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ABSTRACT

In this paper, the probabilistic inference network (PIN) in a decision support systems environment
is used to deal with several uncertain questions. The PIN method is supported by the certainty factors.
Calculations involving quantitative probabilities for answering concerned questions enable mine
countermeasure (MCM) experts to offer suggestions to a commander for reducing the ship's
vulnerability at sea during wartime. For sea mine warfare scenarios, based on an analysis, we have
a degree of confidence of 0.6568 to suggest the commander to deploy MCM forces.

I. INTRODUCTION

This paper is aimed to design a probabilistic
inference network (PIN) as a part of a decision support
system (DSS) inference engine for sea mine warfare.
The pIN can be used to offer suggestions to the
comm.ander for reducing the vulnerability of ship at sea.
This section introduces the problems of sea mine
warfare, the objectives and the general background of
the paper .

1.1 Statement of the Problem

Historically, sea mines have played an important

role in warfare and this a naval officer cannot afford to

neglect. During the recent.mine campaign in the Middle

East involving Iran and Iraq, commanders delayed

decisions on whether or not to deploy mine

countet;measure (M~M) forces. As a result, damage
occurred to ships in a minefield that could have been
prevented by the speedy application of MCM. Before
an operational mission is commenced, there are several
uncertain questions in the mind of a commander: Do
minefields exist? Which country laid mines? What type
of delivery platform laid the mines? Where are the
mines? What kind of mines are they? Do we need to
deploy MCM forces? Previously, these uncertain and
subjective questions were very difficult to answer by a
tactical principle. The specific reasons for any decision
are often obscure, and the decision to avoid a minefield
or to risk it is influenced by many factors; one of them
is the decision maker's perception of the minefield.

In many practical problem-solving situations,
available knowledge is either incomplete or inexact.
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systems. This model can offer an overall picture to the
commander of sea mine warfare, comprising several
possibilities, including (i) the existence of minefield, (ii)
the country that laid the mines, (iii) the mine delivery
platform, (iv) the mine location, (v) the kind of mines
1aid in the minefield and (vi) decisions concerning MCM

df'.ployment.

Weather prediction and medical diagnosis are two
examples. In such cases our knowledge is not adequate
enough to use precise logic inference. However, we
have ways of drawing inferences from incomplete,
inexact, or uncertain knowledge and info~ation.
AltlTough our knowledge is not complete, weciin make
generalisations and provide approximations that help
us to summarise our experiences and predict the
outcome of events. The generalisations are often subject
to error, and yet we still use them because they provide
a useful probabilistic tool.

The knowledge that can be stored in a machine is
also limited. Intelligent machines often work with
incomplete information in the. form of quantitative
approximations. Probabilistic reasoning methods allow
artificial intelligence (AI) systems to use uncertain or
proQabilistic knowledge so as to take uncertainty into
accounf. In addition~ probabilistic methods can help
us accumulate evidence for hypotheses in a fair way;
they are appropriate tools in making 'just' decisions.
Decision theory , related to the theory of probability
provides additional techniques that help to minimise
risk in making decisions. Therefore, it is appropriate to
use the probabilistic reasoning methods in DSS to solve
the decision pro61ems involved in sea mine warfare.
The decision factors are represented by levels in the

PIN. Calculations involving quantitative probabilities
for answers to the questions in building a PIN could
offer suggestions to the commander for reducing the
vulnerability of ship at sea during war time.

1.3 General Background of the Paper

The problem in sea mine warfare is that in the
absence of sufficient information ab<,ut the minefield.
clean up is difficult. In order to find a proper method
to help the commander make a decision from the
incomplete, inexact, or uncertain knowledge and
information, fuzzy logic (FL), which uses uncertain or
probabilistic knowledge to account for real uncertainties
can be pressed into service. In this paper, FL is
incorporated with a DSS application.

The subsequent sub-sections introduce the required
backgrounds for designing the PINs. They are: sea mine
warfare, AI language LISP, and FL.

