
Defence Science Journal, Vol44, No 2,. April 1994, pp 119-129

@ 1994, DESIDOC

An Aid for Mechanization of Flight Control Systems

on Micro-computers

T. V. Rama Murthy

National Aerospace Laboratories, Bangalore-560 017

and

V. Seshadri

Indian Institute of Technology, Madras-600 036

ABSTRACT

This paper deals with the development of an automated aid to translate the block diagram of
flight control system (FCS) to assembly level code. By defining a suitable syntax and by building a
matrix of inputs and outputs of the blocks. it becomes easy to translate the block diagram. It is also
shown how the process of fault detection can be automated. The results obtained through the

automated aid have been validated by ORACL ribrary using the block diagram of Cstar controller
of F8 aircraft.

2. DEVELOPMENTS IN ACTIVE CONTROL

TECHNOLOGY

Fly-by-wire. electrical signaling and control

configured vehicles (CCV) have been the major

milestone~ in the development of active control

technology (Acr). The applications of Acr have been
mainly in the following areas: (i) artificial stability, (ii)

ride and handling quality improvements, (iii) load

alleviation, (iv) flutter speed enhancement, (v) centre
of gravity control, (vi) envelope limiting, (vii) fatigue

reduction and (viii) pilot relief-autopilot functions.

NOMENCLATURE

q, Nz, t5c aircraft states

<>c elevator command

S signature camberra metric

S*k geometric moving average of S

T F execution time of control law

AR .BR .C R ,DR state. space specifications of regulator

Ap.Bp. Cp.Dp state space specifications of plant

INTRODUCTION

Although attempts have been made to translate the
nlock diagrams of flight control systems to assembly

level code. it appears that issues of detection of faults

like sensor faults. hardware/software faults and self-test

are not directly addressed as a part of computer-aided

tools. An earlier work Ion the translator has been

improved by (i) implementing and verifying
fault-detection algorithms,(ii) validating the tool using

ORACL library. and (iii) debugging aid has been made

easier by employing Turbopascal >=5.0.

2.1 Implementation Aspects of ACT

The phenomenal growth in the area of VLSI

architecture and rel~ted devices has made possible the

execution of control laws through digital means.

However, for reliability, one has to go in for redundant

computing elements with self-test capabilities. The
software of FCS may be divided generally into. three

modules- (i) executive software including 110 and flight

test constituting about 25 per cent, (ii) control law

Received 14 September 1992, revised

119

DEF SCI J, VOL 44, NO 2, APRIL 1994

of critical gains in air-data computation. Servo
monitoring is performed by comparing actual servo
output against digital models. Input/output circuitry
check is done by feeding known constants to ND
converter and checking the code. Similarly, a known
digital code is fed to DAC and its analog value checked.
CPU monitoring is performed by self-test. All known
instructions and control crucial to flight safety are
checked. Dynamic computation monitoring is
performed by an external independent analog element
in some cases. Watchdog timer checks whether the
computations are completed within the specified time
limits. Memory monitoring is performed by checking,
(i) all words accessed from memory for parity, (ii)
periodic checksums of critical instructions, constants
and scratch pad locations and (iii) program flow through
critical instructions.

computation including gain schedule and logic (about

35%) and (iii) fault-rolerance including redundancy
management, self-test, etc. (about 40 per cent)2.

The executive software deals with the overall
supervjsion of the system. The complete software cycle
called 1 major cycle consists of n minor cycles, each
minor cycle is typically 10 or 20 ms to meet the real-time
requirements. The executive initiates the minor cycle
operations from the table of computations. It also
communicates with the pilot for auto-pilot and other
outerloop options and for status reporting.

There are many benefits due to CCV
implementation. For example, in F-8 aircraft, control
laws have been designed for improved handling

qualities, envelope limiting, gust alleviation, capability
to fly with reduced static stability in lateral axis
improved dutch roll damping, turn coordination3, etc.
The outerloop modes are: attitude hold, altitude hold,
mach hold; auto-pilot functions like approacMand, go
around and take o~ .The executive/utility sets up the
computation table depending on options selected by the
pilot. Often, the controller has to get gain settings based
on function of mach number and/or dynamic pressure
or mach/altitude grid. Hence gain scheduling task will
also find entry in minor cycle computation table. 'All
tasks which need processing rates of 50,25, 12.5-;6.25
Hz will be initiated once in each, alternate, once in 4
and once in 8 minor cycles respectively assuming minor

cycle of 20 ms.

