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ABSTRACT

A model for a heterogeneous dynamic combat as a continuous-time Markov process has been
studied, and on account of the special form of its infinitesimal generator, recursive algorithms are
derived to compute the important characteristics of the combat, such as the combat time distribution,
expected value and variance, and the probability of winning and expected survivors. Numerical results
are also presented. This approach can also be used to consider initial contact forces of both sides as

random variables.

The other method is modelling the force-on-force

attrition as a continuous time Markov process. This

approach is better for not only representing the combat

phenomena, but also deriving the stochastic behaviours.

Feigin et at developed a simple model describing the

dominant features of air combat by a continuous time

discrete-space Markov process. J aiswal5 , and Chang and

Menq6 proposed two different computational methods

to derive the results for homogeneous combat forces.

Karr7 discussed the analogical extension to the

heterogeneous system and concluded that it is

sufficiently intractable.

I. INTRODUCTION

Today the force-on-force attrition models are widely

used to evaluate tactics or to appraise equipment. Most

of the models are examples of deterministic

Lanchester-type equations. Although stochestic models

can provide better insight, understanding and modelling
flexibility, little attention has been paid because of the

computational difficulties.

There are essentially two main approaches to model

the force-on-force attritions. One is the Lanchester-type
differential equation system. Different combat models

are defined by introducing various operational factors.

Taylort reviewed the recent developments of the

Lanchester-type models of warfare. Since actual combat

consists of many different weapons system types, a

natural extension is to consider the heterogeneous case.

Maybee2 applied the theory of positive operators to the

combined arms models. Taylo~ discussed an aggregated

force model by converting the diverse weapons system

types on a s~de into a single equivalent 'homogeneous'
force, then considered the attrition of the two 'derived'

forces.

In this study a computational approach has been

proposed to solve the heterogeneous stochastic attrition

model. The approach is based on defining a con\inuous

time Markov attrition process and applying the results

of matrix-geometric computational algorithms
developed by neuts8. Since the stochastic model is

manipulated in the matrix form and on account of the

special form of its infinitesimal generator, some efficient

recursive algorithms can be derived, and numerical

results are also presented.
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2. HETEROGENEOUS MARKOV A TTRITION

PROCESS
, iM ; j 1

iN
( 0, i2 ' ..

,.O ,. .., , ,1M ;11, ,jN )

( i i ,. .., i; j ,
M 1

The set of states

(3)

(5)

Let us consider a heterogeneous combat between

two forces, red and blue. Let M be the number of types

of blue combatants, N be the number of types of red

combatants, B;(t) be the number of blue combatants of
types i surviving at time t, B(t) = (B)(t),... ,BM(t», Rj(t)

be the number of red combatants of types j surviving
at time t, and R(t) = (R)(t),...,RN(t).

Furthermore, it is defined that: B ~ is the maximum

possible number of blue combatants of types i, R jU is

the maximum possible number of red combatants of

type j, B~ is the surviving blue combatants of type i

when blue surrenders, and R jE is the red combatants of

types j when red surrenders.

For the purpose of simplicity, let B~ = RjE= Q, for all

the values of i and j. The states of the Markov process

are denoted by:

( ii , ,iM;}1'...'}N)'

where T is an

M N

( n B~ . n R~ ) square matrix, T o is an

I J
i=l j=l

M N

n B~ . n R~ ) x 1 columnvector,Oisan
I J

i=l j=l
(I)

M N

1 x ( ~ B~ .n R~ .

I =1 j =1

By writing the elements of the state space of the

process as

row vector, and o is a scalar
Let the state space of the Markov process be E which

can be regarded as a model of attrition in combat
between a heterogeneous blue side and a heterogeneous
red side, provided that the paths t~Bi(t) and t~Rj(t)
are non-increasing.

Arrange the state space E in the lexicographic order ,
that is,

B,R Bl' ,BM;R1,...,RN
=

(6)

we have the coefficients of the infinitesimal generator

A as follows :
T (B,R ), (Bl'"""'Bi-l,""" .B- .

u u u
..BM;R RN),

U U u u
..BM;R1 ,...,RN-. ; RN-l),.

u u u
..B1.(;R1, RN-I.l)

M

Bu
l' ;R1, .,R »=N

(0, ,0; 0 , ,0 )(I, ...,1 ; I, ...,1

,. ..,M,for i =

(7)(2)

,BM;Rl'"""'R.

N

L k1 (i, j ) R .
1 J

J=

T ((E,R ), (ElIn this model, it is assumed that if any type of force

reaches zero, then that force surrenders. Thus, the

(0,...,0;0,...,0) state represents an absorption state

which stands for the ending condition of the process.

