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ABSTRACT

A model for a heterogeneous dynamic combat as a continuous-time Markov process has been
studied, and on account of the special form of its infinitesimal generator, recursive algorithms are
derived to compute the important characteristics of the combat, such as the combat time distribution,
expected value and variance, and the probability of winning and expected survivors. Numerical results
are also presented. This approach can also be used to consider initial contact forces of both sides as

random variables.

1. INTRODUCTION

Today the force-on-force attrition models are widely
used to evaluate tactics or to appraise equipment. Most
of the models are examples of deterministic
Lanchester-type equations. Although stochestic models
can provide better insight, understanding and modelling
flexibility, little attention has been paid because of the
computational difficulties.

There are essentially two main approaches to model
the force-on-force attritions. One is the Lanchester-type
differential equation system. Different combat models
are defined by introducing various operational factors.
Taylor' reviewed the recent developments of the
Lanchester-type models of warfare. Since actual combat
consists of many different weapons system types, a
natural extension is to consider the heterogeneous case.
Maybee? applied the theory of positive operators to the
combined arms models. Taylor’ discussed an aggregated
force model by converting the diverse weapons system
types on a side into a single equivalent ‘homogeneous’
force, then considered the attrition of the two ‘derived’
forces.

The other method is modelling the force-on-force
attrition as a continuous time Markov process. This
approach is better for not only representing the combat
phenomena, but also deriving the stochastic behaviours.
Feigin et al* developed a simple model describing the
dominant features of air combat by a continuous time
discrete-space Markov process. J aiswal’, and Chang and
Mengq® proposed two different computational methods
to derive the results for homogeneous combat forces.
Karr’ discussed the analogical extension to the
heterogeneous system and concluded that it is
sufficiently intractable.

In this study a computational approach has been
proposed to solve the heterogeneous stochastic attrition
model. The approach is based on defining a continuous
time Markov attrition process and applying the results
of matrix-geometric  computational  algorithms
developed by neuts®. Since the stochastic model is
manipulated in the matrix form and on account of the
special form of its infinitesimal generator, some efficient
recursive algorithms can be derived, and numerical
results are also presented.
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2. HETEROGENEOUS MARKOV ATTRITION
PROCESS

Let us consider a heterogeneous combat between
two forces, red and blue. Let M be the number of types
of blue combatants, N be the number of types of red
combatants, B;(t) be the number of blue combatants of
types i surviving at time ¢, B(1) = (B,(t),...,By(1)), Ri(1)
be the number of red combatants of types j surviving
at time t, and R(t) = (R,(1),...,Ry(1)).

Furthermore, it is defined that : B ,U 1s the maximum
possible number of blue combatants of types i, R ;J is
the maximum possible number of red combatants of
type J, B,.E is the surviving blue combatants of type i
when blue surrenders, and Rf is the red combatants of
types j when red surrenders.

For the purpose of simplicity, let Bf= Rf= 0, for all
the values of i and j. The states of the Markov process
are denoted by :

(i hysdyseoady)s
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Let the state space of the Markov process be E which
can be regarded as a model of attrition in combat
between a heterogeneous blue side and a heterogeneous
red side, provided that the paths t—B(t) and (—R;(t)
are non-increasing.

Arrange the state space E in the lexicographic order,
that is,

U U . pU U
(Y, ..BYRY,....RY),
U U. U U | U
(B, ,. .,BM,R‘ , ,RN_l ; RN—l),
U U. U U
Bl’ .’Bhl’Rl,...’RN—l,l)’...’
a,...,1;1,...,1) (0, 0;0, 0)

()

In this model, it is assumed that if any type of force
reaches zero, then that force surrenders. Thus, the
(0,...,0;0,...,0) state represents an absorption state
which stands for the ending condition of the process.
In other words, the absorbing state is a set of
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will be called of the level i. The infinitesimal generator
of the Markov attrition process can be constructed as