3. NEED FOR AUTOMATED AID

It is reported that assembly level programs have
been used for implementing the flight control programs
of modem class of fighter aircraft like FIA 18, F-8 and
JA-37. Real-time considerations have forced the
designers to write assembly level programs to translate
flight control laws with the attendant poor productivity
and inflexibility in incorporating changes in control
laws. Often, hard debugging effort is required to make
the assembly level programs. The designer has to keep
track of interconnection of blocks to obtain the exact
word length of variables. Some errors due to shorter
word length of variables, wrong entries, inadequate
delay operation of variables in filters may go unnoticed
or be corrected after many run-time attempts.

I,
,
t

t,
~

I

Fault-detection measures like sensor failures, timing
faults and value faults are important in Fts software
design. It is desirable to automate these processes. Since
thf' assembly level program is generated manually, it is
time consuming to design self-test of the instruction set
of the processor .

To meet these requirements, the automated aid has
been designed and it works in the environment of IBM
PC/MSDOS, MASM assembler, LINK and
Turbopascal ~ 5.0. The automated aid generates
reliable codes at optimum assembly level with FCS
specifications being expressed in easy-to-use high level
syntax. Any hardware/software fault usually manifests
in terms of value fault and/or timing fault.

2.2 Fault Detection Measures

Redundancy management essentially deals with
failure monitoring, fault isolation and voting
mechanism. Reconfiguration of a failed element may
take place by analytic redundancy technique or ignored
by continuation with remaining redundant units. The
following form part of pre-flight tests: limit cycle tests,

structural resonance tests, frequency response
tests,electromagnetic interference tests (including

lightning tests).
The self-test and in-t1ight monitoring capability

required depends entirely on its criticality and assumes
major importance and the various techniql'~s that are

used are given elsewhere6.

Sensor monitoring is done through: (i) comparison
monitoring of feedback sensor signals, (ii) software
limiting of outerloop sensor signals and (iii) monitoring

l20

j

RAMA MURTH.Y & SESHADRI: FLIGHT CONTROL SYSTEMS MICRO-COMPUTERS

It is known that impo.rtant instructions are exercised
as a part of self-test routine in in-flight monitoring. It
will be very easy to select the set of basic instructions
from that used by the automated aid. The code-segment
part is generated using only the predefined set of
macros. From the macro-bodies, a set of basic
instructions which can express the complete macro-set
is selected. A program is then exercised which makes
use of these basic instructions. By comparing the results
obtained with the expected values, it is possible to flag
any error that occurs while running the self-test.

the blocks. For example, an amplifier may be defined

by a three-character symbol as shown below:

<AMPLIFIER> : : = A <SI ALPHANUM><ALPHA

=NUM>, the character S denotes a summing block,

where gains are :t I. Other blocks are defined in a similar

way.

4. PARSER

4.1 Syntax Design

Typical FCS block diagrams have been studied to
arrive at a suitable syntax for representing the blocks.
Each block is defined in terms of a set or subset of
input(s), output, constants, control variables, etc. The
following syntactic entities are defined to specify the
various blocks :

<ALPHA>::=AIBIC..IZ NUMS::=0/1/2/3../9

<ALPHANUM> : : = ALPHAINUMS

<GAJN>::=G<OUtALPHANUM>
<ALPHANUM> , the character C indicates a
controllable gain-block where output is expressed in
terms ,of variables Y, X as (YI.X); U indicates an
adaptive g;;lin-block where gain is obtained through

interpolation.
<FIL TER> : : = F< Ut ALPHANUM>

<ALPHANUM> , where U indicates an adaptive!.filter
block where the filter coefficients are obtained through

interpolation.
<SWITCH> : : = S<ALPHANUM>

<ALPHANUM>; this block is similar to a single-pole,
multi-throw switch.

<QUANnzE>::=Q<XlL> <ALPHANUM>
:X,L indicate AID block and D/A block respectively.

<DECISION>: : = D<Ot ALPHANUM>

<ALPHANUM> , where O indicates an observer
block, (see Sec 6 also).

Now, an amplifier may be completely specified as:

<AMP> : : = <AMPLIFIER> <SYMBOL> <REALN

UMS><SYMBOL> representing block-name, inputs,
gain-values .and ouput. Other blocks are defined in a
similar way.

<SYMBOL>:: =<ALPHA> f~ [ALPHANUM]

Dialogue procedures have been developed so that

the specifications are entered in the required sequence.

