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ABSTRACT

A new algorithm for test-vector-generation (TVG) for combinational circuits has been presented
for testing VLSI chips. This is done by defining a suitable metric or distance, in the space of all input
vectors, between a vector and a set of vectors. The test vectors are generated by suitably maximising
the above distance. Two different methods of maximising the distance are suggested. Performances
of the two methods for different circuits are presented and compared with the random method of
TVG. It was observed that method B is superior to the other two methods. Also, method A is slightly

better than method R.

INTRODUCTION

Advances in semiconductor and miniaturisation
technologies have given birth to very large scale
integrated (VLSI) circuits which form the basis of most
of the chips in the present day computing systems. Also,
most of the recent application specific integrated circuits
(ASICs) fall within the VLSI category.

This has led to a proliferation of ideas, methodo-
logies and processes in VLSI circuit design and
fabrication'. Especially on the software front, some of
the concepts involved are?? : description and modelling
of faults, simulation techniques for design verification,
simulation of faults, test-vector-generation techniques
for fault detection, etc. '

Faults in circuits can t = of various types : oxide and
metal layer defects, contamination, contact and
interconnect defects, corrosion, metal failures, etc.
Many of these faults can be modelled for transistors,
gates or functional levels‘. At present, gate level fault
modelling has been found to be adequate, detailed, and
yet tractable, for very large circuits.

The most popular fault model in gate level
simulation is the stuck-at-fault (s-a-f) model®, where

each line interconnecting any two gates can be assumed
to be either stuck-at-zero (s-a-0) or stuck-at-one (s-a-1).
If there are n such lines in a circuit, the total number
of possible faults are 3"-1 (including the dont-care
condition). This is very large number in most cases, and
hence the model is usually restricted to single s-a-fs,
which are then 2n in number.

Having modelled a given fault, it is necessary to
detect that fault by giving a suitable input pattern to
the circuit. This suitable pattern is called a test-vector
(TV). A TV is an input pattern which gives different
outputs for the fault-free circuit and the faulty circuit,
and hence detects that fault. One TV may, of course,
detect more than one fault in a circuit. It is desirable
to generate a set of TV’s which will detect as many
faults as possible. The process of generating the required
TV’s is called test-vector-generation (TVG)'. Hence, it
is necessary to have a very efficient TVG package which
will generate the TV's in as minimal a time as is possible.

The key ideas involving TVG are illustrated in
Sec. 2. Section 3 gives the basic idea involving a new
algorithm via, a metric in the space of input vectors.
Two methods of TVG based on the algorithm given in
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Scc. 3 are presented in Scc. 4. Section 5 describes the
implementation of the new- methods, as also the
performance resuits for various circuits. Discussion and
conclusions are given in Sec. 6.

2. TEST-VECTOR-GENERATION

The test-vector-generation (TVG) is one of the key
issues in the design and manufacture of chips. Basically,
it involves finding a set of input patterns (called
test-vectors) to the circuit which gives diffcrent outputs
for fault-free and faulty cases. This is aééomplished by
using a fault-simulator which, for a given TV, finds out
all single s-a-fs which are detected by the TV out of all
possible simulated faults.

Naturally, a quantity to define is the fault-coverage
(f-c) given by

- 100 X no. of faults detected (1

total no. of simulated faults

As mentioned in the introduction, the most popular
fault-model, which is representative of the majority of
possible physical faults aftes manufacture, is the s-a-f
model at the gate level. The primary aim of any good
TVG package is to generate vectors in minimal time
giving maximal f-c.

In principle, one can always generate an exhaustive
set of all possible vectors that can be fed into a circuit.
For example, given a circuit with m primary inputs, the
total number of all possible inputs is 2. But for typical
pin number, like m = 100 (or more), the total number
of vectors is 2'®, which is astronomical. It is thus
desirable to cleverly and quickly generate a subset of
all the possible vectors, which nevertheless gives as high
a f-c as possible. This entails finding suitable algorithms
to reduce the search space of vectors, and this is the
basic philosophy behind the various TVG schemes.