In other words, the absorbing state is a set of

I, ...,RN

, ..., N,

)=M

}::; k2 U, i)Bj for j=

j=l (8)
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will be called of the level i. The infinitesimal generator
of the Markov attrition process can be constructed as
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~(B,R).=
square matrix, and

N

L

j=l

M M

}::, k2 (j, i) B. + }::,
i =1 I j =1

N

L k1 ( i,j ) R
j=l

j

M N

Di'i=l,...,B~-l( isan)Cn B~ ..n R~~
;=2 j=l

j,s.t. R. = 1
J

f ,s .1. B; = 1
(9)

T «B, R ), (B, R )) =

M N N

-(L Lkl (i,})R.+L. 1 . 1 J .
11= J= J=

G1 HiM

L k2

i =1

c,=(},i)B,) (10)
G u

1B-
2

Hu
lB-

2

GU
B

2

T «8, R Ci,j) = 0, all other states ci,n,

(11)

Where k1 and k2 are matrices (of dimensions M x N

and N x M respectively), representing the killing rates

of the combatants of different types of weapons for each

of the confronting forces.

where
N

n

j=l

M

<n
i=3

Ru

j

is an )

square matrix, and
Thus, we have Te+ r=o, where e is a column vector

with all elements equal to one. The initial probability

vector is given by (a, a(o o;o 0»' and ae+

a(o o;o 0)~l. This (a1) representation satisfies the

definition of phase-type probability distribution9.

H. , i = I,

M N

" Bu -1 is an' n B~ .n Ru )
2 I )

i=3 i=1

2.1 Observation

The T matrix can be partitioned as a bidiagonal
matrix recursively. This observation is explained briefly
here. If the T matrix is partitioned by each level, then
we have

To :::()strate the current results, we assume that

M=2 N=2 an d Bu= 3 Bu=2 Ru=3 and Ru=2 The, I' 2 ' I' 2 .

combat can be described by the square law with tht:

attrition rate matrix as

c D

M NC2 D
-2 1 2 1

0.3

0.5

2

0.2
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T=
Mi
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K=c u
1B-

D Bu- 1
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0.4
(' u

B
1

N1
2

(12)
where

N

n
;=1

Bu is an (, 1

M

n B~
.I
1=2

Ru

j

c:. i=l. The infinitesimal matrix of this Markov attrition

process is presented in Fig. I.

Rt

diagonal square matrix. For each ~ matrices, we can
again partition it according to the second type of'blue
force. For example,

B~
I

diagonal square matrix. This partition can be continued

until the last type of red force is reached. Thus, a

recurrence relationship is developed and will be used

in the next section.
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~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

0..;..;NN ..;..;NN ...;..;NN ;..;NN ;..; ..;..; O
N N N N N N -N N N N N N ;; N N ;.; ;.; ;.; ;; ;; ;; O
..;..;..;..;..;..;..;..;..;..;..;..; N N :..:.:--~o

r (:12.:11) .6.M '.6 '.9 ,... '.9 0.0

(:11.:1.') .~.9 '.9 '0 ,... 1.6
(:1.1.2.1) -6.31.6'.Cj 1.1 '.6 0.0
(:12.2.') ..,... ICj O.M ,., ,,6
(:1.1.'.2) -~.M '.6 '.0 1.3 1.9
(3.1.") Cj 0.6 O.H 3.~
(J.'.3.1) .~.M '.1 ,... 1.9 1...
(J.'.3.1) 9 ,... 1.4 2.1
(J.'.2.2) -5.31.1 ,.~ 1.6 '.2
(J.':2.1) .4.4 ,... 1.1 '.9
(3.':':2) -4.H 1.' 1.3 2...
(3.'.1.') -3.' O.H 3.1
(1.2.3.2) -6.31.41.6 '.9 0.0
(2.2-).') -5.4 '.6 1.4 1.4 1.4
(2.2.2.2) -5.H'.41.6 1.0 1.6 0.0
(1.2.2.1) 9 1.6 I.~ 1.' 1.4
(2.2:'.2) -5.31.4 O.H 1.3 1.6
(2.2.I.r) .4.4 1.0 O.H 3.0
(1.1:3.2) .5.30.91.1 0.6 1.9 1.4
(2.1.3.1) .4.4 1.1 1.4 1.9
(2.1:2.2) .4.HO.91.1 1.6 1.2
(1.1:2.1) .3.9 1.1 '.1 1.7
(2.1.1.1) .4.30.9 1.32.1
(2.'.1.1) -3.4 O.K 2.6
('.2:3.2) -5.KI.21.3 1.4 1.9
(1.2:).1) -4.9 1.3 1.0 2.6
('.1:2.2) -5.31.21.3 1.2 1.6
('.1.1.1) -4.4 1.3 O.M .2.3
('.2.'.2) .4.H 1.2 1.0 2.6
(1.2:1.') .3.9 0.6).3
(1.':3.2) -4.M 0.7 O.M 3.3
('.1:3.1) -3.9 O.M 3.1
('.'.1.2) .4.) 0.7 O.H 2.M
(1.':2.1) .3.40.82.6
(1.1:'.2) -3.H 0.7 ).1
('.1.'.1) -2.92.9
(0.0:0.0)