1.2 Objectives or the Paper

Sea mine warfare is complex, obscure and
controversial. Yet it is an important adjunct of the
capacity of countries to wage war. Sea mines have been
used in wars for many centuries, and history shows that
sea mine warfare is a battle of wits between the mine
user and his enemy's countermeasures. In this paper ,
the emphasis is on MCM, within a specific operational
mission to clear up sea mines that were laid by the
defending country in the approaching sea area. Without
sufficient information about minefields, it is very
difficult for the commander of sea mine warfare to
decide whether to deploy MCM forces or not.
Ther-efore, we seek to model general decision making

in a computationally practical, yet mathematically
meaningful way. Here the PIN structures are presented
as formal structures for representing decision-making

1.3.1 Sea Mine Warfare

Sea mine warfare has been divided into three parts:
types of mines, the mine delivery , and the minefield

planning.
(a) Types of mines -Mines are not controlled, but

operated automatically by some device activated
by the presence of a ship. Mines can be classified
as: (i) contact mine (fired by physical contact with
the target) and (ii) induced mine (actuated by the
effect of a ship on some physical condition in the
vicinity of the mine or on radiations emanating
from the mine) .The~e are three basic types of the
induced mines, namely, magnetic mine, acoustic
mine and pressure mine.

Section 4 considers only contact mine and induced
mine as the nodes in the PIN for sea mine warfare.

(b) Mine delivery -How to implement the minelayer
aspect of sea mine warfare is a tactical problem .
Indeed the purpose of the mine delivery platform
is to carry and lay mines into the minefield.
According to the diff~rent functions, there are
surface delivery, submarine delivery , and aircraft
delivery available.

MinefIeld planning -Consider a minefield for

which the objective is destruction of enemy
(c)

~
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shipping. One might hope that several ships would
blunder into the field before it is identified by the
enemy and the shipping warned away. However ,
realistically one can only count on the first mine
which is detonated. Thereafter, enemy
countermeasures will attempt to render the field
useless. Hence. a measure of the effectiveness for
such a field is the probability that one ship will be

sunk.

1.4 Organisation of the Paper

Section 2 introduces DSS. Section 3 discusses the
design process of the PIN. Section 4 presents the results
of simulation of sea mine warfare inference network
that can be supported by the certainty factors. Section
5 comprises some concluding remarks.

2. DECISION SUPPORT SYSTEMS

Expert system (ES) can be used as DSS. The ES
.technology is widely perceived as AI technology with
maximum potential for the development of applications
that require a domain of expert knowledge (EK) data.
Expert systems are computer programs that are
equipped .with EK to help users solve problems. For
example, 3.11 ES called MYCIN, provides expert advice
to medical doctors on the diagnosis and treatment of
various types of bacterial infection4. In general, an ES
contains two basic components: (i) a knowledge base
and an inference engine, and (ii) a user interface.

2.1 Knowledge Base and Inference Engine

In a knowledge base, EK data can be expressed as
a set of cohdition-action pairs. In turn, they provide
production rules that specify the action to be carried
out, if the pre-requisite conditions are satisfied. A
typical structure of the condition-action system is shown
in Fig. I.

Generally, the minefield model is based on the

following assumptions:
(i) Mines have been laid in secrecy and the enemy is

unaware of the field's existence;

(ii) Ships traverse the field on' one of two known
headings, these being parallel but opposite;

(iii) Ships considered as traffic must pass outside the
limits of the field but are equally likely to enter
the field at any point within its limits;

(iv) A ship which enters the influence area of the mine
will detonate the mine with certainty; and

{v) A mine which is. detonated will sink the ship with

certainty,
Therefore, the minefield planning will be divided

into three parts, viz. , shipping traffic lane, coast, .and
the nearest point land.

