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Error Covariance Matrix

S Vathsal
Defence Research and Development Laboratory, Hyderabad-500 258

ABSTRACT

This paper provides an error model of the strapped down inertial navigation system in the state
space format. A method to estimate the circular error probability is presented using time propagation
of error covariance matrix. Numerical results have been obtained for a typical flight trajectory.
Sensitivity studies have also been conducted for variation of sensor noise covariances and initial state
uncertainty. This methodology seems to work in all the practical cases considered so far. Software
has been tested for both the local vertical frame and the inertial frame. The covariance propagation
technique provides accurate estimation of dispersions of position at impact. This in turn enables to
estimate the circular error probability (CEP) very accurately.

1. INTRODUCTION

Strapdown systems are of interest to almost all
acrospace missions employing inertial navigation to
achieve high performance. These systems eliminate the
gimbals normally employed in a stabilized platform
resulting in easier maintenance, less cost and perhaps
improved reliability’>. The sensors employed by them

are gyros and accelerometers. These are mounted on
the vehicle body which is subject to fast changing
environmental disturbances during flight causing
motion induced errors in the system. The sensor errors
could be classified into a deterministic and a random
part. The deterministic errors could be compensated in
the navigation computer whereas the random part
results in a circular error probability (CEP) of the
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Figure 1. Block diagram of strapdown inertial navigation and guidance system.
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system®. Estimation of CEP of the system calls for a
stochastic error analysis of the inertial navigation
system. Figure 1 shows the schematic system.

2. OVERVIEW OF TECHNIQUE

Friedland has presented the theoretical analysis of
strapdown navigation system using quaternions®. The
covariance propagation equations have been derived
for attitude estimation using KALMAN and non linear
filters*®. While the error equations of reference 3 are
mainly applicable to inertial frame of reference, recently
Minoru Shibata has derived error equations for
terrestrial applications using the local vertical frame of
reference based on a quaternion relation between body

fixed coordinates and navigation coordinates’. This
error model is highly suitable to missile and aircraft
navigation. The error covariance propagation studies
using this error model of terrestrial navigation
employing the quaternion parametrization for attitude
have not been reported so far. Shibata’s model employs
the relative quaternion between body fixed coordinates
and local vertical coordinates’. The tilt errors and
quaternion errors are related by a matrix
transformation’. The potential of this transformation
for stable numerical computation of the error covariance
matrix has been fully utilised.

The conventional method of error analysis is using
Monte Carlo simulation in which the system errors are
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Figure 2. Schematic system of INS error propagation.
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obtained by root sum square (RSS) of errors due to
individual component errors. It has been found that
conservative estimates of errors are obtained by the
RSS technique. On the other hand the covariance
propagation technique provides a lower bound of errors.
Since all the errors are treated in the error covariance
matrix simultaneously, the cancellation of certain errors
in the final output of the navigation system is
automatically considered in this approach of error
analysis. For estimation of circular error probability
(CEP), the one sigma dispersions of position are
necessary which can be directly obtained from the error
covariance matrix. In the case of Monte Carlo approach,
it is a time consuming process to obtain the one sigma
values. '

Covariance. propagation results are given for
terrestrial navigation using a set of flight data which are
obtained from a strapdown inertial navigation system.
The CEP of the system has also been estimated using

a proven formula. Figure2. presents the block diagram
of covariance propagation package which has been
developed and tested.

3. ERROR MODELS OF STRAPDOWN INERTIAL
NAVIGATION SYSTEM

The error models normally employ the quaternion
errors, velocity errors and position errors as the state
variables. Let x; = [q,, @ @5 40 Voo V,, V., X,1,Z]7
denote the navigation state of the system with reference
to an inertial coordinate reference frame in Fig. 3 The
navigation equations are given below.

3.1 Inertial Frame

q(t) = 15 ofw(®)] q(1); 9(t,) = g, (1)
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Figure 3. Inertial coordinate reference frame (1).
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where q(8) = [q, g, q; q] V() = [V, .V, V,]”
¥ =[X.Y,Z]"
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Linearizing Eqns (1) to (3) over nominal values of
(g,V,r), an error model in inertial frame can be derived
which can be expressed in compact form as

= Kyt

6X, = F, 6X, + G, w;; 6X(t,) = 6X, (4)

For details of derivation of Eqn (4) reference has to be
made to Appendix ‘A’. The vector w; represents the
random errors of sensors.

