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Subjected to Blast Loading from Conventional Warhead
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ABSTRACT

A mathematical model has been developed to assess the damage to composite panels subjected to
blast loading due to detonation of a conventional warhead in its vicinity. The theory is based on large
dynamic deformation incorporating the effects of transverse shear deformation. A damage criterion
based on Tsai-Hill/Hoffman failure criterion has been used. The results have been compared with those
obtained by classical theory .

vulnerability aspect of the problem rather than the
response aspects as in the above mentioned papers. The
vulnerability for a given structural element and a given
warhead can be quantitatively expressed in terms of a
threshold distance for permanent damage, i.e., the
maximum damage up to which the structure is likely to
suffer a permanent damage for a given warhead, based
on Tsai-Hill/Hoffman failure criterion.

2. MATHEMATICAL MODEL

2.1 Panel with Single Ply with Fibre Direction
taken as x-axis

When the distance of the panel from the point of
explosion is sufficiently large, the dynamic response lies
within elastic regime and is governed by the following
system of partial differential equations :
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I. INTRODUCnON

The blast wave resulting from the detonation ~f a
conventional warhead is a potential threat for a military
aircraft in a battlefield. Among the various aircraft
components, its structure is the largest of potentially
vulnerable items. A mathematical model for damage to
aircraft skin panels due to blast loading was developed
by Singh and Singh 1, in which the damage to isotropic
panels was considered and a threshold distance for
permanent damage was obtained U&...6 a modified form
of von-Mises criterion.

Since many of the modern fighter aircraft (e.g.,
LCA), contain components comprising composite
materials, the assessment of damage for such
components would be useful for aircraft designers.
Recently, a number of papers2-5 have appeared on this
subject. In particular, the paper by Librescu and Nosier3
is worth notin~, in which the response of laminated
composite flat panels to sonic boom and explosive blast
loading is obtained theoretically.

In the present paper, a mathematical model has been
presented to assess the damage to composite panels
subjected to blast loading due to detonation of a
warhead in its vicinity. This paper emphasises the
~ -
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a 2{16k
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a(J)
L2«(J), a, /3) = /3 +

Dy

normal incidence , incident blast overpressure and
ambient pressure respectively.

The solution of the problem lies in determining the
panel deflection fJ) and the rotations a and ~ subject to
the prescribed boundary conditions. The structural
element under consideration is a panel bounded by
stiffners on all sides. The panel has been considered to
have the following dimensions: length a, width b and
thickness h, with the origin of coordinate axes at a comer
of the panel. The boundary conditons are6:

()2fJ ph3 ()2fJ
+D ---1-J 2 12 dt2

a2a
+ (ii -Dxy) ~ j =0 (2)

(()2(.0L3«(.0, a, fJ) = GXll-ax2-
()a

+--
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(i) Simply supported panel (SS)
JfJ

{J=O,(J)=O,g2~

(a2(J)+ Gyl l -a;;-
= 0, at x = 0, a

I () 2(JJ~ -' VYX"""aJT

a= 0, 0)= 0 a20)
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+ "5ii" a Dx ~ + r-a;;r-

(6)
iJyL

( 6t>k ) a 2(1)\ 5 """"aiT + p(x, y, I) = 0 (3) (ii) Clamped in panel (CL:

where a and ~ are rotations, !1) is lateral deflection, h is
the thickness of the panel, land k are tracing constants
identifying the effects of rotatory inertia and transverse
shear defonnation respectively; Dz, Dy and Dzy are the
orthotropic stiffnesses defined as

ro = 0, a = 0, {3 = 0, at x = 0, a and y = 0, b (7)

In accordance with the conditions occurring in
aircraft structure, the panel has been taken to be rigidly
framed, hence the edges of the panel have been taken to
be immovably constrained. An approximate solution
has been attempted using Galerkin method. The general
form of solution assumed is 7.

