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ABSTRACT

Supersohic flutter analysis of laminated composite curved panels is investigated using
doubly-curved, quadrilateral, shear flexible, shell element based on field-consistency approach. The’
formulation includes, transverse shear deformation, in-plane and rotary inertias. The aerodynamic
force is evaluated using two-dimensional static aerodynamic approximation for high supersonic flow.

Initially, the model developed here is verified for the flutter analysis of flat plates. Numerical results
are presented for i isotropic, orthotropic and laminated anisotropic curved panels. A detailed parametric
study is carried out to observe the effects of aspect and thickness ratios; number of layers, lamination
scheme, and boundary conditions on flutter boundary.
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%% Work done by the applied non-
conservative force

X,Y,Z, Coordinates

Ap Aerodynamic pressure developed over
small element

B Aerodynamic pressure parameter

7(=pa (J:/ v Mi_l)

Critical aerodynamic pressure para-
meter and pressure (A, = a°/ E_h®
Critical aerodynamic pressures

(= pa%D, fa°/D,,)

€,5€,, € Mid-plane strains, bending curvatures
and shear strains

¢ Angle

v Poisson’s ratio for isotropic material

VL'l!" Vit Poisson’s ratio for orthkotropickmaterial

0., Hy Rotations

P Mass density of material

Pa Mass density of air

w Natural frequency

W, 0, Real and imaginary part of frequency

? Non-dimensional frequency
(=w*a*p/ E, I¥)

[N Flutter frequency

o Initial stress matrix

0, x Partial derivative with respect to x
Derivative with respect to time

( Symmetric layers.

INTRODUCTION

A panel supported on an elastic medium often finds
application in the construction of aerospace/missile
strurtures. During high speed flight, the external skin
of the panel of an airframe may experience flutter which
sometimes may cause destructive damage to the
structure of the flight vehicle. Panel flutter is a
self-excited oscillation of the external skin of a flight
vehicle and is due to dynamic instability caused by the
interaction of inertia, elastic and aerodynamic forces of
the system. Study of such aeroelastic instability - of
flat/curved plates is very important in aerospace
structural design in evaluating the fatigue life and
allowable cyclic stress of these components exposed to
supersonic flow. Linear flutter analyses of flat isotropic
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plates have received considerable attention in the
literature and have been reviewed by Dowell!. Several
attempts’® were made to solve analytically the
non-linear flutter behaviour of plates. The dynamic
instability of flutter of isotropic flat plates was also
investigated  through many finite  element
formulations™?

Nowadays composite materials play an increasing
role in aircraft'industry. Aeroelastic tailoring-of flight
vehicle structures which has a great potential to improve
the performance has attracted substantial attention
recently.

The influence of orthotropic properties on critical
flutter speed of flat plates was studied by several
authors'>1®, Sawyer!’, using classical lamination theory,
investigated the flutter analysis of laminated plates. It
is revealed -that couplings of bending-stretching and
bending-twisting produce a destabilising effect on
buckling and flutter. Birman and Librescu'® have
presented an analytical model based on shear flexible
theory for the study of flutter characteristics of
laminated plates. Srinivasan and Babu'® examined the
flutter of laminated quadrilateral plates. However, the
flutter behaviour of isotropic/composite curved plates,
in general, was treated sparsely in the literature?®>?, In
Ref. "24, availing classical shell theory, critical
aerodynamic pressures- have been evaluated using
integral equation technique. Finite element techniques
have been used to evaluate the critical aerodynamic
pressure for laminated anisotropic flat plates?>?. These
techniqueé, however, have not found their applications
to curved plates.

Effect of shear deformation, depending on
geometrical and material properties, plays a significant
role in determining the global characteristics. For
isotropic material, shear deformation and rotary inertia
effects can be neglected when the structure is thin.
However, in the case of laminated composites, where
the ratio of in-plane modulus to shear modulus is
generally high, these effects cannot be neglected even
if the structure is thin. For example, results presented
in the recent work due to Birman and Librescu'® reveal
considerable transverse shear deformation effects on
supersonic flutter of advanced composite flat panels.

