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ABSTRACT

The tremendous development in remote sensing technology in the recent past has opened up new
challenges in defence applications. One important area of such applications is in target detection. This
paper describes both classical and newly developed approaches to detect the targets by using
remotely-sensed digital images. The classical approach includes statistical classification methods and
image processing techniques. The new approach deals with a relatively new sensor technology, namely,
synthetic aperture radar (SAR) systems and fast developing tools, like neural networks and multisource
data integration for analysis and interpretation. With SAR images, it is possible to detect targets or
features of a target that is otherwise not possible. Neural networks and multisource data integration
tools also have a great potential in analysing and interpreting remote sensing data for target detection.

1. INTRODUCTION

Remote sensing image data of the earth’s surface
acquired from either aircraft or spacecraft platforms is
widely available in digital format. Spatially, such an
image comprises discrete picture elements, called pixels;
and radiometrically, it is quantised into discrete
brightness levels. Quite often several images of the same
scene are captured in different spectral bands in a
syncl.. ..;ous way. The spectral bands may range from
visible to far-infrared spectrum. Sometimes images are
taken in microwave range in synthetic aperture radar
systems. The acquired images are initially processed for
geometric and radiometric corrections.

‘Target detection is an important aspect in many
defence applications. A target generally means an
object or a region of interest and importance, such as
urban areas, roads, railway tracks, shipyards, etc. The
task in target detection is to locate and label a particular
target among non-targets in a scene. This task has been
extensively studied in computer vision where the main
steps arc classification of the scene into regions of
interest, looking for potential structures, making
geometric analysis of these 'structqres and finally

confirming the presence or absence of a target using
proper knowledge base. But, its application in remote
sensing had been limited because of the inadequate
ground resolution of the image available in the past.
However, with resolution better than 30-40 m provided
by the current remote sensing technology, it is now
possible to a great extent to identify even smaller
targets, like bridges, runways and buildings.
Consequently, the scope of application of
remotely-sensed imagery in defence has considerably
widened.

Most of the pattern recognition and interpretation
techniques developed for remote sensing require
multispectral image data. Here the classification of
individual pixels is the primary task to which several
approaches exist. Of these two main approaches are
described in Sec. 2. It is also possible to detect targets in
remotely-sensed images with a single spectral band for
which a host of image processing and analysis techniques
are available. Some of these techniques are described in
Sec. 3. Multisource data integration and SAR imaging
approaches are briefly discussed in Secs 4 and 5,
respectively.

Received 08 March 1995

285



DEF SC1J, VOL 45, NO 4, OCTOBER 1995

2. SPECTRAL CLASSIFICATION APPROACH

One of the most widely used applications of pattern
recognition techniques to image classification has been
the assignment of individual pixels to land cover
categories or information classes on the basis of their
multispectral values'?. Here a pixel is looked upon as a
point in the multidimensional space. The groups of
pixels in this space which are homogeneous in some
sense are called spectral classes. Remote sensing is
successful because in many instances the spectral classes
coincide with the information classes.

A variety of approaches is available for spectral
classification, ranging from those using probability
distribution models for the classes of interest to those in
which the multispectral space is partitioned into
class-specific regions based on  optimally located
surfaces. The essential practical steps that are common
to these different approaches are:

(a) Deciding the set of land cover categories or
information classes into which the image is to be
classified or segmented. These classes could, for
example be water, croplands, asphalt areas,
concrete structures, etc,

(b) Selecting a group of representative or prototype
pixels from each of these information classes.
These groups of pixels form the training set,

() Using the training set of pixels to estimate the
parameters of the particular classifier algorithm to
be used. These parameters could be the properties
of a probability distribution model or could define
the equations determining surfaces in the
multispectral space or could be the weights in a
neural networks model, and

(d) Using the trained classifier, classifying every pixel
in the image into one of the desired information
classes.

The main step in designing a classifier for pixel
classification is the task of training mentioned in (c)
above. Two approaches to multispectral classification of
pixels i.e., the conventional statistical approach and the
neural networks approach are presented here.