The TVG philosophy can be broadly classified into
two parts: global and local:

(i) The glok.! approach aims at finding
quick/hev istic means of TVG which mostly adopt
random or ciher pseudo-random techniques to
generate vectors and are usually used for reaching
a f-c of about 75-85 per cent in the shortest possible
time.

(i) Generating vectors for the remaining 15-25 per
cent of f-c is very difficult and requires an approach
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which is fully deterministic. In this local category
of TVG, a particular fault is identified and a
method is set up to generate a vector to catch that
fault (unlike in the global case where a vector is
first generated and the various faults it catches are
then determined). This involves some of the welil’
established techniques, such as path-sensitisation,
justification, back-tracking, incorporation  of
testability analysis, etc. Some of the standard
algorithms used are D-algorithm, PODEM, etc.
The basic idea involving a new search algorithm in
the global category is given in the next section.

3. NEW SEARCH ALGORITHM VIA A METRIC

In the global TVG scenario, a new vector is either
generated randomly or by invoking some heuristic
principle. The basic aim of the heuristic principle
adopted in this paper is to find input vectors which are
as far from each other as possible, i.e. to explore in the
space of all input vectors. as wide an area as possible.
Hopefully, this scheme will yield TV's which are
representative of a very diverse set of possible TV's,
thereby yielding a very high f-c for small number of
vectors. '

Let (V), be the set of J number of TV’s generated
up to a given instant. It is then desirable to generate
the next vector V,_,, which is farthest from the given
set of points representing the already generated vectors
(V),. This can be quantified as follows.

Let the total number of primary inputs be m. Then
there are 2™ possible combinations of inputs where each
input vector V can be thought of as a binary
m-tuple, €.g8.,

V=(bb,.....b,) with b=0orl; i=l..m (@

Thus, the different possible inputs can be thought of as

the different vertices of an m-dimensional hypercube

H_ and can be represented as a set (V),, where

M), =V V,:Vectorome; i=1,....2" 3)
Let each member of (V), has a representation as

given in Eqn (2),

V, = (b, byys ooeee bn)

V,=(by. by, - b;) ' R (4)

V, = (b)), by -vvee- b,.)

where each b; is either 0 or 1
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We define the centre-of-mass of this set (V), as a
vector V™ where

vr=(G.G  (, (5)
‘with
L
C=12X1b i= m (6)
J 1=t : . )

Obviously 0 = C, < I and the single vector V;™ can be
thought of as a hypothetical point within H, and to be
representative of the entire set (V). Let the
representation of the next vector under consideration be

Vee=(,n, ..... n.) |
wheren,=0Qorl; i=1...m N

The desired algorithm can be realised by defining a
suitable metric or equivalently a distance D, in the space
of input vectors (i.e., on H, ) between a vector \ 7
(i.e., a point on H,) and a set of vectors (V), (i.e., a
set of points on H_ represented by (V),. (V),, is then
that (V),,,, obtained by maximising the above distance

D. This can be done as follows:

The distance D{(V),, V,..,} between the set of
vectors ( V), and the vector V,__ is defined as follows:

D { (V)J’ Vncn} = d(an, Vncxr) ‘ (8)
where dis the normal Euclidean measure on H,, thought
of as embedded in the m-dimensional Euclidean space

R, 1e.,

m

n oY) 12
d(V™, Vo) = {2 (G =)'} ©

Itis obvious that D satisfies all properties of a distance

A new vector V___ is chosen as that next vector V|

which maximises the above distance D, i.e., D{(V),,
V__..} is maximum for the given (V),.