The sequence of specification entry is determined from

the block selected by the user and hence the syntax

check can be made based on the definitions given in the

preceding paragraphs. Procedures to handle

SYMBOL(S), REALNUM(S), BLOCK have been

designed as a part of parsing algorithms, which also

check and warn the entry of duplicate block-names and

output symbols.

<FRACfION>::= <INTEGER>
<INTEGER>::=<NUMS>

f~ [<NOMS>]

<REALNUMS>: : = <REALNUM>

<SYMBOLS> : : = <SYMBOL> 4.2 Adaptive Block

The control law is generally obtained by using

optimization techniques at typical flight conditions

spanning the flight envelope. As a result, at any other

flight condition, the scheduling calls for single or double

I~4 [, <SYMBOL>

One can take advantage of limited number of blocks

that are required and select certain alphabets to denote

2

The operator f~ specifies that all syntax items
enclosed by square brackets are to be repeated O or m
number of times (ms5)7. Syntax to handle the
numerical constants are defined as follows:

<REALNUM> : : =<INTEGER><FRACfION>/
<FRACfION>

I>EF S('I J. VOI. 44, NO 2. APRIL 11}94

aggregate array INPUTS by invoking a procedure
INSERT. INSERT, in turn, invokes a function OKIN
passing each entity as an argument. If OKIN fin~ the
entity in the an:ay INPUTS, then it returns false; else
it returns true. If OKIN returns a true, then INSERT

updates the array INPUTS with the entity I
An array FILTORD of integer contains the length

of the entity at the index corresponding to same entity
in the array INPUTS. Whenever OKIN returns a false,
it also gives the iru:lex of the array where the entity is
stored. The length of the variable gets updated, if the
order of the current filter to which it is connected is
more. By this procedure, it is possible to keep track of
the route of the variable so that its maximum length

can be determined exactly.

~

5.3 Constants in Data-segment

Constants like filter coefficients, filter order ,
amplifier gains, etc. will have to be defined in the
data-segment. The block-name being unique is used by
prefixing it to these constants so that duplication errors
are avoided. The filter coefficients 8i' bi of filter FOO
are thus defined as FOO NUMR COEF and--
FOO -DENMR -COEF. This technique is followed

while defining other constants.

A procedure III the translator declares all the
variables in the data-segment with the correct size based
on the contents of the array INPUTS and FILTORD.

I

interpolations. The interpolation formulae8 are used to
estimate the parameters. (gain values or fliter
coefficients) for any given value of the grid variable(s).
There are two assembly procedures INTRPLl and
INTRPL2 for estimating the interpolated values b~sed
on single of double grids. The scheduled values y I' .., Yj
..are assumed to be stored in ROM in short-real format
at discrete values XL' XL +XND' XL +2XND ...

XL + iXND ..of selected parameter like dynamic pressure
or mach-altitude grid pair. In adaptive gain or filter
blocks, the gain value or the filter coefficients are to be
interpolated as a function of grid variable(s) X (or X, Y) .
The adaptive block is mechanized by obtaining the

following information: single (or double) interpolation
scheme, grid variables, the starting value of X-axis grid
XL (or X and Yaxes grids XL' YL), the incremental
values of X-axis grid XND (XND' Y ND); the total number
of bytes/coefficient N and filter order m are required in
case of filter block; the total number of X-axis grid

points is required in case of double-grid gain-blocks.
These details enable the calculation of gain value or
filter coefficients based on any given value of X (or
X,Y). The automated aid handles the scheduling of
blocks by defining the syntax for these blocks in terms of

the above entities.

5. CODE GENERAnoN

The code generator generates 8086/8U87
processor-based (i) data-segment where constants and
variables with correct size and type are declared and (ii)
code-segment where the code for the functional part of

each block is generated.

5.1 Filter Discretization

5.4 Code-segment Generation
In code-segment, the macro-calls are generated in

the order corresponding to each block specified in the
block diagram. The inputs, outputs of filters are updated
before the termination of the translated. assembly
program. The macros are all predefined and the
macro-assemblerlo takes care of differing 1engths of the
passed arguments by using EXITM directive. Table L
lists the macros necessary to generate the codes for the
functional part of each block. The automated aid

generates the macro-call statement with-the appropriate
arguments collected during the parsing stage. The F8
Cstar block diagram, sketched in Fig. 1 and Fig. 2(a),
shows its specification file EXP .DA T. Now, the
automated aid is invoked by calling its command file
AA in DOS environment. AA generates the
code-segment part in AFCS.ASM and data part with
initialization in AFCS.DSG. The data part and the

As the controller is implemented in digital domain,
the filter blocks use continuous to discrete-domain
transformation. Pre-warped Tustin transformation of s
to Z domain has been used due to its valid cascaded
property and widespread usage in FCS3.9. A procedure
in the automated aid package obtains digital filter
coefficients a;, bj from s-plane transfer function, viz.
H(s) = 1:;=0 Aj s~1:':' =0 Bj sjand m >n in general and
~, Bj are real. The Tustin transformation s <->
2(Z-I)/(KT(Z+ 1» where T = sampling interval and K
= Pre-warping correction factor, gives output Y(n1) as

Y(n1) = 1:':' =~ a; ~(n-I)T -1:':' =I bj ~(n-I)T.

