attractive to be implemented using field-programmable gated array (FPGA). This paper presents
split-radix FFT algorithm for implementation of 512-pt FFT on FPGA platform for EW applications. The algorithm
is such designed that it can achieve a throughput of up to 1500 MSPS. 512-pt SRFFT is implemented using parallel
pipelined architecture in order to maximize processing speed and thus achieve a throughput of 1500 MSPS with area
optimization. The pipeline structure is partitioned to balance the input throughput and to optimize the available FPGA
resources. The standard Cooley-Tukey radix-2 FFT algorithm requires N/2 log2 N (for N=512, 2304 multiplications)
multiplications and N log2 N additions where as radix-4 FFT requires N/2 log4 N multiplications and N log2 N
additions. The SRFFT presented in this paper has a multiplicative complexity of only about two-thirds that of the
radix-2 FFT, and is better than the radix-4 FFT or any higher power-of-two radix as well. The initial latency is
less than N clock cycles.

Keywords: Fast fourier transform, split-radix FFT, field-programmable gated array, commutator

RESEARCH PAPER

210

PAVAN, et al.: FPGA IMPLEMENTATION OF SPLIT-RADIX FFT FOR HIGH THROUGHPUT

211

be expressed by the following equation3:

()N/2 1 2
2k N/2n 0

x = x x W , k 0, 1, 2........N/2 1nk
n n N +

−
+=

= −∑
(1)

 (2)
N 1

k n 0
x = x W , k 0, 1, 2........N 1nk

n N
−

=
= −∑

and odd coefficients are expressed by the following
equation:

/4 1 N N 3N
4k+1 2 4 40

4
N N

x x j x x
x =

W W , k 0, 1,.... / 4 1

N n n n n
n

n nk

N

−
+ + +

=

    
    − − −
        

= −

∑

 (3)

/4 1
4k+3 N N 3Nn 0

2 4 4

3 4
N N

x = x x j x x

 W W , k 0, 1,........ / 4 1

N
n n n n

n nk

N

−

= + + +

    
    − − −
        

= −

∑

(4)

Figure 1 explains the operations required to implement
Eqns. (1) to (4). X(2k) and X(2K+2) are calculated by Radix-2
Eqn. (2), which require only complex additions. X(4k+1) and
X(4k+3) are calculated using Radix-4 Eqns. (3) and (4). {x(n),
x(n+N/2)} and {x(n+N/4), x(n+3N/4)} are subtracted and then
multiplied with -j & j respectively. Addition is applied and the
resulting data is multiplied with the twiddle factors, which are
taken from ROM.

and 4-point transforms using the L-shaped dragonfly yield
2-point outputs. For 2-pt transforms, simple Radix-2 FFT
butterflies are performed.

3. FPGA IMPLEMENTATION OF SRFFT
Figure 3 shows the block diagram of the 512-pt SRFFT

implemented in FPGA. The classic SRFFT algorithm proposed
by Duhamel and Hollmann for 512-pt requires 3076 real
multiplications and 12292 real add-sub operations1, performed
in 9 stages. This needs 9222 DSP48Es for implementation in
FPGA.

Contrasted with the above, our algorithm for 512-pt
SRFFT is implemented using only three building blocks-
dragonfly computing block, commutator block and ROM, with
their connections between adjacent blocks. The implementation
is achieved using seven stages i.e. seven dragonfly computing
blocks, seven commutator blocks and six ROMs. Only 336
DSP48Es have been used to implement the building blocks and
achieve a 1500 MSPS throughput.

The incoming data is multiplexed on to four parallel buses
by retiming with a suitable lower clock and stored in four
FIFOs for processing. To handle the throughput of 1500MSPS,
stage-1 needs to be completed within 64 clock cycles, which
is accomplished by reading the samples simultaneously from
all the four FIFOs and sending to dragonfly stage – 1. 512
data points are covered within 32 clock cycles using pipelined
architecture. The twiddle factors, which are stored in ROM2

Figure 1. L – Shaped dragonfly.