A = IT r

0 o

®)

where T is an
M N
U U . .
(H B‘. . H Rj ) square matrix, T °is an
i=1 j=1
M N
U U .
(IT B‘, JI Rj ) x 1 column vector,Qisan
M N

U U .
1 X(H B‘. . H Rj ) row vector, and o is a scalar
i=l ]=l
By writing the elements of the state space of the
process as

B,R = B, ,B

| R ,...,R

M’ 1 N

(6)

we have the coefficients of the infinitesimal generator
A as follows :

T (B,R), (B,....B-1,....B

i M
’.RI’ "RN ))=

N

j)jlkl(z,j)Rj for i = ,..., M, @
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T° (B, R). =

N M M N

z Ekz(i,i)B.+Z Zkl(i,j)R.
. . t . . J
j=1 =] =] Jj=1

J,8.t. Rj= 1 s.t.B.=1 9)
T(B, R),B,R) =
M N N M
-(X Zkl(i,j)R_-i-Z Xk
i=1 j=l Jjar a2
(j,i)B,) (10)

T({B.,R (,))=0, all other states (i, )),

11)

Where k, and k, are matrices (of dimensions M X N
and N X M respectively), representing the killing rates
of the combatants of different types of weapons for each
of the confronting forces.

Thus, we have Te+ T°=0, where e is a column vector
with all elements equal to one. The initial probability
vector is given by (a, aq g9, .0), and aet
Q... 00,..0=1. This (aT) representation satisfies the
definition of phase-type probability distribution®.

2.1 Observation

The T matrix can be partitioned as a bidiagonal
matrix recursively. This observation is explained briefly
here. If the T matrix is partitioned by each level, then
we have

C D
c, »

T= .

(12)

where
M

N
C.,i=l, ,B] isan (] 8V [T R"
i=2

: J
=1

square matrix, and

M N
. U_ . U « U
D,i=1,.,B -1 san (I] B ~T] R’)
i=2 j=l
diagonal square matrix. For each C. matrices, we can
again partition it according to the second type of biue

force. For example,

G, H
G2 H2
C =
GB:I—I HBu—l
B,
where
M N
G,i=1,..B] san)(J] B TI R;j
i=3 j=1

square matrix, and
M

N
1 is an (H B‘UH R;])
i=3 i=1

diagonal square matrix. This partition can be continued
until the last type of red force is reached. Thus, a
recurrence relationship is developed and will be used
in the next section.

U
' ”"B2

To ...astrate the current results, we assume that
M=2, N=2 and BY=3, BY=2, RV=3, and R}=2. The
combat can be described by the square law with the
attrition rate matrix as

M N
1 2 2
03 02
Ml
e 05 05
1 03 02
Ml os 04

The infimtesimal matrix of this Markov attrition
process is presented in Fig. 1.
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Figure 1. Elements of the infinitesimal generator.

3. ITERATIVE INVERSION

According to Neuts’, the expected value and
variance of the time until absorption can be computed as

=EX)=-aT ey, EX* =

21aT e, (15)

= E(X) - EX)

M

and Var(X)

(16)
N
. . U
Since T'is very large dimension (H Bf/ H RJ- )
: j=1

=1

square matrix, it will be time-consuming to find its
inverse. However, with the observation of the
recurrence relationship, one can derive the inverse
matrix recursively. Consider a matrix

PR
S

1

0 P, (17)

where P, and P, are non-singular square matrices of
arbitrary dimensions, and R, and 0 are matrices of
appropriate dimensions. The inversion of the above
matrix is
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Likewise, let
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Inversion of S, gives
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By assuming

To test the computational efficiency of the inversion
algorithm, it is compared with the direct inversion by