Hence it is preferable to use a shear flexible theory
when one thinks of analysis of laminated structures by
the finite element method. To extend such a formulation
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for thin shell, reduced/selective integration technique
is generally employed to eliminate spurious energy due
to membrane/shear locking. Finite elements based on
field-consistency  principle, developed recently for the
structural analysis of thick as well as thin plates/shells®,
do not exhibit locking phenomenon and do not require
the reduced/selective integration technique. The
performance of such an element for dynamic studies
has not yet been examined.

In the present work, eight-noded serendipity-type
doubly-curved, shear flexible element, based on
field-consistency principle®® is used for analysing the
dynamic instability of laminated anisotropic curved
panels in supersonic flow. The non-conservative
aerodynamic forces are evaluated using a first-order,
high Mach number approximation to.the linear potential
flow theory. The numerical results are obtained for
isotropic, orthotropic and laminated anisotropic panels.
Wherever possible, comparison is made with the
existing solutions. A detailed study is made to bring out
the influence of number of layers, ply angles, aspect
ratios, radius-to-side ratios, side-to-thickness ratios and
boundary conditions.

2. FORMULATION

A doubly-curved laminated composite shell is
considered with the coordinates x, y along the in-plane
directions and z along the radial/thickness direction.
Using Mindlin formulation, the displacements u, v, w
at a point (x,y,2) from the median surface are expressed
as functions of mid-plane displacements u,, v, and w,
and independent rotations 6, and §, o1 we normal in
xz and yz planes respectively, as

u (x,y,z,t) = uy (x,5,6) + z 6, (x,y,t)
v (55,20 = v, (x,5,8) + 226, (x,,1)
w(x,y,2,t}= wy(x,y,) + 26, (x,y,t) @

The strains in terms of mid-plane deformation of
Eqn (1) for a shell, based on Novozhilov’s theory, are
given as

(9 + (79 o

The mid-plane strains €,, bending strains e,, and
shear strains €, in Eqn (2) are written as

Uy + (WR)
€ }= { Voy + (w/R) }

u‘y+y07x

0X,X
o )
o, L +6,,~(uy, /R)-(% IR)

{Gs ={0x_w’x+(_u0/Rx }
6,~w,, + (/R )

where R, and R are the usual radii of curvatures.

If {N} represents the membrane stress resultants
(N,,, Nyy, N,) and {M} the bending stress resultants
(M,,, M,,M ), one can relate these to membrane
strams {ep} consisting of linear and nonlinear
components and bendmg strains {e,} through the
constitutive relations as

(N} =[A;j] {&,} +[B;] {¢ and
{M} =[B;]{¢,} +[D;l{e, (3)
where A.

j» Dy and By (i,j = 1,2,3) are extensional,
bending, and bendmg extensnonal stiffness coefficients
of the composnte laminate. Similarly, the transverse
shear force {Q} representing the quantities (Q,,, Q,,)
are related to the transverse shear strains {¢} through
the constitutive relations as

{Q) = IE;]{e} 4)

where E;; (i,j = 4,5) are the transverse shear stiffness
coefficients of the laminate.

For a composite laminate of thickness h, consisting
of N layers with stacking angles ¢; (i = 1,N) and layer
thickness h; (i = 1,N), the necessary expressions to
compute the stiffness coefficients, available in the
literature® are used here. The strain energy functional
U is given by

v =1 J ) (A ()
{e Y7 [B] {e}+
{6} [B;] {¢,) + {&} "[D,] {e, +

()} T[E;){¢,)} | dA (5)
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where ¢ is vector of degrees of freedom
The kinetic energy of the shell is given by
T(5)=% Jlp@@+v+9)+
2 . 2
I(0% +0y) | dA (6)
wherep= todz, 1= o "22p dzand pis mass density.