{0 = Wt/JQ)II(X)t/JQJI(y)'t(t)
GX\, h3 -

D~. = 12' H= Dx Vyx + 2Dxy

a = rt/JIDn(X} t/J an(Y}1(t}

'iJro

\ax

-2a = .)'] dx dy
D v

I+D;
6

h2A (8)ff
panel area

/3 = Al/>pm(x)l/>fJn(Y)'l(t)

where in the SS case :
where Ex' Ey are Young's moduli in fibre and transverse
directions respectively, Gxy' Gu' Gyz are orthotropic
shear moduli, Vxy' vYI are Poisson's ratios, p is the
material density, A is the panel area and p(x,y,t) is the
externally applied load taken to be the normally
reflected blast pulse (assumed to be uniform over a
panel of small dimensions) and is given by6

4> ~m(X) = sin).. ~x, 4> ~(y) = sin 8;y

4>am(X) = cos }..~x, 4>an(Y) = sin t5!y

cf> pm(X) = sin A. ~x, cf> p,.(Y) = cos 8!y (9)

p(x, y, t) = Pr(I -tltd) e-at/td with Aru' = !!!:!! I 0; = !!!:. and in the CL case, for odd

a b
(4)

(5)
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AT + BT + CTl = P(t)
(16)}) where for the ss case
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where fJ.m are the roots of the equation
and
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Similar relation holds for 1J.u. Changing sin and sinh
to cos and cosh, respectively and replacing the minus
sign in functions for 4I:m(x), etc, by plus sign, the
corresponding functions for even values of m are

obtained.

Now, employing Galerkin's method, the following
algebraic equations are obtained from the Eqns (1) and
(2) (for both SS and CL cases) :

12)QIIW + Q12r+ QI3A = 0 ( } 2 -C2 3 W C2 C

a =2 h' (d21).m +d128128n

13)a21W + a22r + ~23A = 0

pC(t) = 16 sin ( & ) sin ( &
,u m'U n W 2 \ 2 p(twhence r and A can be expressed as

and

(14) 6pc c d 1C

A = 5' B = GXl 21("'m

). Cq c
m I

!!1J..'!1E.w
Q23QIV

~ + G.vzdI2(8~211. = q2W = (15) q f <5~)

Now employing again Galerkin's procedure in the
Eqn (3), and using (14) and (15), the equation of motion
is finally obtained in the following form : d11 = (I + 71;) (I + 71;)
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ultimate shear strength. Since the x- and y-axes have
been taken to be parallel to the fibre and transverse
directions respectively, hence

2 ~ .
I1Jn + -;- sm Jln ,

/ -

2

-11; + -;-;- sin Jlm I (I + 11~)
2

<11 = <1x, <12 = <1r. <112 = <1X)'

-71 ~ + f-;-::- sin JL m ) (
2 . I-1Jn + -;;- sIn Jln

2
2.3 Generalisation for a Laminate Panel Consisting of

Several Plies at DifTerent Orientations

2.3.1 Moduli for Orthotropic Laminate with Several
Plies

The non-linear ordinary differential Eqn (16) was
solved numerically by Runge-Kutta-Gill method,
assuming the deflection and the velocity of the panel to
be zero initially.

2.2 Calculation of Stresses and Failure Criterion

For large deflection of panels, bending and
stretching are coupled, hence the stresses consist of the
sum total of bending and membrane stresses :

(a O'xy) = * (Nx. N), NX).)(1

(17)

Thus the fonnulation developed here was limited to
a panel consisting of a single ply and a coordinate system
so chosen that x-y axes coincide with the fibre and
transverse directions, respectively. But most of the
composite panels in applications are in laminate fonn
comprising several plies at various orientations. The
fonnulation described above can be generalised easily
for laminates espl;;""ally for orthotropic laminates, the
most widely used ones in applications. We consider the
ply pattern : 0°/6°/-6° so as to produce an orthotropic
panel, where 6 is the angle made by the fibre with the
reference axis.