Pl Rl using the 386-MATLAB which is known for the high
P2 R 2 performance interactive ability. Each P, s and R;s are
generated as a 20 X 20 random number matrices. The
S e = elapsed computation time is calculated by the
P R MATLAB built-in function, e time, and the numbers
k k of addition, multiplication or divisidn, flop. Table 1
k1 shows the test results, in which the three different
numbers in the rows of iterative algorithm represent,
0 (i) the accumulated numbers from k-1, (ii) the inversion
S of P,' and (iii) the multiplication of ;' [0,...,0,-R,]
k-1 P,;ll From the table, it is seen that the saving of
. computation time and flops from the iterative algorithm
0 is very significant for large size matrices.
R
| k] 4. ANALYSIS OF THE HETEROGENEOUS
0 0 MARKOV ATTRITICN PROCESS
) T Pk+l (22) As the heterogeneous Markov' attrition model is
defined, some useful computational algorithms can be
By induction, we have developed. The a vector specifies the initial contact
) forces for both sides. Thus, the initial confronting enemy
0 forces can be viewed as the random variables. Without
S—l . " the los§ of generality, let ag g0 0 =0 i.e., the
k1 S; | . el probability that either side surrenders without any
S_l 0 engagement in the beginning of combat is zero.
k —Rk For the heterogeneous Markov attrition model, the
- 4 R;s matrices are diagonal square ones. If the square law
p! process is assumed, then the Rs are the same. With the
0 P (23) derivations of the iterative inversion algorithm and the
Table 1. The comparison of direct inversion and iterative inversion
K 1 2 3 s s 6 7 8 9 101 12
Dimension 20° a7 60° 8° 1000 120 140 160 180 2000 200 240°
Direct 0n 0.83 243 5.60 11.10 17.97 32.19 41.63 69.53 80.47 126.61  160.49
CPU* 0.00 o.n 0.39 0.88 1.70 2.96 4.7 8.12 11.97 15.92 20.92 26.90
Time Iterative G.11 0.11 0.11 0.11 0.16 0.16 0.11 0.16 0.11 0.17 0.11 0.17
0.00 0.17 0.38 0.71 1.10 1.59 3.30 3.69 3.84 4.83 5.87 7.08
0.11 0.39 0.88 1.70 2.96 4.71 8.12 1197 1592 2092 2690  34.15
Direct 18 135 448 1052 2044 3519 5574 8303 11803 16174 21506 27898
Tops® * 0 18 68 182 392 730 1228 1918 2832 4002 5460 7238
P Herative 18 18 18 18 18 18 18 18 18 18 18
0 32 9% 192 320 480 672 896 1152 1440 1760 2112
18 68 182 392 730 1228 1918 2832 4002 5460 7238 9368
*In seconds, **in thousands
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special structure of T matrix, T' can be found with the
reasonable time. Another computational efficiency can
be achieved hy the relevant elements of a vector. For
instance, if a=(1,0,...,0), i.e., both initial forces are
known, then only the elements of the first row can be
computed for T to find the expected absorption time.
According to Neuts’, the distribution of the time until
absorption in state (0,...,0) given the initial probability
VECIOr (@ g g0, 0) IS

F(x)=1—-oexp (Tx)e, x>0 (24)

A built-in function of exp-m (Tx) in MATLAB can
be used to derive the F (x).

From the infinitesimal generator, we can compute
the transition probability of the imbedded Markov
chain. An acyclic network can be drawn to represent
the attrition process. The source states correspond to
the states of non-zero elements of the a vector, and the
sink states are those with any one of the B;s or R;s equal
to zero, let 77(B,R) be the transition probability of the
sink states, then the probability of blue wins is the
summation of /7(B,R) for all possible (B,R) where one
of the R;s equal to zero, j=1,...,N. The probability of
red wins is the summation of /7(B,R) for ail possible
(B,R) where one of the Bs equal to zero, i=1,...,M.

The expected survivors stand for the available force
for the next battle or can be used to appraise the
expected loss. As a field commander, this information
provides a way to evaluate the quality or effectiveness
of engaging strategies. From the results of /7(B,R), we
can compute the expected survivors of each type given
winning the battle.