Figure I. Elements of the infinitesimal generator .

p-I
I

p-I
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3. ITERATIVE INVERSION

According to Neuts9, the expected value and

variance of the time until absorption can be computed as
S;l =

p-I
2

0
1.11 =E(X) =- all E(X2 (18)e, ~2 =

(15)
2

2!a.r e,

(19)

square matrix, it will be time-consuming to find its

inverse. However, with the observation of the

recurrence relationship, one can derive the inverse

matrix recursively. Consider a matrix

p-I

3
p-I R

2 2

-p-I R p-I
2 2 3

p~1
3

P, R
s, =

(20)(17)
~l

I p-I

3

S":"J
1where PJ and P2 are non-singular square matrices of

arbitrary dimensions, and RJ and O are matrices of

appropriate dimensions. The inversion of the above
matrix is

[12]

p-I

3
0

(21)
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By assuming To test the computational efficiency of the inversion
algorithm, it is compared with the direct inversion by
using the 386-MA TLAB which is known for the high
performance interactive ability. Each Pk s and Rks are
generated as a 20 x 20 random number matrices. The
elapsed computation time is calculated by the
MATLAB built-in function, e time, and the numbers
of addition, multiplication or divisidn, flop. Table 1
shows the test results, in which the three different
numbers in the rows of iterative algorithm represent,
(i) the accumulated numbers from k-l , (ii) the inversion
of ~ 1 and (iii) the multiplication of S;l [0,...,0,-Ri]

Pi11. From the table, it is seen that the saving of
computation time and flops from the iterative algorithm
is very significant for large size matrices.

p
1 Rl

P2
R

2

s =k
p

Rk

p k+l

k

s
k-l

0. ...0 p
(22)k+l

By induction, we have

~l 1
k-l ~-l p-I

k+1

~1=

4. ANAL YSIS OF THE HETEROGENEOUS

MARKOV A TTRITION PROCESS

As the heterogeneous Markov attrition model is

defined, some useful computational algorithms can be

developed. The a vector specifies the initial contact

forces for both sides. Thus, the initial confronting enemy

forces can be viewed as the random variables. Without

the loss of generality, let a(o o;o 0).=O i.e. , the

probability that either side surrenders without any

engagement in the beginning of combat is zero.

For the heterogeneous Markov attrition model, the

R;s matrices are diagonal square ones. If the square law

process is assumed, then the R.s are the same. With theI
derivations of the iterative inversion algorithm and thep-I

k+10 (23)

Table I. The comparison or direct Inversion and Iterative Inversion

0.11

0.00
(,.11

0.83

0.11

0.11

Direct 2.43

0.39

0.11

5.60

0.88
0.11

11.10

1.70

0.16

17.97

2.96

0.16

32.19

4.71

0.11

41.63

8.12

0.16

69.53

11.97
0.11

80.47

15.92

0.17

126.61

20.92

0.11

160.49

26.~

0.17
CPUO

Time
Iterative

7.08

34.15

Direct 18 135 448 1052 2044 3519 5574 8303 118Q1 16174 21506 27898

O

18

O

18

18

32

68

182

18

192

392

18

320

730

18

480

1228

18

672

1918

18

896

2832

18

1152

4002

18

1440

54(X)

18

17W

7238,'lops. .
Iterative

2112

936818

68

18

96

182 392 730 1228 1918 2832 4002 ~ 72J8

.In seconds, ..in thousands
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special structure of Tmatrix, T-I can be found with the

reasonable time. Another computational efficiency can

be achieved hy the relevant elements of a vector. For

instance, if a=(l,O,...,O), i.e., both initial forces are

known, then only the elements of the first row can be

computed for TI to find the expected absorption time.

According to Neuts9, the distribution of the time until

absorption in state (0,. ..,0) given the initial probability

vector ta a(o.o o;o O» is

F(x) =1- a exp (Tx)e, x ~ 0 (24)

A built-in function of exp-m (Tx) in MA TLAB can

be used to derive the F (x).

From the infinitesimal generator, we can compute
the transition probability of the imbedded Markov
chain. An acyclic network can be drawn to represent
the attrition process. The source states correspond to
the states of non-zero elements of the a vector, and the
sink states are those with anyone of the B.s or R.s eq ual

J J

to zero, let fl(B,R) be the transition probability of the

sink states, then the probability of blue wins is the

summation of fl(B,R) for all possible (B,R) where one

of the Rjs equal to zero, j=l,...,N. The probability of

red wins is the summation of l1(B,R) for all possible

(B,R) where one of the Bjs equal to zero, i=l,...,M.