The stress-strain law under plane stress conditions
for a single ply with the axes parallel and transverse to
the fibre direction (i.e. 6 = 0) are :

where Nx' Ny, Nxy are the membrane stresses and ~,
M" ~ are the bending moments.

The magnitude of the stresses would depend upon
the intensity of the blast pulse, which in turn depends
upon the distance between the structur~ element and
the point of explosion. For a given explosive (whose
strength is known in terms of TNT equivalent), the
threshold distance for permanent damage is defined
here as the distance at which the explosion of a given
mass of TNT is just sufficient to cliuse the failure of the
p~nel as characterised by Tsai-Hill/Hoffrnan criterion
of failures.

[ 0'\ ] [ QI\(O) 0"2 = Q\2(O)

0'12 O

QI2(O)

Q22(O)
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el

e2

el2

(19)

o

0

Q66(O)

~

where

Q))(O) = EJ(l -VxyVyx), Q)2(O) = vyxEJ(1 -VXI"':I'X

Q2iO) = E./(1 -vX),v.\'x), Q66(O) = Gx)'

for a single ply in which fibres make an angle 6 with

a reference axis fixed in the laminate, the stress-strain

law is given by:

~
) (Ji

F1c

~
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Q22( 8)

Q26( 8)

QI6(8)

Q26(8)

Q66( 8)

Ex

where al' a2' aU are the stresses in the fibre direction,
transverse direction and shear stress, respectively; FIT
and ~c are ultimate strengths in tension and
compression respectively in the fibre direction; F2T and
~c are ultimate strengths in tension and compression
respectively in the transverse direction and Fl2 is the

Ey (20)

Ex.\.

where Ojj(6) are related to Ojj(O) by the following

equations :
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2.3.2 Calculation of Stresses and Failure Criterion
for ]ndividual Plies in a Laminate

Once the lay-up of plies in a laminate is known, the
procedure described in 2.1 would give the deflection
and hence the strains may be computed which are the
same for all the plies. However, if the above procedure
is used to obtain the stresses, then only average stresses
are obtained. To determine the actual stresses in a
particular ply, the strains obtained thus have to be
substituted into the Eqn. (20). The actual stress
distribution may be very different from the average one,
as transverse direct stresses and shear stresses may
develop even though no such stresses are applied to the
laminate.

Thus, it is more reasonable to develop a failure
criterion based on the actual stresses in the individual
plies than the average stresses as it is quite possible that
only a few plies at a particular orientation may be
damaged under a given blast load while the majority of
the plies may remain unaffected.

where c = 008 6 and S = sin 6.

Now, consider a laminate comprising n plies and let
the angle between the fibre direction in the k-th ply and
x-axis be 61. In terms of the average stresses (averaged
through the thickness), the stress-strain law for the
laminate becomes :

3. COMPARISON WITH CLASSICAL THEORY

Here, the methodology based on classical theory is
described briefly. The details are given in9. The
governing system of partial differential equations in this
case IS :

All

AI2

AI6

ax

a.\"

a r).

Al2

A22

A26

Al6

A26

A66

Ex

Ey
=

(22)
()4F

~~

1 ()4F
--
E.\. dx 4

Exy +

where
()2(J)

~

(}2(J) (}2(J)
c--

dy2

(25)c
dx2(23)

For orthotropic laminates, having structural axes as
the axes of orthotropy, Al6 = ~ = O (as in the case with

a laminate consisting of 00 and matched pairs of :teo plies
only). The moduli for orthotropic laminate can be
obtained asS

Ex = All -Ar2/A22, Ey = A22 -Ar2/AII,
t26)

where Pis the Airy's stress function, and
V.r.\" = A12/A22. V,..r = A12/A1l. G.ry = A66

1/E3 = l/GX), -2vX)/Ex, D3 = Dxvvx + 2GX)h3/12.

(a) SS panel: In this case, the solution is assumed in the

form :
Once the moduli are detemlined, the dynamic

response of the laminate panel may be obtained as
discussed in 2.1.