Linear law
(for defending situation)

Table 2. The attrition rates

5. EXAMPLE

To demonstrate the results, an example of a
heterogeneous combat between two forces, blue and
red, is taken to show the computations. Each force
consists of two weapons companies (WC), two combat
engineering companies (EC) and four ' infantry
companies (IC). The red field commander decides to
deploy all troops in attack formation. As for the blue
field commander, the following three strategies are
considered :

S1: Attack strategy : deploying all troops in attack
formation, intend to destroy the enemy as soon
as possible.

$2: Surround strategy :deploying half force in defence
position and the other circling behind the
enemyline, intend to trap the enemy while
levitating own loss, and

£7  Stall strategy : deploying all force in defense
position, to get the enemy stuck as long as possible.

For the three difference strategies, the appropriate
attrition rates are determined from Table 2. The sizes
of the state space for the three strategies are 257, 33
and 257. Figure 2 shows the combat time distributions
of each stretegy. Table 3 gives the expected combat
time, variance, the probability of winning for each force
and the expected survivors given winning. Figure 3
shows the probabilities of victory against survivors of
each force for different strategies. From the above
information, the decision-making process can be
incorporated with the methods of multiple objectives
optimisation.

6. CONCLUSION
The heterogeneous continuous time Markov process
is considered sufficiently intractable by many authors.

Square law
(for attacking situation)

RWC REC RIC BWC BEC BIC

RWC REC RIC BWC BEC BIC

RIC 0.01 0.08 0.02
REC 0.01 0.05 0.01
RWC 0.0s 0.10 0.02

BIC 0.01 0.01 0.01
BEC 0.01 0.4 0.01
BWC 0.0s 0.10 0.02

RIC 015 030 025
REC 010 025 015
RWC 020 040 035

BIC 0.18 0.30 0.25
BEC 0.12 0.25 0.32
BWC 0.25 0.50 0.40
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Figure 2. Combat time distribution of each sirategy
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phase-type  distrbution. By cossrving  the special
structure of ihe infinitsimi XDeoerator, recursive
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stochaste Sehaviour can be ortcumed.

Arn srruosiant feature of T =oproach is that the
iniial cortact foree level neec zce ~e known when the
combz:r Segxms. The a vector soecifies that initial
proba~=mv  of the involvicg ZIsrces. Thus, the
randomness of the encountermg =emy foree can be

Tabde 3. The computatioa

Expected Vari Proteriity of winning Zxpemad SITvivors given wimmany
combattime ¥ ONANCE Bioe Red BWC BEC BIC RWC  XE=C RIC
S1 0.4421 0.0882 03542 0.4438 1.75 = 3.39 172 = 3.30
S2 0.7158 0.3287 06730 0.3270 1.00 o 1.94 1.72 S 2.91
3 0.5634 0.1404 0.9823 0.0177 1.6 = 3.96 v 2o 2.36
(Tt wC 72 EC, T3 IO
S2 S3
BLUE RED BLUE REC BLUE : RED
10 TUIT2 | T3 |TV|T2| T3 |T1|T2| T3 [T1 (T2 ~3 |[T1|(T2| T3 T1iT2| T3
] e
4 - - i
s 1| 1 il N
_. = B i i “:
i = RN
- - i : —1 it ;
i = ¥
7] b - I | | P
- i g : r,
0 1236 12 12 134 T 1 12 12 "2 *Z36 12 12 123 12 1234
SURVIVORS

Figu—e 1. Probabilities of victory agam=< s  oes
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analysed. the allocation of fires can be easily achieved
by changing the elements of T matrix accordingly.

Future research can be extended to the optimal
strategy of using tactical reserves, deploying policy of
the forces, or transferring combat units. Futhermore,
this stochastic attrition model can be accomodated to
the existing war game theater-level combat models to
develop them as a decision support system for field
commanders.
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