The expected survivors stand for the available force

for the next battle or can be used to appraise the

expected loss. As a field commander, this information

provides a way to evaluate the quality or effectiveness

of engaging strategies. From the results of fl(B,R), we

can compute the expected survivors of each type given

winning the battle.

5. EXAMPLE

To demonstrate the results, an example of a

heterogeneous combat between two forces, blue and

red, is taken to show the computations. Each force

consists of two weapons companies (WC), two combat

engineering companies (EC) and four' infantry

companies (IC). The red field commander decides to

deploy all troops in attack formation. As for the blue

field commander, the following three strategies are

considered :

Sl: Attack strategy: deploying all troops in attack

formation, intend to destroy the enemy as soon
as possible.

S2: Surround strategy :deploying half force in defence

position and the other circling behind the

enemyline, intend to trap the enemy while

levitating own loss, and

f"' Stall strategy: deploying all force in defense

position, to get the enemy stuck as long as possible.

For the three difference strategies, the appropriate

attrition rates are determined from Table 2. The sizes

of the state space for the three strategies are 257, 33

and 257. Figure 2 shows the combat time distributions

.)f each stretegy. Table 3 gives the expected combat

time, variance, the probability of winning for each force
and the expected survivors given winning. Figure 3

shows the probabilities of victory against survivors of

each force for different strategies. From the above

information, the decision-making process can be

incorporated with the methods of multiple objectives

optimisation.

6. CONCLUSION

The heterogeneous continuous time Markov process

is considered sufficiently intractable by many authors.

Table 2. The attrltioa rates

RIC

REC

RWC

BIC

BEC

BWC

0.01

0.01

0.05

0.08

0.05

0.10

0.02

0.01

0.02

RIC

RI!C

RWC

BIC

BEC

BWC

0.15

0.10

0.20

0.30

0.25

0.40

0.25

0.15

0.35

0.01

0.01

0.05

0.01

0.04

0.10

0.01

0.01

0.02

0.18

0.12

0.25

0.30

0.25

0.50

0.25

0.32

0.40
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Thus. cI"C!:c'C a simplified rncb'-.~ or a simulation
appro-..ld1 ~ :-c-.::0mmended tc ~~ the approximate
results. h ~ srudy. "'.e have ;r-~")sed an approach
to CQmf'U~ ;j:jc direct solurio~- ~ approach is based
upon m ~J:ing the attritio(I ?~")mena as a finit
Mark~ pr~ which sa~es the definition of
pha--.e-..!~ di5:abution. By .:::~,;ng the special
strucrurc ,:){ ~ infinitsimal ~erator, recursive
algori"dl1:::::5 --erc deseT'\.ed s.:..::r :tIat the intended
stoch;1:sric ~"'iour can be OCQ1I::-t=.-.j.

.-\.n ~~..ant feature of ~ pproach is that the
initial CL~..:1\..~ force level neeC ::cc ~ known when the
comb;=.f ~- The a v~;:~ ~.::ifies that initial
proba~~ of the invol...~ i-'"\rces. Thus, ~ the

rand..-Jrnnc;s;, .:)f the encounter:!::g ~my f(j!"ce can beF~ :.. C~bat time distribution of eac-. ~

T... 3. The computadoa

Expected
~bat time

~.'...1n:'! of ~inning
---
=:.;::;:-=.= ~~"1"Ors gI'-en ~

Variance
~ Red B~.( ~t:=r-

o~ SIC R'WC ~c RIC

SI

52

53

0.4421

07158

0.5634

0.0882

0.3287

0.1404

ii ,~~J-- --

O 6-::'}

O~

0.4438

0.3270

0.0!77

1.75

1.00

l.~

~ 339

194

3.96

1-:

1-:

,:-

'"' 3.30

2.91

2.36

:8: =-t-

-~

(T1 ..c T2 EC, T3 M:l

S1 S2 s 3

BLUE RED BLUE 1 ~c

r T1 rTi=-~

BLUE RED

T11T2 T3 11112 T3 T11T2 T3 T1 T2 T3 -~ T2 T3
1.0

nl

Ii
5 I r

H
-

n
-1,

u0
1234 12 12

-1-
1234 1 12 12 .2. .

SURVIVORS

r~~ 3 PrOOabilities of victo~ ~ ,;;u-.

-; .f
0 12 12 12: 12 1234

~
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4analysed. the allocation of fires can be easily achieved
by changing the elements of T matrix accordingly.

Future research can be extended to the optImal
strategy of using tactical reserves, deploying policy of
the forces, or transferring combat units. Futhermore,
this stochastic attrition model can be accommodated to
the existing war game theater-Ievel combat models to
develop them as a decision support system for field

commanders.
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