BASE Of
CONOITION-

ACTION

("RULE BASE")

1.3.2 LISP

LISP and Prolog are commonly used AI languages.
LISP is designed specifically for list processing and
symbol manipulating, although it has a capability for
numerical data handling as well. LISP also uses lambda
calculus as a formal, applicative structure with
interesting theoretical properties.

Based upon the sea mine warfare experts analysis,
we will design a PIN ( detailed account given in Section
4) and use C program to create knowledge base, so as
to implement the PIN which is written in LISP Figure 1

1.3.3 Fuzzy Logic The ES can be described as computer-consultants
that emulate human expert reasoning in a problem
domain. The process of extracting and eneoding a
domain knowledge held by human expertise is called

knowledge engineering. Today, knowledge engineering
remains a time-consuming and labour-intensive process
wherein a knowledge engineer, must repeatedly
interview one or more human experts over a long time

Fuzzy logic was introduced by Zadeh2 in 1965 who
provided greater detail3 in 1973 by using fuzzy set theory
as the principal tool. FL enables computers to simulate
the ambiguities encountered in real-Iife situations. In
Section 3, we will give a detailed explanation of using
FL to implement the current probability for each node
on the PIN .
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to extract the heuristics to be encoded in the ES
knowledge base. The purpose of an inference engine is
to control the order of rule activation and to update
the belief value of hypotheses based upon acquired
evidence.

carried out by aQ inference engine. It is convenient to
view the inference engine and the interface as one
module, usually called an ES shell or shell. Figure 2
illustrates a basic ES architecture.

Most .expert systems deal with various classes of
inference problems, where the ES must draw
conclusions from various evidence or data inputs. In
these types of inference problems, the set of rules can
be graphically represented in Fig. 3 in the form of a set
of inference networks. As illustrated in Fig. 4, an
inference network contains top-level hypotheses that
are decomposed into various levels of sub-hypotheses.
The sub-hypotheses, in turn, are further broken down
into specific items of evi<'~nce, called nodes, that can
support these hypotheses. With each node, there is
usually an associated prior probability and a rule for
combining a sub-node prior probability into an updated
probability for the node. We will give a detailed
description in Section 3 of the interrelationship between
node (evidence) and sub-node.

2.2 User Interface

A user interface caters for a smooth communication
between the user and the system. It may also provide
the user with an insight into the problem-solving process

USER

USER ,

INTERFACE

INFERENCE

ENGINE

SHELL

3. MATHEMATICAL METHOD

In many practical problem-solving situations not
only the available information is incomplete or inexact,
but also the knowledge is inadequate to support a
desired logical inference. However, we can apply
approximations reasoning so as to transfer a specific
knowledge into a prediction. This paper applies
Tanimoto's PINs that allows the ES to use uncertain or

KNOWLEOGE
BASE

Figure 2. Simplified view or expert system architecture.

IF SEA MINE WAS FOUND ON TRAFFIC -LANE

SEA MINE WAS FOUND ON THE NEAREST-POJNT-LAND, OR

SEA MINE WAS FOUND ON THE COAST.

THE CONT ACT MINE WAS LAID BY THE ENEMY.THEN

IF : SEA MINE WAS FOUND ON THE TRAFFIC-LANE,

SEA MINE WAS FOUND ON THE NEAREST -POINT -LAND, OR

SEA MINE WAS FOUND ON THE COAST.

: THE INDUCED MINE WAS LAID BY THE ENEMY.THEN

IF THE CONTACT MINE WAS LAID BY THE ENEMY, OR

THE INDUCED MINE WAS LAID BY THE ENEMY.

TO DEPLOY MCM FORCES.THEN

Figure 3, Sample condition-action rules.
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P(E) = p(E/H)p(H) + P(E/-H)P( -H)

To illustrate the case, we assume the following values:

P(H) = 0.01 p(E/H) = 0.85 P(E/-H) = 0.001.