5.2 Algorithms for Obtaining the Size of the Variable

As each block is parsed, the entities -the inputs,
outputs and control variables -are entered into an

122

!

RAMA MURTHY & SESHADRI: FLIGHT CONTROL SYSTEMS MICRO-COMPUTERS

predefined macros are all integrated by using an
'include' directive. Parts of these files are shown in Fig.

2(b).

6. FAULT DETECTION MEASURES

6.1 Observers for Handling Sensor Failures

Analytic redundancy based on observer has been
studied for reconstruction of flight control sensors in
aircraftll. In this paper, it is shown how the automated
aid can handle the sensor failure using observers.

A short-period approximation of longitudinal

dynamics of F-8 aircraft has been taken as the plant

for the design of the observer. The signature Camberra

metric12 is filtered by a geometric moving average filter .

If the system and observ~r states are X and X, then

the difference between the outputs of the system and

observer will be qx-X), so that the observer is given by

x = Ax (t)+ BU(t) + L[Y(t) -C)(t)]

= (A-LCx(t)+ BU(t) + LY(t) .

Where X= [qNzJe]T (1)

where L is chosen such that (A-LC) has stable eigen

values placed further away from the eigen values of A.

The poles of (A-LC) are placed at -37.5 ::t: 137 and

-37.5. The values of matrices A and B at flight condition
(altitude of 20,000 ft and mach no = 0.6T) are given

in the following after suitable transformation of the axis.
.-,

A= 1-0.616 0.008705 -12.85 I B = I 0

728.1 -1.05 -1362 1.362+:
I0 0 -12.5 1.25+1

lOO]

Table I. List of MACROS and their functions

Macro Function

X(n-l)<-X(n-i+ 1);= OtoN

(2)

c= '3)

Y(n)=! a;X(n-/)-f b;Y(n-/),.0 ,1

UP

UPDATE

AMPL

SUMPN

GAIN

GAINC

OBS

CPM

FlLTER(ORDER= I)
(ORDER = 2)

(ORDER < 6)

The output q is assumed to be available through

redundant channels. L is found to be

[98.33-584400 146.1]T (4)
:k(s) = H(s)U(s) + G(s)Y(s), where H(s) = (sI-

A+ LC)-I B and G(s) = (sI- A + LC)-I L and then

the Tustin equivalent of each of the states of X is

obtained. By using ORACLS1J and data given by Eqns

2 to 4, Nz(s) is given by

Similar to single -pole .

double-throw switch

Single-grid interpolation

SWITCH

SCH 1 (1 GRID)
GAIN BLOCK
FILTER BLOCK

SCH 2 (2 GIRDS)
GAIN BLOCK
FIL TER BLOCK

Double-grid interpolation

Nz(5) = H(5) t5c (5) + G(5)q(5) (5)

where

H(5)= 1362[;+98.9725-70881]/(~+ 112.5;+45.7095+

64730)

G(5)=-595500(;+ 13.335+8. 716)/(sl+ 112.5;+

457095+64730 J

2-+

6.2 Nz Sensor Failure Detection

For detecting ~ sensor f~ilure, the signature
Camberra metric. S = (Nz -Nzsense)/(Nz + Nzsense)

is used. A fixed weight Wis given to current observation

of S and complementary weight (1 -W) is given to

geometric average of all the subsequent observations.

Then geometric average at kth sampling instant is given
by S*K = W SK + (1-W) S*K-JFigure I Block diagram or F-S Cstar controller .

123

Y= J:a. X,"--+ reati' ' -.

Y=J:a.X.,a=:!:1;m~12i' , ,

GAIN BLOCK, y = gx

Y=(mld)x

Observer
Value-fault detection

DEF SCI J, VOL 44, NO 2, APRIL 1994

GOO
FOO
FO1
GO1
FO2
FO3
AS1
FO4
FO5
AS2
FO6
FO7
FOB

Q; 324; QA;
QA; 0;75; 1; 0;4167; 1; Q1 ;
NZAC . 1 . 0 .104175.0.6667.1.NZ1.