Each L-shaped dragonfly contains one Radix-2, and
one Radix-4 butterflies. In Fig. 2, each column represents
one stage. The algorithm has a recursive nature. This means
that the algorithm is first performed as an N-point L-shaped
dragonfly, and then the results are fed to one N/2-point and
two N/4point stages, that themselves can be performed as an
L-shaped dragonfly. This continues until all the points have
been fully transformed3,4. Near the end of the process, 8-point

Figure 2. L-shaped dragonfly structure of SRFFT.

Figure 3. FPGA implementation of SRFFT – block diagram.

DEF. SCI. J., VOL. 63, NO. 2, MARCH 2013

212

are read in pipeline and sent accordingly to dragonfly stage.
Input data is read from four FIFOs in pipeline and provided
to the dragonfly. Each dragonfly contains 4 L-shaped dragons
to process 16 data points at a time. Original SRFFT algorithm
is modified into 7 stages by executing the 4-pt dragonflies
and 2-pt butterflies in earlier stages to maximise the resource
reusability. At every stage, decomposition of the half- and
quarter-length DFTs leads to full split-radix structure. As
512-pt SRFFT output is in bit reverse order, the output is stored
in output RAM by giving bit reverse ordered addresses2.

4. COMMUTATOR BLOCK
Dragonfly needs data in the format of {x(n), x(n+N/2)

and x(n+N/4), x(n+3N/4)}. To take dragonfly input in required
format, data is stored in 4 FIFOs in the same order and data is
provided simultaneously from FIFOs and given in pipeline to
the next stages2. To ease this data formatting, commutator is
used. Figure 4 shows the block diagram of commutator logic. three complex add-sub operations and two complex

multiplications as shown in the Fig. 5. Since each stage contains
four L-shaped dragonflies, 48 DSP blocks are utilized. Thus, a
total of 336 DSP blocks are used to complete 7 stages of 512-pt
SRFFT.

6. SIMULATION RESULTS
The SRFFT algorithm is developed in MATLAB with

fixed point tool box for 12-bit input and the results are verified
with built-in MATLAB FFT function. VHDL simulation has
been carried out using Modelsim SE. Xilinx ChipScope is used
for verification in the hardware.

For N-pt FFT, the output data width is [input data width
+log2(N) + 1]. For an input data width of 12, FFT output data
width will be 22-bits. Growth of fractional bits created from
the multiplication is truncated after the every multiplication
to 22-bits. For an input sinusoid of frequency 500 MHz, the
VHDL outputs shown in Fig. 7 are compared with the results
of MATLAB in-built FFT function outputs shown in Fig. 6.

ChipScope capture of the FFT output shows maximum
peak at xk index 323, which is same as the MATLAB output’s
peak index. Error in magnitude between MATLAB’s built-in
FFT and the FPGA implemented 512-pt SRFFT is shown in
Fig. 8. Maximum error in magnitude is ±23, which is due to the
fact that MATLAB functions in 64-bit operating environment

Figure 4. Commutator.

Commutator has fifos to store data from and to the
dragonflies1. Data is stored in commutators one after the other
and read at the same time for parallel operation. Commutator
logic comprises of time division multiplexing (TDM) of
available data at individual stages. TDM employs writing of
different stage outputs from previous stage and reading of the
inputs to next stage. Commutator logic also includes reading of
twiddles from a particular ROM.

5. DRAGONFLY COMPUTING BLOCK
Because of the limitation on the number of DSP blocks

available in FPGA, all the dragonflies cannot be implemented
at a time1. To overcome this limitation, four dragonflies are
used for computation of a stage and the same dragonflies are
reused by employing pipelined architecture. Input is provided
in sixteen parallel data buses, and output is taken in sixteen
parallel data buses. In every stage, the first output is available
after 12 clock cycles, and the final output is available at the end
of 44thclock cycle. Similarly, subsequent stages get completed
within 44 clock cycles each, taking the total latency to 300
clock cycles.