1t"X
(J) (x. y. t) = hf(t) cos a cos bfry

(27)
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F(x, y, I) = F*(x, y)f(/) (28) Employing now the Galerkin's procedure, the
equation of motion is obtained as :

Using the conditions of rigid framing of edges
together with the Eqns. (25) and (27), the following
equation is obtained :

Al + Bf +. Cf3 = P(t) (32)

where in the ss case(~

a2

Ey

b2

l
x+

~)A5=ph2,B5=h7r4

( Ex vX),Ey ) 2 + -+y

a2 b2 Ex

~)
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16
~x- +
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-+-

a2b2 b4

+

(b) CL panel: In this case, the solution is assumed in the

fonD :

and in the CL case
,jU)

3

2ny

b . t (Cs + C9~-(C3 + C4 + Cs + C6 + C7) -

4rrx

a

2rrx

a

4~

b

+ C6 cas + C7 COS pC(t) = ~ p(x, y, t)
1C

4ny

b

41rx

a

2ny

b

+ C8 cas + C9 COS (31) The stresses and the failure criteria are obtained as
describ.ed in Sec. 2.

cos cos

where

4. RESULTS AND DISCUSSION

A laminate consisting of 24 plies arranged
symmetrically in the form 00!6°! -6° is considered here.
The values of 6 are chosen as 30°, 45°, 6()0., 75° and 90°.
The moduli for a single ply are taken fromlO.

Ex = 142 GPa, Ey = 9.0 GPa, Gxy = Gyz = Gxz =
5.5 GPa, Vxy = 0.32, Vyx = 0.02028, FIT = 1130 MPa, .PIC
= 869 MPa, FZT = 37.2 MPa, F2c = 145 MPa,
Fl2 = 51 MPa.

The panel is assumed to have the following
dimensions: length 10.0 cm, width 8.0 cm and thickness
0.25 cm. Let nl' n2' nJ be the number of plies inclined at
0°, 6°, -6° to the material x-axis.

In Fig. 1, the amplitudes of non-linear oscillation of
the panel for.SS and CL boundary conditions are plotted
for both classical theory and shear deformation theory .
It is observed that the amplitude of oscillation as

+ a4E.vE3)

-h2 4 22 4
C9- -32 ExEyE~(16b E3Ex + 4a b ExE.\" + a E)E3)
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that with increasing values of 6, there is a decrease in the
amplitude of vibration and also there is a gradual
reduction in the period of vibration.

Since the aircraft structure can be more closely
modelled as consisting of clamped in panels, only the
CL case has been considered to study the damage.
Damage in a particular ply is assumed to occur when the
Tsai-Hill/Hoffman criterion is violated. Since the failure
of various pli,es with different orientations would
correspond to various threshold distances, we have
taken the distance for which 00 plies would fail as an
overall measure of the threshold distance. The
dependence of the threshold distance on the number of
plies n2 and n3 inclined at ::t6 is shown in Table 1.

TlME

Table I. Threshold distance for composite laminate for various
orientations or pliesFIgUre NOD-1inear oscillation of the c6m~ite panel for differeDt

boundary conditions.

obtained from shear deformation theory is nearly 1.5
times of that given by classical theory .The distance
between the panel and the point of explosion is 4 m (so
that there is no damage). In this case nl = 24, n2 = n3 =
0. Following Bauerll and Ref.(I), (WIh) = 1. In Fig. 2,

the non-linear vibrational behaviour of the clamped
panel with nl = 16, n2 = n3 = 4 is shown for various

values of 6 ( for shear deformation theory only) .It is seen

3.5

3.2

2.9

2.8

2.6

2.5

3.5

3.2

2.9

2.7

2.6

2.5

0.'1

It is observed that as 6 is increased, the threshold
distance (jecreases, thus showing a resistance to damage.
Further, for a given 6, more is the magnitude of n2 ( or n3)
the more is the resistance to damage. Hence, it may be
concluded that a larger number of plies inelined at the
largest possible angle 6 to the central ply would ensure a
better safety against the blast attack.
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