From the formula described above, we can compute

P(E) = (0.85)(0.01) + (0.001)(1 -0.01)

which is approximately 0.0095 and

p(H/E) = (0.85)(0.01)/0.0095 = 0.8957

Thus, the probability that country-2 has laid mines,
given that the minefield is discovered, is about 0.9. On
the other hand, if the minefield is not discovered, the
probability that country-2 has laid mines would be

p(-E/H)p(H) (1-{}.85) (0.01)
p(H/-E)

Figure 4 Sample inference network.

probabilistic knowledge. We also apply the concept of
FL to solve an inconsistent problem in the PIN .

This Section discusses Bayes's rule. PIN, updating
probability in PIN, and neocalculist approach. Use of
these techniques to construct a model for ~a mine
warfare is given in Section 4.

3.1 Bayes. Rule

--
--

P(-E)

0.1581

(1-{).0095)
=

3.2 Probabilistic Inference Networks

3.2.1 Appropriate Domains

Making a decision means choosing among
alternative courses of action with or without all the
relevant information and often with some uncertain
information as well. The need for a right decision
making is omnipresent in our society. For instance, as
far as ordinary people are concerned the need arises at
a simple level of choosing whether or not to step around
a puddle on a rainy- day, or at a complicated level of
choosing a treatment plan for a medical patient. For a
mathematician, he may choose a set of possible
directions in which to search for a manifestation.

3.2.2 Heuristical Elements of Inference Networks
Because of the incomplete knowledge of a

conditional probability distribution for various possible
states of evidence, the PIN cannot usually be developed
directly from Bayes' rule. A reasonable alternative is
to develop an hierarchy of 'fuzzy' assertions or
hypotheses by using substantiated hypotheses at level
! to infer hypotheses at level! + ! as indicated in Figs. 5
'lnd 6. In fact, Bayes' rule can be used directly to
substantiate ( establish probability values for) hypothesis
at level! from the observed evidence while 'fuzzy
inference rules' are used to obtain probabilities for other
hypotheses at level! + ! , given the evidence.

We assume that a commander wants to know the
probabilities that candidate countries have laid mines,
given evidence of the existence of a minefield. The
general knowledge that may be available include (i) the
probability that country-2 has laid min~s, regardless of
any evidence, (ii) the probability that a minefield exists,
given that country-2 has laid mines, and (iii) the
probability that a minefield exists, given that country-2
has not laid mines. In ((ddition, the information of an
existing minefield is available. Let H be the hypothesis
and E be the evidence listed below:

H = 'Country-2 has laid mines,' and
E = 'A minefield has been found.'

Thus we have ger:eral information:

(i) P(H) : probability that country-2 has laid mines,

(ii) p(E/H) : conditional probability that a minefield
is discovered, given that country-2 has laid mines,
and

(iii) p(E/-H): conditional probability that a minefield
is discovered, given that country-2 has not laid
mines; assuming a minefield exists.

Now, the value of p(H/E), which represents the

probability that country-2 has laid mines given that a
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Figure 5 Bayes' rule application.
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OF NATURE
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3.2.4 Design of Inference Networks

To design a PIN, the following basic steps are

required5:
(i) Determination of relevant inputs (i.e. , set of

possibre evidence) ,

(ii) Determination of states of nature or decision

alternatives,

(iii) Determination of intermediate assertions that
may be useful in the PIN .

(iv) Formulation of inference links. and

(v) Tuning the probabilities and/or the fuzzy inference
functions.

INTERMfDIA TE
EVIDENCES HYPOTHESES

~ /la::::::
---0,~ /~

--

/0

0.--

/.
.
.

'0...

c{..-
-, ---

0

~a'

UPDATE FIRST LEVEL
HYPOTHESES WITH

BArEs'RuLE

LWDATE SUBS£a.UENT
LEVELS USIfG

FUZZY IIf=ERENCE

For sea mine warfare, the relevant input is the

likelihood of the existence of a minefield. For the case

studied in Section 4, if country-1 is known to use

submarines to lay mines. then the other mine delivery

platforms, the ships or aircr.lft , m.ly be decl.lredrelevant

through correlation with the country-l. Relevancc

determination is non-trivial .md requires experts'

knowledge. The states of nature .ire learned from

experience or through training. In our case, it is a

decision of whether or not to deploy the MCM force.