3.2 Local Vertical Frame

Inertially referenced navigation systems are widely
used for spacecraft applications where geographic
navigation information is not needed. For terrestrial
navigation, the time varying relationships between the
inertial and geographic frames complicate the system
design. Then the local vertical mechanization is a better
choice for terrestrial applications’. With reference to
local vertical frame shown in Fig. 2, the navigation
equations are presented below

qg= L 0fw,)q 5 @lonlg ©)
Vu = CY ab - [(20)we) + (0)]Vy +&(R), (6)
i =V /(Ry + h) (M
A= VNV/(RE + h) cos).] (8)
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h=Vy, ®
where Vy = [Vy,, Vo, Va,)% R=[4,4,h]7
p=[ACosi -2 AsinA]T

Rg = R(1+E sin*l); Ry= R,(1-2 E + 3E sin*)

E= 1 ; R, = 6378163 m
294.978613

The state vector X, = (q,, B> G35 9o Ve Vg Ve
AZh)T
Linearizing Eqns (4) to (8) over nominal values o{

(a1 %> 85> G Viner Vg
Vg, 4.5 h)T
an error model in,local vertical frame or the geographic

frame can be derived which can be expressed in vector
matrix notation as

6Xy = Fy 6Xy+ Gy, wy; 8X,(1,) = 6Xy, (10)

For details of derivation of Eqn (10), one can refer to
Appendix ‘B’ The vector w, represents the random
errors of sensors namely the gyros and accelerometers.

4. COVARIANCE PROPAGATION STUDIES

From Eqn (4), the error covariance propagation
equations can be derived. Let

P, = E[6X; X1 (11)

where E(.) is the expectation operator

The propagation of P, is governed by the following
matrix differential equation

P,=FP + PF[+ G Q G P = Py, (12)

For the local vertical frame.
P, = E [6X, 6X{) (13)
and
P, =F, P, + P,FJ + G,Q,Gy; P, = Py, (14)
o= E[lww[]; Qy = E wywy ] (15)

Computation of Eqns (12) and (14) is beset with
numerical problems in the sense that P, or P,, does not
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maintain its definite positive property. For maintaining
a positive definite covariance matrix, the following
transformation matrix S has been used to obtain reduced
order and numerically stable covariance matrix’. The
transformation is shown below

Z; =519 P S") (16)
Zy = Sq) P, ST(@) (17)
where
Q(q) 0 0
s= 10 I 0 (18)
0 I
%@ ¢ Q@
QS q.i fh
O(q) - QZ ‘_Il (_h
@ @ Qs ] (19)

The alignment errors can be set as initial condition in
P, (o) or Py (0). ‘

4.1 Numerical Results
The major inputs to the numerical studies are the
T .
body angular rates w =[w,, w,, w,] and linear
acceleration

T
a, =[abx’ aby’ abz]
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Figure 4. Propagation of tilt angle errors (1o values).
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Figure 6. Propagation of velocity errors (15 values).

The one sigma errors of the sensors are fed into-the Q,
or Q, noise covariance matrix. For initial validation of
the software package the nominal body angular
velocities, accelerations, quaternions, linear velocities,
(north, east, down) and positions (latitude, longitude
and altitude) have been generated fromi the available
six degree of freedom simulation package. The
covariance matrix P, or P, is symmetric and positive

v
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Figure 8. Propagation of altitude error (1o values).

definite. It is adequate if the lower half or the upper
half of the matrix is computed numerically. The reduced
order covariance matrix is 9 X 9 in size. For symmetry
it is enough if one computers (nx (n+1)/2 = 45)
elements when compared to 81 elements when
symmetry is not considered. The output (wx, wy, wz)T
from gyros is not directly available but the incremental
angles (A¢,, Ay, A,) Tare available at 6 ms interval.
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A quadratic polynomial fit has been made to derive
(w,, w,, w,)T at intervals of 18 ms. The (ay,, ay,, a,)"
data from accelerometers is available at 18 m sec in
terms of incremental velocities (A V,, AV,, AV,)". For
covariance propagation, one needs to solve 45 coupled
time varing differential equations. It has been carried
out using the fourth order Range-Kutta scheme of
solving the differential equations at an interval of 18
ms. Many parameter sensitivity studies and
performance comparisons have - been made with
simulated data before feeding the actual flight data into
the program. Typical tilt angle errors, velocity errors
and position errors are shown through Figs. 4 to 8.

4.2 Estimation of Circular Error Probability

The terminal miss distance accuracy is normally
estimated using Monte Carlo simulations and CEP is
derived from the analysis of simulated data. This process
is time consuming and costly. From the propagated
covariance, it is relatively easy to fit an error ellipsoid
and approximate it to circular to represent the CEP of
the system?,

If 0. Xy and 0 Xgg represent the north and east position
errors then

C.E.P = 0.589 (0Xyg + 0Xgg) + 3% (20)

o X
< 0Xgg < 3 6Xng

Eqn (20) is less conservative when compared to the root
sum square value. Table 1 presents a comparision of
CEP values obtained by Eqn (20) and RSS techniques
for different sensors used in the study.