The idea of finding a vector farthest from a set of
; i h
vectors, will be used to find the test vectorsas follows:

In any iteration, let ( V), be the set of véctors already
generated, leading to a fault-coverage of ‘Ef-c),. Choose
V... (as suggested above) such that it is the farthest
from 'V, If V_, increases (f-c),, tHen include V,  in
(V),t0get (V),,, = (V), + V,_, and repeat the process.
If (f-c), is not increased, then choose the next farthest
vector and repeat the process. ‘

W

The pseudo-code for the general scheme of TVG is
given as follows:

1. (V), «Initial seed vectors.
. Estimate (f-c),

3. While (f-c), < (Required value)
begin

3. Repeat
find V__, suchthat D{(V),, V__
Until{ V,_, €(V),}

3.2 Estimate (f-c),_,-

3.3 If{(f-c),., > (f-c),}
begin
(V) —=(V);+ (V)
(f-c); «(f-c),..
end
else
gotostep3.1.
end

4 (V),isthe required set of TVs.

} is maximum

4. DIFFERENT METHODS FOR MAXIMISING
D{(V);, (Voer)}

Two methods of maximising D or equivaléntly, for
finding a vector farthest from a set of vectors, are
described in the following:

4.1 Method A

Let (V), be a given set of TV's at any instant yielding
a fault-coverage (f-c),. Of the remaining set of vectors,
V..m = {all possible vectors — (V),} on the hypercube
H_, choose a vector V,_, at random and check if,

D{(V),, V,..,} = Threshold distance 10)

(The threshold distance is chosen by the user). If yes,
then V__ is a candidate for V. If no, then choose
from V__ another vector at random and check if
eqn. (10) is satisfied. Repeat till a candidate V__, is
found. This is basically a greedy search technique where
from the set V,__, the first vector encountered which is
farther from (V), by a critical value is chosen as V.
On the other hand, systematically searching through all
the vectors in V,__ = 27 - (V), (for m > 50 and
(V), = 100 to 10,000) to find the vector farthest from
(V), would be very time consuming and hence the
greedy search technique is resorted to.

The pseudo-code for the complete TVG algorithm is as
follows:

V), « Initial seed vectors
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3.2
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Estimate (f-c),
While (f-c), < (Required value)
begin
Find Vj™ from (V),
Generateavector V___ fromV,_
If {d(V)i™, V,.,.} > Threshold)
begin
Remove V.
end
Estimate (f-c),,,,
If {(f-C)pew > (foc)J}
begin
(V) = (V) + (Vo)
(f-c); —(f-C)pen
end
else
gotostep3.1.
end
(V),isthe required setof TVs.

randomly

from-V,_,

4.2 Method B

A

more deterministic method can be set up to find

the vector farthest from a set of vectors (V),.

(i)

(i)

where 0 <

Compute V;™from (V) as given in Eqns. (5) and
(6). Obviously each coordinate C of V" as
definedin Eqn (6) is a fraction between 0 and 1.

* Convert V™into a binary vector V;""as follows.

Vfin = (b,, by,

¢ <05=>b=0,

¢ =05 => b,=0orl,
with equal probability

05<¢=<10=>b=1
(11)

Thus, we generate a binary vector V""’ from V;™,
where the components of the m-tuple V""’ will be either

Oorl.

Hence V"‘" will be one of the vertices of H,. It

physically denotes that vertex.of H, which is closest to
the centre-of-mass of (V),.

(iii)

It is then obvious that, since V™ is a
representative of the set (V),, the complement of
vPin denoted by V¥ will denote the vector which
is farthest from V™ i.e. D{(V), vhim s

‘maximum.
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(iv)

) mcludc \%

If VP happens to belong to (V),, then suitably
generate vectors which are unit Hamming distance
from V"'" Each one of these is a candidate for
|

next”

In the event of all the nc_ighb(l)urs of VP belonging
to the already generated set (V),, lhen Vier 18
generated randomly as suggested in A. Having
chosen V. check if it increases (fc),. H yes,
e i (V). 1f nO; then choose another
V....- This method does not involve: (a) randomly
gcnerdlmg vectors from Vm=2"-(V), and (b)

checking for the threshold value condition, as
suggested in A.