The intermediate assertions include the country

involved in laying mines, the delivery platform used to

lay the mines, and their location and types.

Formulation of inference links may be done on the

basis of correlations among attributes. In order to

increase complexity of relationships we have5:
Figure 6. Heuristic inference system.

3.2.3 Fuzzy Inference Rules

(i)Fuzzy inference rules are functions for propagating
probability values5. The general form of such a function
IS: (ii)

(iii)

Conjunction-C occurs whenever both A and B

oc~ur,

Disjunction-C occurs whenever either A or B

occurs, and

Exclusive disjunction-either A or .B occurs but

not both.

f : (0,1)" -+ (0,1)

Thus, a fuzzy inference rule maps an n-tuple of
probabilities as arguments and into a single probability.
The truth table and two sets of inference rules for
propositional calculus are shown in Table 1.

F

T

T

T

T

T

F

T

F

T

T

F

F

F

T

F

T

F

T

T

T
F

F

F

F

F

T

Whenever the node(s) for the state of nature has
been connected (possibly via intermediate nodes) to the
inputs, the PIN topology has been constructed.
Probability updating functions still need to be chosen
to propagate the effects of inputs throughout the
network.

If Bayes' rule is to be used to compute the first-Ievel
inference in the network, then there is no need for fuzzy
inference rules at that level. But FL updating functions
(which are defined later) may be used at subsequent
levels to represent how information is to propagate

b l-a min(a,b) max(a,b) max(l-a,b) xor(a,b)
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(ii) MD(H,E) = y means 'The measure of increased

disbelief in the hypothesis H based on the evidence
E . Y '

, IS .

Recalling the subjective probability theory discussed
in Section 3.1, we may argue that the expert's
probability P(H) reflects his belief in H. Thus, 1-P(H)
can be viewed as an estimate of the expert's disbelief
regarding the truth of H. If p(H/E) is greater than P(H),
the observation of E increases the expert's belief in H
while decreasing his disbelief regarding the truth of H.
In fact, MB[H,E] is given by the following:

p(H/E) -P(H)

through these levels. Probability values associated with
various parts of the network need to be tuned to give
reasonable performance. Prior probabilities for states
of nature and intennediate assertions must be specified.
lpe conditional probabilities are also essential for
Bayesian updating, and they must be well-chosen to
give reasonable results. Statistical methods might be
employed to improve probability estimates.

MB(H,E) =
I-P(H)

On the other hand, if P(H/E) were less than P(H),
the observation of E would deCrease the expert's belief
in H while increasing his disbelief regarding the truth
of H. MD(H,E) is given by:

MD(H E) = P(H)-P(H/E)
, P(H)

Note that one piece of evidence cannot both favour and
disfavour a single hypothesis. If MB[H,E]>O then
MD(H,E) = 0. If MD(H,E»O then MB(H,E) = 0.

These definitions may be specified in terms of
conditional and a priori probabilities:

3.3 Updating in Inference Networks

In a PIN, the general format of an inference rule is :
the statement p(H/E) is interpreted 'if E, then H,'
where E is the evidence and H is the hypothesis. In
some cases, we may have multiple evidences El, E2,

, En where Ei is the ith piece of evidence bearing on
the hypothesis instead of the simple evidence E. Each
inference rule has a certain strength associated with it,
which is the power of the evidence to confirm the
hypothesis in that rule. We now discuss the meaning
for updating probabilities associated with hypothesis on
the basis of certainty in the sense that the evidence is
given. The 'subjective-Bayesian' updating rules have
proved to be useful in ES such as PROSPECfOR6
which will be used here.