.., .~ , , ,

STICK;0..729;S1;
STICK;55;1;13;349;55;S2;
S2 . 0 . 0 71.0.1.S3.

.--' , ...

S 1. S3 .1.1'S4.
, , , ; ,

S4;0;4791;0;0;4167;1;S5;
S2;0;4791;1;0;4167;1 ;S6;
Q 1 . NZ 1. S 5 .S6 .1.1.1.1 .TOT., , , , , , , ..
TOT;O; 0005.15; 0; 001185; 1,0; DELC;
DELC;-172.5,-168.7;1 ,14.17,27.81 ,87.37;Q;
DELC;1362.5,839;28;-117100;1.14;17;27;81;
87~37;NZAC;
NZAC . Q .-1.-324.CSTAR.,AOO

FIgure 2(8). The specification rIle exp.dat corresponding to the block diagram sketched in Fig. 1

INCLUDE AFCS MAC
SX:

.GAIN Q,QA,GOO
@FILTER 1;QA,Q1;FOO,1

8FILTER 1,NZAC~NZ1~FO1,2
@GAIN STICK~S1,GO1
@FILTER 1,STICK,S2,FO2,2
@FILTER 1,S2,&3,FO3,1
@SUMPN S4,2,S1,1,S3,1
@FILTER 1,S4,S5,FO4,1
@FILTER 1,S2,S6,FO5,1
@SUMPN TOT, 4, Q1 , 1 , NZ 1 , 1 .S5 , 1 , S6 , 1

@FILTER 1,TOT,DELC,FO6,1
@FILTER 1,DELC,Q,FO7,3
@FILTER 1,DELC,NZAC,FO8\3
@AMPL AOO,CSTAR,2,NZAC,Q
@PREPUPDATE 4, 4,NZAC,NZ1,STICK,S2
@PREPUPDATE 5, 2,Q,DELC
@UP 7,QA,2,Q1,2,S3,2,S4,2,S5,2,S6,2,TOT,2

INCLUDE AFCS.EPI

The code-segment AFCS.ASM generated by the automated-aid

7339037>-1

0.0018211,
0.8792203>

0.0009105>

0.0097527,
0.7645274>

-7.0629823>

0.0048763>

@DSG GOO-GAIN,< 324.000000>
@DSG FOO-NUMR-COEF,< 1.7810149,
@DSG FOO-DENMR-COEF,< -0.9528888>
@DSG F01-NUMR-COEF,< 0.0009105,
@DSG F01-DENMR-COEF,< -1.8755781,
@DSG G01-GAIN,< 0.729000>

@DSG F02-NUMR-COEF,< 0.0048763,
@DSG F02-DENMR-COEF,< -1.7450220,
@DSG F03-NUMR-COEF,~ 7.0629823,
@DSG F03-DENMR-COEF,< 1.0000000>

124 (Contd)

J

RAMA MURniY & SESHADRI: FLIGHT CONTROL SYSTEMS MICRO-COMPUTERS

@DSG F04-NUMR-COEF,< 1.1226650,
@DSG F04-DENMR-CQEF,< -0.9528888>
@DSG F05-NUMR-COEF,< 1.1462206,
@DSG F05-DENMR-COEF,< -0.9528888>
@DSG F06-NUMR-COEF,< 0.0005269,
@DSG F06-DENMR-COEF,< -1.0000000>
@DSG F07-NUMR-COEF,< -0.0153689,
@DSG F07-DENMR-COEF,< -2.7409867,
@DSGW F07-NUMR-TOT,< 4>
~DSG F08-NUMR-COEF,< 11.9285535,
@DSG F08-DENMR-COEF,< -2.7409867,
@DSGW F08-NUMR-TOT,< 4>
@DSG AOO-GAIN,< -1.000000, .