The panel is subjected to in-plane stress resultant

per unit length NJ, N0, and N, , respectively. The

potential energy due to the applied conservative loads is
.V(5)=% JIN W+ N W

+ 2Ngy w,, w,y] dA. @)
The work done by the applied non-conservative loads i
W)= ,f ApwdA ®)

where Ap is the aerodynamic pressure. The
aerodynamic pressure for high supersonic speed, within

the 2-D static approximation'®* is given as
U2 ow
A p = - Pa Yy
MZ -1 ax (83)

0

where p,, U,, and M are free stream air density, free
stteam velocity and Mach number, respectively. As has
been shown previously’®, the two-dimensional static
aerodynamic approximation provides results that are in
complete agreement with those based on exact
aerodynamic theories for Mach numbers between V2
and 2. Substituting Eqns (5)-(8) in Lagrange’s equation
of motion, one obtains the govemin'g equation for the
curved panel as

[M] {3} + [B[A1] + [K] + [0]] {0} =0

where [M] and [A1] are the mass and aerodynamic
matrices, respectively; [K] and [¢] are stiffness and
initial stress matrices, and f is the aerodynamic pressure
parameter defined as

p U

M -1 ®

o
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Introducing a harmonic motion in the
{6} = {d,} €“* Eqn (9) is rewritten as

[K] - & [M] {3} = ©

where [K] = [K] + [¢] + B [Al], and w is the natural
frequency.

Now the problem is reduced to that of finding the
eigen-values o and corresponding mode shapes of the
system for a given value of f. When g > 0, the
eigen-value w is real and positive definite, since [K] and
[M] are symmetric and positive definite. However,
aerodynamic matrix [A] is not symmetric and hence
complex eigen-values w are expected for f§ > 0. As 8
increases monotonically from zero, two of these
eigen-values will approach each other and coalesce to
w,, at f = B to and become complex conjugate pairs

w=0 tiv,

for § > f... Here, . corresponds to the value of w at
which first coalescence occurs.

3. ELEMENT DESCRIPTION

The laminated shell element considered here is a C°
continuous shear flexible element and needs five nodal
degrees. of freedom, u, v, w, 6, and 6, at eight nodes
in QUAD-8 element as shown in Fig. 1.

Figure 1 Geometry of a laminated cv-ved shell.

If the interpolation functions for QUAD-8 are used
directly to interpolate the five field variables u, v, w,
6, and 6, in deriving the shear and membrane strains,
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the element will lock and show oscillations in the shear
and membrane stresses. Field consistency requires that
the transverse shear strains and membrane strains must
be interpolated in a consistent manner. Thus u, v, 6,
and 6, terms in the expression for {¢,} given in Eqn
(2¢) have to be consistent with field functions w, and
W, as shown in the work of Prathap, et al®. Similarly
w term in-the expression for {e,} given in Eqn (2a) has
to be consistent with field functions (u,,, vy, ) and (| u,,
v,.). This is achieved by using field redistributed
substitute shape functions to interpolate those specific
terms which must be consistent as described by Prathap,
et al®®

4. RESULTS AND DISCUSSION

Here we present results for isotropic, laminated
orthotropic and anisotropic curved Ppanels. All the
computations are made using CYBER 180/840A
processor with double precision arithmetic. All the
energy terms are evaluated based on exact numerical
integration scheme. The shear correction factor is taken
as 5/6. The boundary conditions considered in the
analysis are '

Simply supported :

u=0, v=0,

=0, v=0,

]
+ i+
)

Clamped supports
=0, v=0, w=0,t9x=0,l9y=0atx‘= +a

+ b

and at y
(12)

A convergence study is carried out for a simply-
supported isotropic plate. It is seen from Table 1 that
the results obtained with 4 x 4 mesh are in good
agreement with exact solution’ and this mesh size is
taken for subsequent studies. The capabilities of the
model developed here are tested for the effects of axial
compression and thickness on dynamic instability of
flutter and the results are compared with available
results in Table 2. -