In doing so, we adopt the mathematical model in
conjunction with 'odds likelihood formula 5.7. From the
odds likelihood formula, we considered uncertain
evidence and the dilemma for PIN to update the
probabilities. Finally, we obtain a practical
mathematical method for updating the probability for
an inference.

MB(H,E) =
max(l ,0) -P(H)

MD(H,E)

Note that here P(H) is used to denote a priori
probabilities. The CF is defined in terms of MB and
MDas:

CF(H,E) = MB(H,E) -MD(H,E).

In the next Section, we will.explain how the CF
value may reinforce our confidence in the fuzzy
inference model. Section 4 also simulates the PIN. The
network includes nodes, prior-probability, current-
probability, and arc expression. On the other hand, we
compute the CFs from the input probabilities which can
be used to confinn the current probability for each node
in the network. The CF approach may give the
commander an alternative view of the problem.

3.4 Neocalculist Approachl

A certainty factor (CF) is a number between -1 and
+ 1 that reflects the degree of belief in a hypothesis4
Positive CFs indicate there is evidence that the
hypothesis is valid. When CF= 1 t}- ~ hypothesis is known
to be correct. On the other hand, negative CFs indicate
that the evidence suggests that hypothesis is false. The
value of every clinical parameter is stored by MYCIN
along with an associated CF to indicate the situation
'belief. In MYCIN, CF can be computed by the two
measures: 'Belief (MB) and 'Disbelief (MD) are
defined as follows:

(i) MB(H,E) = X means 'The measure of increased

belief in the hypothesis H based on the evidence
E, is X'.
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4. INFERENCE NETWORK

To illustrate this technique for subjective-Bayesian
inference in sea mine warfare, we consider the problems
occasionally faced by the commander in war time.

From Section 1, the questions that concern the
commander in sea mine warfare are the following:

(i) Do minefields exist?

(ii) Which country will lay the mines?

(iii) What delivery platform will lay the mines?

(iv) Where are the mines?

(v) What kind of mines are they? and

(vi) Do we need to deploy MCM forces?

The answers to this kind of questions are uncertain,
and accordingly there must be some arbitrariness in any
method for them. The method presented here is one of
many possibilities; it embodies one of many possible
sets of heuristics for predicting whether or ",..t to deploy

the MCM force on the basis of pre-mission observations .

This section explores some heuristics for sea mine
warfare evaluation, discusses simulation results, and
comments on the neocalculist approach.

omitted. The nodes and interrelative arcs data are
inputted by the user into the C program.

Before actually using a sea area to carry out an
operational mission, the importance of taking into
consideration. the threat by other enemy's weapons,
e;g. , mines cannot afford to be neglected. 'Do
mine fields exist?' is the commander's major concern.
Normally, belligerents will know whether or not
minefields exist from the announcement of a minelayer
or the report of a mine investigator .

In Fig. 7, the main variable to be predicted is the
'deploy-MCM-force of mine warfare'. This comprises
such features as contact mine and induced mine. Since
it cannot be known for certain whether the sea area has
been mined, the inferences we have made about
whether or not to deploy the MCM force can be
probabilistic at best. Since it is difficult to know the
statistical relationships among these variables with any
degree of accuracy, the results are quite uncertain. All
we can say is that our system will incorporate the
judgment of an 'imaginary' expert.

Since the input variable, the minefield, can
conceivably affect our estiniate of the MCM force
deployment, we shall design a network in which the
various tactical concerns are inputs and the final node
corresponds to deploy~MCM-force. To simplify the
relationships between input and output to the point
where we can rationally model them, we introduce a
number of intermediate variables as shown in Fig. 7.
The rel,ationship between input and intermediates,
between intermediates and themselves, and between

4.1 Heuristics for Mine Warfare Evaluation

Figure 7 shows all the nodes and arCS: of the PIN for
our problem. The prior probabilities on nodes which
can be found in Appendices B and C (Ref. 7) are

Figure 7. Probabililtlc inference network tor mine wartare problem.
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can be found in Appendix D of Ref. 7. We will
concentrate on the current probability of each node at
the last line of each block. For example, in the
simulationTesult, current probability of node country-2
is as follo\\'s:

Inhibitive probability updating for node country-2
along arc:
(minefield 850.0 0.1502) with prior odds
0.0101010101010101. Prior and current probs of
evident ate 0.9 and 0.5.
Current probability of node country-2 is
0.006228832619601373.