2.1 Statistical Approach to Classification

Suppose the spectral classes are G, i = 1,2, ..., M
and the corresponding probability density functions are
p(x:C) where the vector x indicates the spectral vector.
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There are several statistical techniques for classifying a
spectral vector into one of the M spectral classes. Two
most widely used techniques are:

2.1.1 Maximum Likelihood Classification

Given an arbitrary vector x, it is necessary to
compute the conditional probabilities p(C:x) for
i =12, ..., M. The probability p(C:x) gives the
likelihood that the pixel with spectral vector x actually
comes from C. The classification rule in this case is to
classify x into G if p(G:x) > p(C:x). V#i This simple
classification rule is a special case of a more general rule,
namely Baye’s classification in which the decisions can
be biased according to different degrees of significance
being associated with different incorrect classifications.

Now the quantities p(C;:x) are unknown. To make
an estimate of these quantities, one should have, for
each class C, a training set of pixels with their spectral
vectors x. This can be used to estimate the probability
density function p(x: C) for each class. The form of this
function is normally known a priori and only its
parameters are unkrown. The maximum likelihood
estimates of these parameters are those values of the
parameters that maximise the joint probability density
function =, p(x,:C), where |x,| are the spectral vectors
from the training set representing the ith class.

Now the estimated p(x:C) and the desired p(C;:x)
are related by Baye’s theorem as P(C:x) = p(x:C)
p(C)/p(x) where p(C)) is the probability that theith class
occurs in the image and p(x) = Z; p(x:G)p(C). The
quantities p(C)) and p(C;:x) are known as prior and
posterior probabilities, respectively. It is commonly
assumed that the functions p(x:C) have the form of
multivariate normal models.

2.1.2 Minimum Distance Classification

The effectiveness of the maximum likelihood
classifier depends on a proper choice of the form of
p(x:C) and on reasonably accurate estimation of its
parameters. When the form of p(x:C) is unknown or
when the number of training pixels is too few to estimate
all the parameters of p(x:C), it may be advisable to
design a classifier that is based only on the mean spectral
vector of a class. The minimum distance classifier is one
such tool where the mean spectral vector of each class is
estimated from the training set and a new pixel is
classified in the class with the mean vector that is closest
to the spectral vector of the pixel.
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2.2 Neural Networks Approach to Classification

In the last few years, there has been a surge of
interest in artificial neural network models with the aim
of achieving human-like performance in decision
making, particularly in the context of speech and visual
patterns’. These models are composed of many
non-linear computational elements operating in
parallel. The computational elements or nodes are
connected via weights that are adapted during use to
improve performance. A neural network model is
specified by its net topology, node characteristics and
training or learning rules. Instead of executing a
program of instructions sequentially asin vonNeumann
computers, these models respond, in parallel, to the
inputs that are presented to them. The result is not
stored in any specific memory location, but consists of
the overall state of a network after it has reached some
equilibrium situation. Artificial neural network models
can be used for pattern classification®. Most commonly
used models for classification are single layer and
multilayer perceptrons’. :

When the classes under consideration are linearly
separable, a single layer perceptron is enough for
classifyfng an arbitrary feature vector into one of the
two classes®. But when the classes are not linearly
separable, a multilayer perceptron-is normally used for
classification since such a network with appropriate
weights can form arbitrarily complex decision regions in
the feature space. - :

2.2.1 Single Layer Perceptrons

Suppose the classification problem under
consideration is in a p-dimensional feature space. For a
two-class problem (M = 2), a single layer perceptron
specifies a (p-1) = dimensional hyperplane which
discriminates between the two classes in an optimal way.
Training a single layer perceptron means getting hold of
the parameters of this hyperplane on the basis of a
training set. These feature vectors are sequentially
presented to the network and they modify the
connection weight vector w by shifting it in the direction
of the input feature vector’. This process of modifying
the weight vector is continued until it stabilises. The
original perceptron convergence procedure® updates the
weight vector by a fixed incremental change in the
following way:

The feature vector at time t is denoted by x(t).
Suppose the true class identification associated with x(f)

is d(f) whose value is 0, if x(t) is from class 1, and 1 if x(f)
is from class 2. The weight vector is a p-dimensional
vector and is, at time ¢, denoted by w(t). The output at
time t, denoted by y(¢), is defined as y(f) = h(Aw(¢),
x(t)), where h is the hard limiting activation function so
that h(f) is either 0 or 1 depending on whether f<0 or
£20 and f (w(f),x(t)) =(w(£)) x(f), where T indicates
transpose. At time t, the weight vector w(t) is updated
to w(t+1) as w(t+1) = w(t) + n [d(®) — y(8)]x(¢), where
7 is a gain term lying between 0 and 1. The initial weights
are small random values. To achieve convergence of
w(t), n should decrease with time t and should satisfy
certain conditions’. But an important problem
encountered in practice is about the rate of convergence

of w(¢)’.