The pseudo-code of B is given in the following :

1.

(V), < Initial seed vectors.

2. Estimate (f-c),

3. While((f-c), < Required value)
begin

3.1 Compute centre of mass (cm)in bmary form
vbin

3.2 Find complementof cm VP"as next probable

vector

3.2.0 If (the next probable vector . (V),

3.2.1

3.2.2

begin
Compute (f-c),,..,
If {(f-c),.,, > (f-¢);}
begin
W), —(V), + Vfin
(£-0), ¢ (£
goto3.1
end
else
goto3.2.2
end
else
begin
If all 1-neighbours not exhausted
begin
Generate a 1-neighbour
gotostep3.2.0
end
else
Randomly generate next vector
end ;

(V),isthe required setof TVs.
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5. IMPLEMENTATION AND PERI*ORMANCE

RESULTS

Some preliminary investigations of A and B
described above were carried out to generate TV's for
different circuits having different functionalities. These
circuits for (A) are : some of the blocks of processors
designed at ANURAG (where many . VLSI chips
required by the various DRDO laboratorics are being
designed). and for (B): the ISCAS'85 benchmark
circuits, and may be taken as reprcsemduves of their
class.

Brief descriptions of the circuits follow:
5.1 ANURAG Designed Circuits
(a) Opcode decoder

Decodes the opcode in an assembly mstructlon The
input is a 13-bit instruction: '
" inst (31:25).
inst (23:22).
The output are signals showing the type of
ruction. The ircuit is shown in Fig. 1.

th) Adder-subtractor

~This is a 32-bit block perfdrming addition and
subtraction for both signed and unsigned cases. The
inputs to the block are:

a(31:0) (operand 1)

b(31:0) (operand 2)

cin (carry-in)

WS (O=unsigned, I—SIgned)

wC (0=without carry,l with carry)
asm (0=addition, 1=subtrdct10n)

‘he outputs are¢
$(31:0) (sum)
(carry-out)
(overflow flag)
(negative flag)
(zcro flag).
he ¢ itis shownin g
(c) Logical unit
This block performs all ‘logical operations
(cg. AND. OR.). The corc implements ‘the following
Boolcan expression:
Result(1-bit) = XOR(O3,NAND NAND(Y X
NAND [NAND( ,!104),!X,02]
where
X,Y arc inputs, (s arc control sig als specifying the
operation to be performed.

This core is repcated 32 times for
operation.

The O;'s are

Operation 04 o3 02 (0))

AND 0

OR 0

XOR 0

NOT(X) 1

NOR 0

0

0

32-bit logic:

XNOR
NAND

—_0 OO = = O

The circuit is shown in Fig. 3.
(d) Sign-extension logic

This block extends sign bit from the specified bit
positions: (7, 9. 11, 13, 15, 23).

The inputs are:

D(31:0) (32-bit data)
B7,B9,...B23 (sign bit position)

The output is
D((0:31 (32-bit sign-extended data

The circuit is shown in

To assess the performances of A and B, they were
compared with TV’s generated by the random method
(R). In R, each input vector V., is generated randomly
and completcly independent of the previous vectors
generated so far. It represents picking any point on the
hypercube H_ with cqual probability. It is desirable
that A and B yield better performances than R. The
results of the analysis on the various circuits using R,
A and B arc'presented in Table 1.

In Table 1, we give the circuit name, number of
testable faults, which can be detected by fault-simulator,
the number of vectors generated or tried (the set V),

ncew.

the number of vectors sclected out of V which

new

increase the f-¢ (the f-c after saturation) i.e., when it

‘plateaued out. These figures arc presented for A, B

and R.