In Table 3, critical non-dimensional dynamic
pressures for simply supported rectangular orthotropic
flat plates of different aspect ratios (a/b = 1,2,3) are
presented for both thin and moderately thick situations.
The material properties used are as follows:

Table 1. Convergence study of a simply supported isotropic square

Mesh v 1?, cr
2x2 532.34 1891.0
3Ix3 514.77 1856.5
4x4 512.85 1849.35
5 X.5 512.68 1848.5
Exact’ 512.65 1848.2

Table 2. Critical dynamic pressure Tr’,_ of isotropic simply supported plates

a/b ﬁ, I\—ly a/h Present study Ref. 11 Ref. 10
100 343.48 343.3680 343.5
(343.3564)
0 0 0 10 314.98 314.9926
5 248.25 248.6016
0 0 100 265.73 265.0
- 0 0 100 512.85 512.334
2 2 100 343.45 342.0

+Exact value®!
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Table 3. Critical dynamic pressure Iu, of orthotropic simply supported plates

a/h =100

a/b Present study
397.78
507.18
3 708.34

a/h=10

Ref. 16 Present study
298.80
- 376.62
670" 511.29

+Value of (a/h) is not given except it is mentioned that the plate is thin,

E, Gir Grr

— =15.3545, — =041, — =0.2,
E; E; E;

Vip = vpp = 0.2727

E, = 10° psi (6.8953 x 10" N/m?),
p=1.4786 X 10*Ib-sec¥/in? (1580.48 kg/m’) (13)

where subscripts L and T refer to longitudinal and
transverse directions respectively with respect to fibres.
All the layers are of equal thickness.

A similar investigation is made for laminated
anisotropic flat plates and the material properties
chosen are as follows:

’GTI‘
=10, — =033, — =0.15,
E,

E;=10°psi, p=1.4786 x 10*1b-sec’in* (14)

Results for thick and thin laminated plates are
presented in Table 4. It can be noted that the results
given in Ref. 17 are based on classical laminated plate
theory.

For detailed analyses both thin and moderately thick
panels of the following cases are considered:

(i) Isotropic curved panels,

(i) A single-layered orthotropic curved nanels,
and

(iii) Cross-ply and angle-ply curved panels.

The material properties, for the parametric study,
are assumed as:
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Isotropic case :
E, = 13 x 10° psi (8.9647 x 10" N/n?’), v = 0.33
p = 8.33 x 10* (Ib-sec¥in?) (8903.94 kg/m’)

Orthotropic/Laminated case :

(E/E;) = 25, (Gyy/Ey) = 0.5, (Gr/Ep) = 0.2,
E, =25x10%psi, p = 1.4786x10™Ib-sec’/in*  (15)

Table 4. Critical dynamic pressure Ia of laminated four-layered
simply supported plates

(-45°/45°1-45° /45°) (0°/90° /02/90°%)
ab a/h —
Presentstudy Ref.17 Presentstudy Ref.17
N,=0 N,=0 N, =0 N,=0
100 222.7 54.6
10 160.60 44.75
100 684.06 141.88
2
10 282.25 58.39

Plots of critical dynamic pressure and radius-to-side
ratio for the two boundary conditions for the above
cases, with different aspect ratios, lamination schemes,
and side-to-thickness (b/h) are shown in Figs'2-5.