The Tesults for the remaining nodes can also be found
in Appendix D of Ref. 7.

Table 2 summarises simulation results given in
Appendix D of Ref. 7. Analysing the results and
investigating the degree of confidence provides the
possible value for deploying the MCM forces.

In Table 2, the current probabilities of each node
taken from Appendix D of Ref. 7 are sorted in reverse
order of the inference network levels. From Fig. 7, a
comparison of the current probabilities of the nodes at
the same level results in the following conclusion.

Table 2. Summary 0! the simulation results

Node name Current probability of node

0.6568

0.7229

0.8970

0.7371

0.7694

0.4616

o.~

0.2896

0.3039

0.4667

0.3966

0.0062

0.7979

intermediates and output are easier to understand and
describe than the relationship from input directly to
output. In our case the input is a minefield, and we
introduce a set of three 'first intermediate variables' as
intermediates: country-l, country-2, and country-3.
These are predicted directly from the input variable. A
set of four 'second intermediate variables' are: warship,
civilian-ship, aircraft, and submarine. These are
predicted directly from the first intermediate variables.
A set of three 'third intermediate variables' are:
nearest-Iand-point, traffic-Iane, and coast. These are
predicted directly from the second intermediate
variables. A set of tWo~fourth intermediate variables'
are: contact mine and induced .,~ine. These are
predicted directly from the third intermediate variables.
The output is 'deploy-MCM-force', which is predicted
directly from the fourth intermediate variable.

4.2 Sbnul8tion Results

From an ES, we now exptain simulation steps shown
in Fig. 8. A C program7 mcm.c takes expert's inputs
for constructing PIN; nodes name, prior-probability and
current-probability for each node, arc expression
including the atoms name and the necessary conditions
p(EJH) and p(FJ-H) for computing sufficiency and
necessity. A sample usage session of mcm.c and its
corresponding output can be found in Appendices B
and C, respectively of Ref. 7. This output from mcm.c
would be the data segment, mcmdata.c, for the LISP
PIN.

For sintulation,we load the inference network mcm.l
into the LISP interpreter. A detailed simulation run

Deploy-MCM-force
Induced mine

Contact,mine
Coast
Traffic lane

Nearest-point-Iand
Warship
Aircraft

Civilianship
Submarine

Countiy-3
Country-2
Country-l

A ~ PRO6RAH tt~ WARFARE ((ONSlA.T) ...(..('

EXPERT

(GENERATE)

DATA SECTIOfI
FOR .~(...!'

'.(.DATA.!'

(LOAD) For this sea mine warfare scenario, the analysis
reveals a confidence degree of 0.6568 to suggest the
commander to deploy MCM forces, The MCM forces
may confront the threat of contact mine, or even the
threat of induced mine. Owing to the assumption of
this task, the enemy may possibly, first lay mines in the
traffic lane of our fleet; secondly, in the coast; and
finally at a nearest land point that is an aid to navigation.
The enemy will probably use in descending order

~

~

A
IANAlYSEI ..WARFARE

EXPERT

I SIU.: TOf -

I R£~TS

Fi&ure 8. Procedure to simulate the prO&rams.