It has been found that CEP based on formula (20)
is always lower than that predicted by RSS technique,
in which the square root of the sum of the squares of
errors is obtained.

Computations of the system errors have been carried
out for both, the inertial frame and the local vertical
frame. It has been found that the error behaviour
appears to be independent of the mechanisation frame.
The reasons could be explained from Eqns (4) and (10)
which describe the error model. The covariance
propagation P has been found to be more sensitive to
P, and Q which depict the initial state of uncertainty,
and gyro and accelerometer noise covariances.
Propagation of P is less sensitive to F and G matrices
for the flight trajectory chosen for illustration. It implies
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Table 1. Performance and sensitivity studies

Cases CEP RSS
oXng oXgp o Xy based on (20) criterion
m m m m m

Sagem gyro 53.248 90.06 26.35 84.40 107.89
sagam
accelerometer

2. SFIM gyro 54.923 90.15 27.499 85.44 109.09
Ferraati
accelerometer

3. Sagem gyro & 52.99 89.95 25.98 84.19 107.58
Ferranti

accelerometer

that the error behaviour is less sensitive to dynamic
couplings for the present study.

5. CONCLUSION

Covariance propagation methodology has- been
employed successfully for estimating errors of the
strapdown inertial navigation system. The error models
for both the inertial frame and the local vertical frame
have been derived and used in this development. Both
simulated data and actual flight data of the system have
been utilized to estimate CEP and there is a good match
between the two. For the flight trajectory chosen, CEP
appears to be insensitive to the frame of navigation
namely, the local vertical or inertial. The dispersions
in position expected for different combinations of gyros
and accelerometers have also been presented. The CEP
predicted from covariance of errors is shown to be lower
than the conventional RSS technique employed in
Monte Carlo approach. Further work can be done to
extend this approach to a multi sensor hybrid navigation
system.
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APPENDIX ‘A’

Heré the strapdown navigation system error model
is presented in the inertial frame. Let g, V, r, w, a be
the true value of quaternion, velocity, position, angular
velocity and linear acceleration and §. Vi F, w, a be
their estimated quantitics. Then

6q=q-¢ by=V-Vidy=y .
dw = w0 d0a = a-a (A1)

Substituting Al into Eqns 1 to 3, expanding by
Taylor series and neglecting higher order terms, one gets

6= a)dq+ Q(q) o A2)
é6v = D(g, a) dq + C(q) da + G(y)dy (A3)
dy =dv Ad)
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Eqns (A2) to (A4) can be written in compact vector
matrix notation as

.. 1
S | PRI
q > Q(w) O 0 be

oy 0 I 0 oy

The different submatrices used in the above error
model have been shown in Ref. 3. It can be identified
with Eqn (4) of this paper. The matrix Q is defined in
Eqn (19) of this paper.

APPENDIX-B

Here the strapdown navigation system error model
is presented in the local vertical frame. Using the same
notation and assumptions, the error equations can be
derived as provided in Ref (7). '

1
54= > 0lab] 6q- 2 01a,] 39 + 5 Q@) o, -

% R (g)® 0@, (B1)
- r

g %[Q(d)b) + 07@,)] 0

IVy D(g, 3) 7[(2(1)(, + /))]

oA 0 0
, (R, + h)  Secg
(311 U
0 (Rg+h)
oh 0 0 0
L — S
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0 0 0 0q > Q(g) d,
5 R(Q) ()(Un
1o 0 0 ||{ovi| [ mars
| Vil | CN@) oa,
0 0 0 oV, - [2d@,+P )1V
2 o0 % ||V
2h
— = |
I A
0 | 0] % o4 0
% | Ry+h
— | )
AtanA |0 ] —4 oA 0
| |Re+ h
0 0 0 oh 0
A R | R _

6V = D(q,3) oq - [2 (@) + p JoVy - [2[60,] +
[6p1]
Vy + C3'(g) dab + og

64 = 6V.J (Ry+h) - V, ShI(Ry+3)’

PO

V? = —_ JVy +Z tan¢. Jl"‘/? Jh/(RE+B)

Ve .

oh = -5V,

Eqns (B1) to (B5) can bc written in vector matrix
notation as

The different submatrices used in the above error
model have been shown in Reference (7). It can be
identified with Eqn (10) of this paper.