In Figs 2 and 3, for the selected values of a/b (1 and
2) and b/h (100,10) the variations of non-dimensional
critical dynamic pressure, A [fa’/E, h’] with R/b for
isotropic panel are shown. The reference modulus £,
used in the calculation is E for the isotropic case and
E, for the orthotropic/laminated case. It is observed,
that for large values of (R/b) the flutter speed is not
influenced by the radius of curvature. It has to be so
as the curved panel geometry approaches the flat panel
one and similar observations are made by Dowell?,
Matsuzaki®®, and Srinivasan and Babu?®'. However, it is
found that the flutter boundary has peaks and abrupt
drop-offs for the panel geometry of
R/b = 1 to 4. This is due to frequency coincidence of
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Figure 3. Critical dynamic pressure vs radius-to-side ratio for

isotropic panels (b/h = 10).

aero-elastically related natural modes. Similar feature
is highlighted by Matsuzaki**. The boundary conditions
imposed on shell geometry play a significant role in
determining the flutter boundary as reported in
literature?®™>. When the curved panels fall into the
category of deep panels, it is seen that the boundary
conditions affect the flutter behaviour qualitatively. The
actual critical flutter boundary increases with increase
in aspect ratio and thickness. It is also inferred during
the stability analysis that the coalescences of higher
modes jump to the lower modes when the structure
becomes shallow. In general, the panel with clamped
conditions is stronger against flutter instability than the

simply supported one.

Similar investigations are carried out for the
cylindrical panel made of orthotropic materials and the
flutter characteristics are drawn in Figs 4 and 5. They
also predict, in general, qualitatively the same
behaviour as that of an isotropic shell.

For a selected geometry and material properties,
and clamped boundary condition, the variation of
non-dimensional dynamic pressure with R/b for varying
E,/E; (E, is kept as a constant, equal to 25 x 10° psi
and E; alone is varied) is shown in Fig. 6 to bring out
the effect of orthotropy. When R/ > 6, the critical
dynamic pressure goes down by approximately a factor
of 2 compared to the isotropic case (E = E; = 25 x 10°
psi). For R/b < 6, the critical dynamic pressure
decreases drastically when the orthotropy E, /E;. = 10,
25 and 40 are introduced. Table 5 presents the
non-dimensional natural frequency parameters (in
vacuo) and flutter parameters (coalescence) for the
above-mentioned cases (E,/E, = 1, 10, 25 and 40). It
may be noted from Table 5 that both frequencies and
flutter speed decrease when the orthotropicity is
introduced, and in particular as E; is decreased.

Laminated anisotropic curved panels with the
following combinations of ply-angles and number of
layers are now considered:

Cross-ply  : Two-layered panels (0°/90°)
Three-layered panels (0°/90°/0°)
Eight-layered panels (0°/90°/0°/90°),

Angle-ply : Two-layered panels (45°/-45°)
Three-layered panels (45°/-45°/45°)
Eight-layered panels (45°/-45° /45°/-45°),
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Ply-angle is measured from longitudinal axis of panel
in the anti-clockwise direction. The first layer
corresponds to the outermost layer and all the layers
are of equal thickness. h

The non-dimensional critical aerodynamic pressure
is plotted against radius-to-side ratio in Figs 7-10 for
cross-ply panels of different aspect ratios and
side-to-thickness ratios. For fairly large values of (R/),
three layer cross-ply panel predicts higher values of
flutter speeds compared to that of two-and eight-layered
cross-ply panels. This is because the directional stiffness
provided by three-layered cross-ply is high against the
airflow. Due to bending-stretching coupling, the panel
with two layers offers less resistance against flutter than
that of three-and eight-layered panels. It is observed
that for deep panels, the flutter boundary is affected
qualitatively by the number of layers in the panel and
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Table 5. Non-dimensional natural frequencies and coalescence values of clamped square orthotropic panels