2.2.2 Multilayer Perceptrons

For more complex problems, where single layer
perceptrons fail, multilayer perceptrons are more
appropriate for classification. They have one or more
layers of hidden nodes and one or more outputs nodes.
The commonly used algorithm to train a multilayer
perceptron with sigmoidal non-linearity is backpropa-
gation'®. Such a net after being trained forms the
required decision regions bounded by smooth curves.
During training, the system first uses the input vector to
produce its own output vector and compares this with
the desired or target output vector (of dimension M). If
there is any difference, modifications of the connection
weights are made on the basis of what is called the
generalised delta rule. This rule calculates an error
function as follows:

N
E =2NL rf‘ kg (t = 04)°
where ¢, and o, are respectively the kth components of
the target and calculated output vectors for the input
pattern r and N is the size of the training set. It changes
the weights in a manner to reduce the error E as quickly
as possible. The convergence of training procedure is
achieved by considering the incremental change in
individual weight components w; as Aw; = - n6E/dw,
where 7 is a gain term which controls the rate of learning

However, for practical problems, this training process
may be extremely slow. The choice of optimal v to
achieve fast convergence of the backpropagation
training algorithm is an open problem. Active research
is going on in this direction'’.
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One possible application of multilayer perceptrons
is in detecting structures in remotely-sensed imagery'2.
Figure 1 shows a 256 x 256 window of an infrared-band
image from IRS-1A satellite. The line structures in the

Figure 2. Lines detected in the image in Fig. 1 by a multilayer
perceptron.
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image detected by a multilayer perceptron are shown in
Fig. 2. Here the training set consists of 100 pixels lying
on horizontal and vertical road segments and 100
non-road pixels and their neighbourhoods.

3. GEOMETRIC APPROACH

In many situations, the geometric features of objects
of interest play an important role in their detection. To
identify these features in a gray level image, the image is
first enhanced and then segmented. The enhancement
techniques are characterised by operations over
neighbourhoods around irdividual pixels. If a geometric
feature has an area then its edges are enhanced. On the
other hand, if the feature is a line structure, the lines are
enhanced. The enhanced output is again a gray leve!
image.

3.1 Edge Detection

Given below are four spatial masks for enhancing
edges or meaningful discontinuities in gray ievel in four
possible orientations:

-10 +1 -1-1-1 0+1 +1 +1 +1 O
-10 +1 000 -10+1 +1 0-1
-10+1 +1+41+41 -1-1 0 0 -1 1
vertical horizontal diagonal

The computed gray level value is associated with the
central pixel of a mask. Thus, for every pixel (except the
boundary pixels) in the image, there are four scores
from the four masks. The maximum among these scores
is the enhanced gray level of the pixel.

Another way to enhance the edges is by computing a
local derivative operator of gray levels. One such set of
gradient operators, known as Sobel operators, is defined
by two masks shown below.

-1 2 1 -101

0 0O 202
“12-1 -101
horizontal vertical

3.2 Line Detection

Four masks normally used to enhance (1-pixel thick)
lines in a gray level image are:

-12-41 -1-1-1 2-1-1 -1.-1 2
-12-1 22 2 41 2‘—1 -1 241
-1241 -1-1-1 -1-1.2 2-1 -1
vertical horizontal ~ diagonal
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The scores from these masks are additive and pose
some problems in line detection®. A multiplicative
score proposed instead to overcome these problems will
now be explained. For a horizontal mask shown below
the enhanced gray level output g for the central pixel is:

b, b, b
a aa + V(A—B) (A-O)
G C G

if (A-B)(A-C)>0 and —\V—(A—B)(A—C) otherwise,
where A = (a;+a,+a)/3, B = (bj+b+b,;)/3 and
C = (g+¢+c)3 The image g is defined for each
direction in which lines are to be detected. In each such
direction, g gives a directional differential image in
which datk lines in a bright background or bright lines in
a dark background will show positive g values with
reasonably high magnitude. For pixels in the areas of
nearly uniform original gray values or around the
boundary of thick objects, g values will be close to zero.
For pixels in the areas of monotonically increasing or
monotonically  decreasing (in the direction
perpendicular to the direction of the mask) gray values,
g will have negative values.