@DSG Q,<O.O,O.O,O.O,O.O,O.O>
@DSG QA,<O.OJO.OJO.O>
@DSG Q1,<0.0,0.0,0.0>
.DSG NZAC,<O.O,O.O,O.O,O.O>
@DSG NZ1,<0.0,0.OJO.0,0.0>
@DSG STICK,<10.0,0.0,0.0,0.0>
@DSG S1,<0.0>
@DSG S2,<0.0,0.0,0.OJO.0)
@DSG S3,<0.0,0.0,0.0>
@DSG S4J<0.0,0.0,0.0>
@DSG S5,<0.OJO.0,0.0>
@DSG S6,<0.0,0.0,0.0>
@DSG TOT,<O.O,O.O,O.O>
@DSG DElCJ<O.O,O.O,O.O,O.O,O.O>
@DSG CSTAR,<O.O>

.1226650>

.0991094>

-0.0005031>

-0.0156682,
2.4927177,

0.0147704,
-0.7511111 >

0.0150697>

-12.1958828,
2.4927177,

-12.3439784,
-0.7511111>

1 .7804579>

-324.000000

data-segment AFCS.DSG generated by the automated-aid

Figure 2(b). The code-and data-segement statements generated by the automated aid.

6.3 Timing-fault, Value-fault and Self-test

The automated aid, apart from translating the FCS
block diagram, enables detection of two important types
of faults as a part of in-flight monitoring, viz. value
faults and timing faults. This is done through a set of
pre-defined macros. It is possible to obtain a minimal
instruction set by which one can express the complete
set of predefined macros. This way of organizing the
translator enables easy design of processor self-test.

T~e geometric moving average process is considered
equivalent to operation of filter where the output is

given by
y(n) = Wx(n) + (1- W) y(n-1). The transfer function

of the equivalent analog filter is { s + (2/1) } / { (s (2 W)/ W)
(2/1)}. The observer forms a subclass of the decision
block specified as DO<ALPHANUM> .The full
syntax of the observer block is so defined to enable
extraction of control input, normal sensor signal,
back-up signal, output sign~l, limits for switching to
analytical value, and time after which the observer is
to be used. The time factor is to ward off the false alarm
which may be present either during the initial asymptotic
region or whenever a new model of the plant is inserted
due to change in the flight condition. This parameter
may not be required if interpolation of the observer can
be done at an acceptable rate.

6.3.1 Timing-fault Detection

If the execution time lies between a maximum of

tmax and a minimum of tmin and the current sample of

the execution time of the given control law is Tf then

if (tmin <Tf <tmax) then timing fault is false; else timing

fault is true.

125

DEF SCI J, VOL 44, NO 2, APRIL 1994

Determination of tmin and tmax has to be carried out
based on macros defin~d for various blocks. Since the
macrocall contains relevant information, it will be easy
to obtain the execution time by the translator itself.
Table 2 gives the list of macros th~t hav-e been used
and the execution time in terms of number of clock
cycles of 8086/8087 pair. The translator obtains the total
execution time in terms of number of clock cycles. The
execution time found out could set a watch dog timer .
Verification of timing-fault detection has been done by
an interrupt service routine which makes use of timer

ticks available on IBM PC.

entities: control signal, signal to be switched if upper
limit is crossed, signal to be switched if lower limit is
crossed, output signal and upper and lower limits, V max

and Vmin.

6.3.3 Instruction Set Self-test

The instruction set self-test is often monitored
in-flight6. It will be possible to obtain the basic set
(Fig. 3) which has been used for defining the macros.
An efficient test-program containing the basic
instructions is then executed to generate certain test
results and are checked against the expected values.
Any deviations can be used to change the flag

conditions.
Table 2. List of MACROS and their execution time

EXEcunONTIMEMACRO

IUP

UPDA1E

AMPL

SUMPN

GAIN

GAINC

OBS

CMP

FIL1ER(ORDER= I)
(ORDER = 2)

(ORDER < 6)

SWITCH

SCH I (I GRID)

GAIN BLOCK

FIL1ERBLOCK

SCH2(2GIRD)
GAIN BLOCK

FIL1ERBLOCK

t

17 + (21 + 150 .TOT) .ORDER

144.N

268 + (NUM-1) .266

1(1J + S .139

268

494

667

658

884
1410
113 + 290 .(2. ORDER + 1)

153 + 436 .1)

3186

3798 + 2237 .ORDER

6963

7002 + 4750 .ORDER

Numbers of inputs and outputs connected to filter blocks of

a given order greater than 2; I: number of throws to the

switch block; N : lor 2 (filter blocks of order less than 3;

NUM : number of inputs to an amplifier; and S : number

of inputs to a summing block

TOT

6.3.2 Value-fault Detection

The value fault is defined by the condition that the
variable V does not satisfy the relation V min < V max

where V min and V max refer respectively tc the minimum

and maximum excursions of the variable v. The variable

V is often a physical (>arameter like pitch angle, pitch
rate and normal acceleration. The parser checks the

syntax of the decision block which consists of following

+BUp
(6)

7. VALmAnON OF THE TRANSLATOR

The model following Cstar controller sketched in
Fig. 1 forms the FCS block diagram to be used for
validation. Simulation based on the discrete state-space
model of Cstar controller of short period dynamics of
F-8 aircraft is compared with'that generated by the
automated aid at different sampling rates. As a part of
the validation, the Nz sensor fault-detection is
introduced and the performance of the closed loop with
reconstructed Nz is compared with that of discrete
simulation. Timing-fault and value-fault detection

algorithms are next tested.