Material Non-dimensional frequency Coalescence Coalescence
(in vacuo) mode
E /E, R/ 5 )} w} w} . .
803.6 2644.1 3716.1 2734.4 .20 (1,2)
230.3 974.1 22235 798.2 177 (1,2)
162.0 788.2 2112.2 595.4 .44 (1,2)
131.6 696.6 2056.6 511.5 .40 (1,2)
121.2 667.6 2029.5 483.9 .52 (1,2)
142.0 468.0 632.5 598.6 100.20 (2,3)
63.8 295.9 467.9 357.1 56.64 2.3)
10 549 284.0 384.8 347.0 53.62 2,3)
50.9 279.1 374.8 329.6 51.79 2,3)
49.5 277.5 371.5 326.9 47.80 2,3)
80.9 213.0 420.5 340.9 71.09 2,3)
48.7 145.6 328.1 2413 53.91 2,3)
25 45.1 140.2 319.0 231.7 52.34 2,3
435 138.3 315.0 227.5 50.95 (2,3)
42.9 137.7 313.7 2262 46.60 2,3)
63.8 146.2 3499 275.4 60.94 2,3)
43.8 163.8 292.8 215.0 48.82 2.3)
40 41.6 100.9 287.2 209.5 48.04 2,3
40.6 99.7 284.8 204.6 47.50 2,3)

40.3 99.3 283.9 198.5 46.50 2,3)
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Figure 7. Critical dynamic pressure vs radius-to-side ratio for Figure 8. Critical dynamic pressure vs radius-to-side ratio for
multilayered cross-ply panels with simply supported multilayered cross-ply panels with simply supported
boundary condition (b/h = 100). boundary condition (b/h = 10).
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Figure 9. Critical dynamic pressure vs radius-to-side ratio for
multilayered cross-ply panels with clamped ‘boundary
condition (b/h = 100).

to a lesser extent by the boundary conditions. The
variation of critical flutter speed against radius-to-side
ratios for angle-plies of different aspect ratios and
thickness ratios are shown in Figs. 11-14. It is noticed
from these figures that the critical flutter speed increases
with increase in number of layers. The bending-twisting
and stretching-shear coupling effects reduce the flutter
speed significantly. Boundary conditions in deep panels
affect the flutter characteristics qualitatively, like
cross-ply panels. In thick shallow (R/b > 4) panel with
increase in the aspect ratio, the predicted flutter
boundary increases very much with number of layers
compared to that of thin panels. This observation is
found to be true for the boundary conditions and
ply-orientations investigated here. Clamped panels
produce higher critical values than the simply supported
ones do. As in isotropic/orthotropic panel, increase in
thickness and aspect ratios will increase the critical
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multilayered cross-ply panels with clamped boundary
condition (b/h = 10).

aerodynamic pressure, and coalescence of higher modes
is observed with increase in the curvature ot the panel.
In the light of the present findings, it is worthwhile to
carry out an experimental study for the panel geometry
with R/b in the range of 1-4, to confirm the curvature
effect on flutter speed.

5. CONCLUSIONS

-The effectiveness of an eight-noded, quadrilateral,
shear flexible, shell element based on field-consistency
principle is demonstrated for the first time, for dynamic
analysis by studying the flutter behaviour of thin/thick
laminated anisotropic cylindrical panels, expused to
supersonic flow field. Since the element is based on
field-consistency approach, all the energy terms are
evaluated with exact numerical integration scheme. It
is found that flutter characteristics are strongly
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Figure 12. Critical dynamic pressure vs radius-to-side ratio for
multilayered angle-ply panels with simply supported
boundary condition (b/h = 10).
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Figure 13. Critical dynamic pressure vs radius-to-side ratio for

multilayered angle-ply panels with clamped boundary

condition (b/h = 100).
controlled by directional stiffness provided by the
anisotropic properties of laminated panels. Couplings
of bending-stretching, shear-stretching, twist-stretching
and bending-twisting, depending on lamination scheme
affect the ‘critical flutter speed. Flutter boundary
incieases with increase in aspect ratio'and thickness
ratio, irrespective’ of the boundary conditions and
ply-orientations studied here. For a deep panel, the
transverse boundary conditions and number of layers
affect the flutter behaviour qualitatively. It is
worthwhile to have experimental investigations for deep
(R/b in the range of 1-4) panel.
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