The g images in several directions can be properly
segmented to detect linear structures, like roads,
runways, bridges that may be present in a

Figure 3. Lines detected in the image in Fig. 1 on the basis of the
multiplicative score, g.

remotely-sensed image'*. For example, the roads
detected in the IRS-1A image in Fig. 1 using this method
are shown in Fig. 3.

4. MULTISOURCE DATA INTEGRATION
APPROACH

In spectral classification, the pixels in an image are
classified independently of the classifications of their
spatial neighbours. Techniques are available for
classifying pixels in the context of their neighbours®.
These require information from a spatlal model of the
image and tend to produce a better classification since this
is consistent both spectrally and spatially.

This integration of spectral and spatial information
can be extended further. One such extension is
multisource data integration in remote sensing which will
be a real challenge in the near future'®. New instruments
and new sensors give rise to a large variety of new views of
the real world. This huge amount of data has to be
combined and integrated into a model of this world. Also,
to meaningfully interpret these data, one has to have
information about how the data are collected and what
their characteristic properties are. Multiple sources
provide complementary views of the world. Integration of
information from these views throws up new possibilities
in target detection.

With the recent advances in sensor technology, the
number of different sensor platforms that carry imaging
payloads has increased tremendously. These sensors
. -oduce data covering different portions of a broad range
of the electromagnetic spectrum at different spectral and
spatial resolutions, providing the users with enormous
amount of useful information. These data are
heterogeneous  in their format, radiometric
characteristics, geometric properties and temporal
sampling. To fully exploit these increasingly sophisticated
multisource data, advanced data fusion techniques
become essential.

Data fusion techniques can be of three types
depending on the stage at which fusion takes place. These
types are pixel-level, feature-level and decision-level
fusion techniques. Pixel-level fusion techniques generate
new pixels with a pre-selected spatial resolution common
to all data sources involved. Image registration is a typical
example of pixel-level data fusion. In feature-level data
fusion, generally image analysis techniques are first
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employed to extract some features from each data source
independently. Then the data integration is done on the
basis of these features'’'®. For example, edge or line
structures can be simultaneously segmented from multiple
images and can then be integrated to detect targets more
reliably. Decision-level fusion means integration of
several interpretations obtained from different data
sources to arrive at a consensus interpretation.

5. SAR IMAGING APPROACH

Visible band imaging systems act poorly if there is a
cloud cover or ‘ick of illumination over the scene. The
synthetic aperture radar (SAR) imaging system can
overcome this problem by illuminating the scene by
microwave, typically in X-band which can penetrate the
cloud. The signal scattered by the scene is received by the
sensor and.the ‘variation of the received signal strength
generates the SAR image of the scene which can be used
to detect a variety of targets'”. A typical SAR image
contains speckle noise that makes the granular
appearance over the whole image. Considerable effort is
required to suppress the speckle noise either before or
after the image formation?. Speckle suppression before
the image formation is done mainly by multilook
processing while various spatial domain and frequency
domain filtering techniques are applied on the already
received image. However, the processed image still
contains noise and the visual quality of SAR and visible
band images are markedly different because of speckle
texture. For further processing say for edge detection and
region segmentation, texture analysis-based techniques
are quite promising.

Apart from visibility under cloud and at night, the
SAR system has an advantage of detecting objects in
motion by the Doppler shift method. Thus, a moving train
will remain off the railway track (but parallel to the track)
to an extent that depends on its speed. The SAR signal is
strong enough to extract objects with sharp bend even if
the objects are poorly visible. Thus, the SAR image can
complement the visible band image and integration of
information from both types of image would be most
effective in target identification.
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