7.1 Reduction to Standard Form

The problem of discretizing the continuous time
state eq1.tations X=AX+BU and Y=CX consists of
finding a discrete-time model X(k+l)T = MX(k)T +

NU(k)T 'and Y(k)T =C X(k)T, where X(k)T and
X(k+ 1)T represent state vectors at sampling instants
kT and (k+l)T. The solutions of M and N are well
known and are given by M = exp(A 1) and N = f ci

exp(Av) dv B. Figures 4 and 5 represent the standard
forms of the regulator-plant cascade. The regulator and
plant portions have subscripts r and p respectively. The
following are the notations: input and output vectors
Up' Y; feedback error signals Ur and Uc state vectors
Xr and X; regulator is specified by Ar' Br' Cr and Dr
and plant specified by Ap' Bp' Cp and Dp.

The F-8 Cstar controller block diagram has to be

reduced to the state-space form

-X] -X- -=A

X X
-r

It can be shown thatl4

126

RAMA MURTJiY & SESHADRI: FLIGHT CONTROL SYSTEMS MICRO-COMPUTERS

The following are the basic instructions that have been used for
designing macros. memb,memw,memr refer to memory byte
location,memory word loca~ion and short-real memory location
respectively. imm refers to immediate value as one of 'the
operands.

ADD BX, imm
ADD AX,memw

ADD SI,memw

AND memw, imm

ADD SI, imm
ADD memw,AX

procedure

CMP SI,immmemw, imm CMP memb, imm

cx DEC memw

F'ADDP ST(1),ST
FDIV memr
FLD mem
FLD mem[SI}[ROM]
FMUL memr[4]
FST memr
FSTP memr[SI]
FSUBP ST(1),ST

FCOMP memr
FILD memw
FLD mem[4]
FLDZ
FMUL mem[SI]
FSTP memr[4]
FSIP memr[BX]
FSUB memr

FADD memr
FCOMP memr[SI]
FISTP memw
FLD mem[SI][4]
FMUL memr
FMULP ST(1),ST
FSTP memr
FSTSW memw

AX

JE short labe
JNE label

abetJBE short 1
JMP far ptr

JMP short
LOOP labe

abel

label

MOV AX,memw
MOV CX, imm
MOV SI,imm
MOV SI,CX
MOV memw,SI

MOV AL, imm
MOV BX, imm
MOV DS,AX
MOV SI,memw
MOV memb, imm
MUL memw

MOV AX,SEG ESEG
MOV CL, imm
MOV ES,AX
MOV SI,AX
MOV memw, imm

RET

SHL SI,AX,CL SUB SI,imm

Figure 3. The set or instructions or 8086/8087 processors that are used in the macros.

Figure 4. Regulator and plant cascade.

127

,
DEF SCI I, VOL 44, NO 2, APRIL 1994

REFER FIG 1

y

Figure 6. Block diagram of F-8 Cstar controUer with sensor failure

detection and reconnguration.

GOO
FDO
FO1
GO1
FO2
FO3
AS1
FO4
FOS
AS2
FO6
FO7
FOB
ADD
FO9
F10
GO2
GO3
AO1
GO4
AS3
AS4
GCO
F11
DOC
DFO

Q; 324; QA;
QA; 0.75; 1; 0;4167; 1; Q1;
NZS;1;0;104175~0;6667;1;NZ1 ;
STICK;0;729;S1;
STICK;55;1;13;349;55;S2;
S2;0.071 ,0; 1 ;S3;
S 1 , S3 ; 1 ; 1 ; S4 ;

S4;0;4791~0;0;4167;1 ;S5;
S2 . 0 . 4 7 9 1.1.0.4167.1.S6.

