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Optimization Problem of a Sea-vehicle Entry into Water
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ABSTRACT

For a vehicle diving into the sea, the variation of velocity with horizontal distance covered was
studied, the conditions being that the vehicle requires minimum time and that the horizontal distance
is fixed. The variation of the vehicle's trajectory angle and time versus depth was also investigated.
The variational problem ma~es use of the isoperimetric condition. The second-otder differential
equation was solved by the Runge-Kutta-Nystrom. method and the isoperimetric condition by

Simpson's rule.

velocity of the cylinder, then the equation of motion is
d/dl «I/2) MU2 + (I/2) M'U2) = XV. If, on the other

hand, the sea-vehicle is assumed to be a bathyscaphe,
which is spherical, then the liquid increases the inertia
of the sphere by half of the mass of the liquid displaced,
i.e. by M'/2, where M' equals (4/3) 7ta3 and a is the
radius of the sphere. Thus, if V is the velocity of the
sphere, then the equation of motion can be written as
d/dl «I/2) MV2 + (I/4) M'V2) = XV. Incidentally, in

aerodynamic studies, the effect of added mass is usually
very small and is therefore neglected .

2. EQUA TIONS OF MOTION

(2)(m+m') v()=-

3)-v sip Oz

(4)v cas (}x=

I. INTRODUCTION

Several workers have studied the entry of a space
vehicle into a planetary atmosphere. Marinescu I studied

the case of a vehicle entering the Earth's atmosphere.

which required minimum time to descend from a higher

altitude to a lower one2, given a specified horizontal

distance. Since the methods adopted in the study of

submarine problems rely heavily on, and are almost

identical to, those used by aerodynamicists, it is

proposed to apply the above aspect of re-entry problem

to an underwater vehicle as it plunges from one depth

to another. In this paper, 'vehicle' essentially refers to

a submarine though a submersible or a torpedo could

also come under its purview.

When a body moves through a fluid it appears to

have a greater mass than its actual mass23. The effect

of added mass has therefore to be considered while

analysing motion in an underwater environment. Added

masses for regular solids, like cylinder or a sphere, have

been dealt with in treatises on classical hydrodynamics3.
If the sea-vehicle is assumed to be a submarine, which

is a right circular cylinder, then the presence of the

liquid increases the effective inertia of the cylinder by
an amount M' =7ra2 p, where M' is the amount of the

liquid displaced by the cylinder (of unit length); a, its

radius and, p the density of the liquid. Thus, if X is the

extraneous force parallel to the axis of x and U. the
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where m is the mass of the diving vehicle; m' , added

mass; V, velocity of vehicle; S, reference area; Cx, drag
coefficient; v, volume of the vehicle; g, acceleration

due to gravity (assumed constant); (}, inclination of the

trajectory with the horizontal at instant of time t; Cz,

lift coefficient and the dot over V, (}, z and x represents

differentiation with respect to time.

z.
I

J= (9)Hdz
zf

where
1/2

aV2

)2
1-From Eqns (1) and (3), we get

vv +gb

ayJ

H=
+A -

(10)(5)
V2

g-sin () = ~ gb)

Making use of Euler's equation
dV

dz

SCxP

2(m + m')

m-Pv

mtm'
, and V =,b=where a =

=0 (11)dz iJV'

From Eqns (3) and (4), we get
one gets the differential equation after simplification

dx

dz
(6)=-cot8

V " ---

--

..1. a2YS

(7) +x=
a2 V7

gV--

vV' + gb

a2 V 6

(3 gb VV' + V2V'2 + 2 g2b2) (W'2 + gbV')
--+

where z; is the initial depth and z, the final depth

(positive in the upward direction).

For a vehicle which requires minimum time one has

to find the minimum of the functional
a2 V 6

(12)

z;

(8)
dzt=

The variational problem now requires that the

minimum of the functional (8) be determined given the

isoperimetric condition (7).

The curve which achieves the extremum of the

functional (8) is an extremum of the auxiliary

functional4. Figure I. Geometry or the sea-entering vehicle.
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3. NUMERICAL SOLUTION

The second-order differential equation was
numerically integrated by the method of
Runge-Kutta-Nystrom. For ~ = 50 m/s, a = 0.002,
b = 0.1, Z; = 1000 m and 7r = 0 m the variation of

velocity with depth is sqown in Fig. 2 for 1 = 500 m and

600 m. The velocity decreases rapidly with depth initially

but later, gradually.

Equation ('1) was integrated by Simpson's Rule and

the variation of the vehicle's depth with horizontal
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Figure 2. Variation or velocity, horizontal distance, trajectory angle and time with depth.

253

ANGlE g, deg

III I I I

0 10 20 30 40 50

TIME t. s



DEF SCI J, VOL 44, NO 3, JULY 1994

distance travelled is shown in Fig. 2 for 1 = 500 m and

600 m. Here the tendency for rapid decrease of depth
with horizontal distance covered is evident only later .
As the vehicle sinks, its velocity decreases. This is
essentially due to the choice of the con~tants which
make the drag term on the RHS of Eqn (1) to dC"Dinate
over the gravity term. If the initial velocity is considered
as small, then the gravity term will dominate and the

vehicle will sink with increasing speed.

Figure 2 shows the variation of the trajectory angle
from an initial horizontal entry angle of 300 to about
87° for 1 = 500 m. For 1 = 6on m, for the same horizontal

angle, the final angle is about 86°.

Figure 2 also depicts the time required by the vehicle
to go from one depth to another. For 1 = 500 and 600 m

the variation is almost linear .

The effect of).. on 1 is shown .in Fig. 3. Since for
higher values of).. there is little change in 1, It is
represented on a logarithmic scale. Figure 3 also shows
that varying).. cannot give all conceivable values of 1;
particularly, values below 400 m are not feasible.

4. DISCUSSION AND CONCLUSIONS

The solution of Eqn (12) provides the minimum of
the functioQal (8) because the Legendre's condition of
a weak minimum Hv'v' > 0 is satisfied. This condition
is valid when;. is negative. If;. is positive, then
Hv'v' < 0; thus one gets a maxima instead of a minima.
The importance;. of is clear at this stage.

We have chosen the constants arbitrarily. It would
be better if realistic data are used. The main hurdle in
such a case is that a literature void exists owing to the
tendency of researchers to submit their findings to
inaccessible technical journals or to even more elusive
defence reports. We however, feel that the efficacy of
the analysis is not impaired because of the choice of

the constants.

The minimum time problem cannot be solved by
taking any arbitrary values; rather one has to exercise
caution in using the values. For example, in the above
problem, the solution for ]=100 m (say) cannot be
obtained because of the fact that the initial angle (}; has
been considered as 30°. Probably, a very steep angle is
required to realise the objective and before making a
choice its physical validity needs to be examined. This
argumentiS'valid, perhaps to a greater extent, for other

parameters.
Besides minimising the time, the distance travelled,

s, can also be minimised. In that case the LHS of Eqns
(1) to (4) would be (m + m') V dV/ds, {m + m') y2
d(}lds; V dzlds and V dxlds, respectively. The differential
Eqn (12) would ne<;essarily have to be modified. We
propose to deal with actual systems and realistic

constants in our future study.

The numerical calculations were done on a DCM

T ANDY 3000 PC at ISSA.
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