313



DEF SCI J, VOL 44, NO 4, ocrOBER 1994

warships, civilian ships and finally airplanes to lay
mines. Country-l may consider using submarines to lay
mines, because,it is safer. The countries that might lay
mines are country-l, country-3, and country-2, in that
order. However, to defend herself, country-2's
probability of laying mines increases. If there are mines
in the traffic lane and neither country-l nor country-3
laid the mines, then either country-2 laid them or they
are residual mines from the past. Therefore, to avoid
being hit by mines, our fleets are strictly prohibited
from entering the waters until they are cleaned up by
our MCM forces.

value (1.0) enhances the detennination obtained by

Tanimoto's method (original value of 0.6568) of the

commander to deploy the MCM forces. In other words,

CF and Tanimoto's methods could be treated as

complementary.

Table 3. Summary of the certainty ractor

Evidences L Jgic Condition Certainty Facto~Hypotheses

--0.9693

0. 8946

--0.2958

0.7297

--0.96.50

0.9980

0.7059

--0.9764

--0.4444

--o.m9

0.9301

0.9980

--0.9540

--0.9964

--0.6667

Independent

Independent

Independent

Independent

Independent

Independent

Independent

Independent

Independent

Independent

Independent

Independent

Independent

Independent

lnuependent

4.3 Comments on the Neocalculist Approach

As mentioned in Section 3, CEcan be computed by
the definition of Bayes' rule, MB, MD, and CF after
we input the necessary probabilities. The results of the
CF for the relationship between H and E in Fig. 7 are
given in Table 3.

Country-l
Country-2
Country-3
Submarine

Civilian-ship

Aircraft

Warship

Nearest-

point-land
Nearest.

point-land

Traffic-lane

Coast

Coast

Contact mine
Contact mine

Induced mine
Induced mine

Deploy-MCM-
force

Disjunctive O .8077

0.9982Disjunctive

0.6774
~.2857

Independent

Independent

Disjunctive 0.9833

Independent 0.9862

The notation CF{H,E) = X is used to represent the CF

for the hypothesis H based upon evidence E. For
example, the last hypothesis and evidences in Table 3
are expressed as:

H = To deploy the MCM force,
El = Contact mine
E2 = Induced mine

Thus, CF{H,El VE2) = 1.0, this sample hypothesis

above may be qualified as follows:

CF{H,EIVE2)=1.0 : There is definite (1.0) CF to
deploy the MCM forces.

The rest of the CF{H,E) value is listed in Appendix E
of Ref. 7.

From the above discussion, we conclude that
Tanimoto's methods is consistent with MYCIN's
method4: both methods resolve the inconsistency by the
piecewise linear equations for updating the probabilities
instead of using a linear equation. We also show that
MYCIN and Tanimoto's method are different:
Tanimoto computes the current probability at each node
while MYCIN computes the value of CFfor each node.
For example, Table 2 has a degree of confidence of
0.6568 to suggest the commander to deploy MCM forces
by the current probability of the deploy-MCM-force
node. From Table 3, CF(H,EIVE2) = 1.0 means that

it is defmite (1.0) to deploy the MCM forces based upon
the disjunctive evidence: sea mines are contact mines
(El) or the mines are induced mines (E2). This CF

O .8644Disjunctive

Independent 0. 8077

0.7825Disjunctive

Disjunctive 1.0

s. CONCLUSION

In this paper, we have proposed a probabilistic
inference network in DSS to reach decisions regarding
mine countermeasures. Implemented in LISP and C
computer languages, this intelligent sea mine warfare
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Minefield
Minefield
Minefield

Country-!
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Country-2
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Warship
Submarine
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Civilianship
or

Warship
or

Aircraft
Submarine

Aircraft
Civilian ship
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Warship
Trafficlane
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Coast

Trafficlane

Nearest-point
-land

or
Coast

Contact mine
or

Induced mine
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DSS is capable of assisting the commander in making
efficient and accurate decisions in sea mine warfare even
under uncertain information. For sea mine warfare
scenarios, based on the Tanimoto's method of analysis,
a degree of confidence of 0.6568 suggested the
commander to deploy MCM forces. On the other hand~
CF= 1.0 indicated the certainty of deploying the MCM
forces. In other words, CF and Tanimoto's method
could be treated as complementary .

3.
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5

6.
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