" ,., ,. ,

Q1 ~ NZ 1 ; S5 ; S6 ; 1 ; 1 ; 1 ; 1 ; TOT ;
TOT;0;000515;0;001185;1;O;DELC;
DELC;-172~5;-168;7;1;14;17~27~81;87;37;Q;
DELC;1362;5;839;28;-117100;1;14~17;27;81;87;37;NZAC;
NZAC,Q;-1;-324;CSTAR;
DELC;1;98;72;-70881 ;1;112;5:4570;64730;DELC1;
Q; 1 ; 13; 33; 8; 716; 1 ; 112 ..5,45 70~.64 730; Q1 O ;
Q10.-595500. Q11.., .
DELC1;1362;DELC11;
DELC11 ;Q11 ; 1; 1 ;NZA;NZAC; 1 ; NZ ; , .

NZ .N Z A.1.-1.NZDIFF.
, ., .,

NZ,NZA;1;1;NZSUM;
ONE; NZDIFF; NZSUM; EPSA;
EPSA;1;100;9;100;EPS;
EPS . NZ .N ZA.NZS.-0.9.0.9.100..., .~", .
Q;QUP;QLOW;QD;-0;09;O;O9;

Figure 7. The specification file corresponding to the blodt
yalue-f.ult detectioo.

time model of the Cstar controller and the responses

of q, Nz for a step input at various sampling rates. These

are stored for comparison with the Tustin equivalent.

Figures 6 and 7 show the block diagram with sensor

l28

diagram sketched in l'1g. 6 block DFO performs

fault-detection and reconfiguration. It can be noticed

that the Camberra metric is used as the signature. The

filter F-ll implements the geometric moving average
of the signature discussed earlier. The results of the

RAMA MURnlY & SESHADRI: FLIGKr CONTROL SYSTEMS MICRO-COMPUTERS

sensor failure and reconfiguration at the sampling rate
of 50 Hz is shown in Fig. 8 and it has been compared
to the healthy sensor case.

~

~
~

~

.M

FIgure 8. N. response with sensc..r ranure at 2 s.

8. CONCLUSIOl '0...

The automated aid (i) can handle most of the glocks
that exist in FCS, (ii) does not need sophisticated work
station and can work on IBM PC or INTEL
microprocessor development systems and (iii) has
potentiality for use in autonomous systens and can aid
in generation of N~version program for improved

reliability.

REFERENCES

1. Raffia Murthy, T. v. & Seshadri, v. An automated
aid for mi.crocomputer implementation of flight
control systems. In Proceedings of the National
Systems Conference, December 1988.

2. Symposium of Microprocessor Applications in
Future Aerospace Systems, IEEEIAESS, 1981.

3. Hartmann, G.L.; Hauge, J.A. & Hendrick, R.C.
F8C digital CCV flight control laws. NASA,
Washington, D.C., 1976. NASA CR-2629.

4. Flapper, J.A. & Throndsen, E.O. L-1011 flight
control system. AGARD AG-224, Integrity in
electronic flight control system, 1977. Paper 22.

5. Carleton, D.L. F-16 flight control system
development. AGARD AG~224, Integrity in
electronic flight control system, 1977. Paper 19.

6. Bailey, D.G. & Folkesson. JA-37 digital automatic
flight control system (DAFCS) self-test
development, AGARD AG-224, Integrity in
electronic flight control system, 1977. Paper 20.

7. Gauthier, R.L. & Ponto, S.D. Designing systems
programs. Prentice Hall, New Jersey, 1970.

8. Schindler, T.M.; Johnston, A.M. & Keith, G.W.
AFfI/F..16 DFCS development summary-A
report to Industry-Software design/mechani-
zation, IEEE, NAECON, 1983. p. 1227.

9. Slater,. G.L. A unified approach to digital flight
control algorithms. Paper presented at the AIAA
Mechal;tics and Control of Flight Conference,
August 1974. Paper 74-884.

10. Microsoft macroassembler for MS-DOS.
Microsoft Corp, 1985.

11. Shapiro, E.Y.; Schenk, F.L. & Decarli, H.E.
Reconstructed flight control sensor signals via

Luenberger observers, IEEE, 1979, AES-155,
245~52.

12. Pau, L.F. Failure analysis and performance
monitoring. Marcel Decker, 1981.

13. Armstrong, E.S. ORACLS-A design system for
linear multivariable control. Marcel Dekker, 1980.

14. Raffia Murthy, T. v. An automated aid for
microcomputer implementation of flight control
systems. Indian Institute of Technology , Madras,
1989. MS Thesis.

ACKNOWLEDGEMENTS

The authors would like to thank the Director, NAL

and Head, ALD for permission to publish this paper .

The auth,--'r~ would also like to thank Dr A Krishnan,

11r A Ped4lr, Mr Shyam Chetty and Mr A Shartharam

fo~ ilclpfu! discussions.

129