It can be scen from the  “able
to A and R in different wa

that B is superior

(a) For all the circuits, the f-c obtained from B is
greater than those obtained from A and R (For
the sign-cxtension logic, the f-¢ from B was equal
to the f-¢ from R and greater than f-c from A).
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Performance figures of different methods on varicus circuits

Table 1
Circuit No. of Method
description detectable
faults

Opcode 530 Random
decoder A

B
Adder- 2582 Random
subtractor A

B
Logical-unit 1360 Random

A

B
Sign-extension 1350 Random
logic A

B

No. of No. of Fault
vectors vectors coverage
tested selected (%)
37 17 56.59
26 15 62.08
71 25 75.66
66 41 70.06
64 14 74.48
23 2 76.09
67 33 81.47
23 17 77.43
104 37 92.08
43 20 69.93
26 11 61.18
40 17 69.93

(b) In the case of logical unit, though the vectors
finally selected were almost the same for R and
B, the f-c was much higher for B. Hence B was
able to select a better set of vectors.

(c) For the adder-subtractor, not only was the f-c for

B the highest, the number of vectors generated

was the least (almost one-third of those generated

by A and R). Hence B utilised one-third the system

time.

(d) For the logical unit, the f-c obtained from B was

greater than 90 per cent.

Hence it can be concluded that B is better than both
A and R. ’

It can also be seen from Table 1 that A and R can
be compared as follows:

(i)  The f-c is higher from A in half the cases.

(1) The number of vectors finally selected by A is
less than that selected by R. Hence the selected
vectors are more optimally chosen by A.

(iif) The number of vectors generated by A is always

less than for R. Hence A always utilises less
system time. .

Thus A could be said to be slightly better than R.

5.2 ISCAS’8S Benchmark Circuits

The ISCAS’85 circuits are the now well established
benchmarks for combinational circuits. Method B was
run on the benchmark circuits and compared with the
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results obtained by R on the same circuits, as reported
by Kawai, et aF.
It can be seen that

(a) For C 432 C 5350 and C 7550, B yields higher f-c
than R for the similar number of TVs.

(b) In other cases, the f-c obtained by B was higher
than R.

6. DISCUSSION AND CONCLUSION

A new algorithm has been described for TVG, based
on the concept of a distance of a point on a hypercube
from a given set of points on the hypercube, along with
the idea of maximising the distance. Two alternative
methods A and B for maximising the above distance
were suggested and their performances on different
circuits were compared with the random TVG method
R. It was observed that B is superior to the other two
methods in a variety of ways. Also, A is slightly better
than R.

In B, scope for exploring neighbouring vectors unit
Hamming distance from V" was incorporated. In
principle, this can be extended to neighbours with larger
Hamming distances, depending on the need. It is
important to point out that for all the circuits analysed
in Table 1, change by unit Hamming distance was
sufficient. That is, all the neighbours unit Hamming
distance from \_/J"i“ were never exhausted. One of the
above neighbours always succeeded in increasing the

fault-coverage. ' i
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Table 2. Performance figures of different methods  ISCAS’85 benchmark drcuits

Circuit - Method B
No of selected Fault coverage
vectors (%)

Ca32 41 88.17
C499 50 95.65
C880 41 87.00
C 1355 44 85.32
C 1908 37 70.20
C2670 48 74.37
C3540 69 71.95
C5350 36 81.78
C6288 36 99.15
C 7550 50 83.70

Random Technique

No of selected Fault coverage

In the case of the opcode decoder, the total number
of valid input instructions is usually small. Hence all
the inputs can be exhaustively enumerated in the
test-vector set to get maximal fault-coverage. The
statistics shown in Table 1 and Table 2 highlight the
superiority of B over the R. '

It is next proposed to integrate the TVG method
described in this paper with some local methods of TVG
(e.g. PODEM-based algorithms). This is towards
setting up a TVG package yielding fault-coverages
greater than 95 per cent.
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vectors (%)
40 81.1

6 63.7

22 771

6 49.0

17 55.0
32 70.20
42 72.6
40 78.8
23 98.4
54 82.4
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Flgure 4. l’h-nmum logle bock.