L-shaped dragonfly requires 12 DSP blocks to compute

Figure 5. L-shaped dragonfly.

Figure 6. MATLAB inbuilt FFT output.

XK INDEX

X
K

 M
A

G
N

IT
U

D
E

PAVAN, et al.: FPGA IMPLEMENTATION OF SPLIT-RADIX FFT FOR HIGH THROUGHPUT

213

buses of 12-bit width. The algorithm outputs the transform
coefficients over 16 parallel data channels with a latency of
300 clock cycles. The computing elements have three complex
add-subtract blocks operating in parallel with two complex
multipliers, which have been implemented with the DSP48Es
available within the FPGA in order to attain the highest possible
operational speed. For a clock rate of 187.5 MHz, a latency
of 1.65 µs is achieved in implementing the 512-pt SRFFT.
split radix-based FFT algorithm for 512-pt FFT has been
implemented by using 7 stages instead of 9 stages in FPGA
for achieving a throughput of 1500MSPS. The output has
been compared with Matlab simulation results and validated.
Verification is done on Xilinx XC5VSX95T by feeding a single
tone.

REFERENCES
García1, Jesus; Michel, Juan A.; Ruiz, Gustavo & 1.
Boron, Angel M. FPGA realization of a Split Radix
FFT processor. SPIE, 6590, 2007, P-1 - P-11.
Kannan M. & Srivatsa, S.K. Low power hardware 2.
implementation of high speed FFT core. Int. Arab
J. Info. Technol., 2009, 6(1), 1-7.
Jones, Douglas L. Split-radix FFT algorithms. http://3.
cnx.org/content/m12031/latest/ (Accessed on 12/01/
2012).
Yeh, Wen-Chang. High-speed and low-power split-4.
radix FFT. IEEE Trans. Signal Processing, 2003,
51(3), 864–74.

Contributors
Mr P.S. Sai Pavan graduated from JNTU
College of Engineering, Kakinada, A.P.
in the year 2010. Currently working as
Deputy Engineer in Bharat Electronics
Ltd, Hyderabad’s D&E-Core Technologies
group. His area of interest include: Digital
receivers and embedded systems of EW
systems.

Ms B. Renuka graduated from Osmania
University, Hyderabad, A.P. in 2009.
Currently working as Deputy Engineer
in Bharat Electronics Ltd, Hyderabad’s
D&E-Core Technologies group. Her area
of interest include: Digital receivers for
EW systems, FPGA implementation of
the DSP algorithms.

Mrs B.Vinatha did her BTech from JNTU
College of Engineering, Kakinada, A.P in
2000. Currently she is working as Manager
in Bharat Electronics Ltd, Hyderabad’s
D&E-Core Technologies Group. Her area of
interest include: Digital signal processing
algorithms development and implementation
on FPGAs for digital receivers of EW
systems.

whereas in VHDL, only 22-bit output width is used. Fixed
point results from MATLAB shown in Fig. 9 are matching with
VHDL results shown in Fig. 7 for 12-bit input.

7. FPGA RESOURCE USAGE
Implementation of normal 512-pt SRFFT algorithms

in XC5VSX95T FPGA is not feasible due to the limitations
on the resources available. However, the modifications to
the algorithm proposed by us have made the implementation
feasible. Table 1 gives the actual FPGA utilisation for a 512-pt
SRFFT for a clock rate of 187.5 MHz.

Table 1. Performance of 512-pt SRFFT

No. Parameter Value
1 Number of points 512
2 Output data width 22-bit
3 Number of slice registers 51,192
4 Number of slice LUTs 27,547
5 Number used as memory 7,000
6 Number of DSP48Es 336
7 Initial latency 1.65 µs
8 Frequency 187.5 MHz
9 FPGA family device XC5VSX95T

8. CONCLUSIONS
This paper describes the design and FPGA implementation

of a 512-pt pipeline SRFFT. The inputs are four parallel data

Figure 7. SRFFT output in xC5VSx95T chipscope.

Figure 8. SRFFT error plot.

XK INDEX

ER
R

O
R

