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ABSTRACT

The paper presents a model of sn@w slab release based on the concept of the presence of
ground-parallel thin super-weak layers. The fact that the same snow type under same state mayor
may not fracture under a certain stress unless a critical strain-rate and critical fracture-strain is reached
highlights the necessity of stress and strain-rate concentrations. Super-weak layer, which cannot or
can only insufficiently transmit the shear stress caused by the overlying snow layers, is considered to
provide such concentrations. The model establishes that although the existence of weak layers in a
snowpack is a necessary condition, yet it is not sufficient for avalanche formation. A minimum length
of the super-weak zone is required for the crack to propagate leading to the release of a slab avalanche.
Critical crack lengths are found to be of the order of 5 m to 10 m. Critical value of crack length has
been found to be dependent on slope. thickness and viscosity of the weak layer. The model does not
hold good, if the super-weak zone vanishes. The paper finally discusses the arrangement of supporting
structures to minimise the development of super-weak zones.

I. INTRODUCTION strength) and the other on critical rate of dissipation

Fracture strength of snow .does not only depend on work (viscous 'or ductile strength). With increasing

snow type ( density, structure, etc. ) and state of snow strain rate. in the first subcritical phase, viscous

(temperature and free water content), but as strongly deformation takes place without fracture. Nevertheless

on strain rate and fracture strain. Extensive laboratory under 1'"ia.xial tension-which never occurs under

workl-3 has shown that the same snow type in the same natural conditions-snow fractures in the subcritical

state mayor may not rupture under a certain state of range with large deformation due to over-straining.

stress, whether or not a critical strain rate (CSR) and Microscopically, this can be understood. by the

fracture strain is attained. This restricts the possibility chain-structure of snow: as soon as a load-carrying chain

of fracture of snow slabs considerably ~nd leads directly attains a certain elongation it must break independently
to the necessity of taking in~o account stress and strain of strain rate. With subcriticL 1 uniaxial compression.

rate concentrations. McClung4.5 has menti.oned the h.owever, new bonds between grains are created .

possibility of stress concentrations in a weak Jayer and continuously, preventing fracture. Under the state of

Conway and Abrahamson6,7 demonstrated, by field stress of a slope-parallel weak layer-shear 3nd
tests, the existence of very weak zones within weak overburden compressive stresses. the same may be true

layers. if the normal stresses are large enough. In second phase,

when the critical strain rate is reached, snow fractures

with maximum strength, the viscous part being

predominant. In the third phase, the viscous part is lost

gradually and with this strength decreases drastically,

2. FAILURE CRITERION

It is assumedJ that strength of snow consists of two

parts., one based on critical work (elastic or brittle
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Figure I. Strain-rate dependence of fracture strain (0), fracture stress (.) and hardening limit stress (-) (after Fukuzawa and Narita1.

until only the elastic part remains. With increasing strain
rate, fracture strain decreases until a low constant value
is reached with pure brittle strength .

For the critical strain rate, Salml, McClung4 and
N~rita2 have found in tests a fairly constant value of
10-4S-1 for different states of stress. The most recent and
very conclusive tests (shearing of a depth hoar layer
between fine grained, high density snow) have been
performed by Fukuzawa and Narita3. Figure 1 shows
that the critical strain rate mentioned above was
confirmed. Note that in their tests no overburden
compressive stresses were applied. It is fascinating to
see that an order of ma~nitude of 10-4S-1 for the CSR
seems a fairly 'universal' constant for snow, much in
contrast to the widely varying'strength values.

without supporting structures) .Over a distance of 2a

the thin layer is interrupted by the so-called super-weak
zone where no shear stresses can be transmitted to the

ground. This zone is assumed to be infinitely long in

z-direct~on (Fig. ?).

Sufficiently far away from the disturbance by. the

super-weak zone, the shear stress in the weak layer is

roo = do Po 9 sin 'I/ (1)

where 9 is the acceleration due to gravity. With the use

of a linear constitutive equation (constant viscosity and

Poisson's ratio) and the assumption of a.
one-dimensional creep movement, we get
(approximately) for the shear stresses8 in the vicinity of "

the disturbance

auryx exp ( -
Too do do (2)

The origin of x is at the end of the super-weak zone,

where

~)+1=
3. FRACTURE MODEL

The snowpack on a ~niform slope of angle III tonsists
of three layers: a top layer of thickness do. density Po
and viscosity lJo is superimposed qn a thin weak layer
with a thickness ~ (gravitation neglected). The total
snow depth-incltiding the bottom layer-is d (Fig. 2 but

'1 do 1/2

a =(~) Mand

'1ods (3)
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Figure 2. Efficiency or supporting structures ror the prevention or snow slab release.

M= (~)ln
2m

(4)
(v) The steeper a slope is, the shorter the acr :

compared with a slope of 30° the length on a 50°
slope is reduced by one third.

(vi) If acr vanishes, a fracture should start
simultaneously on the whole slope. This would
imply that do will be of the order of 10 m, which
is impossible in nature.

with m being the inverse viscous analogue of Poisson's
ratio.
If at the crack tip x = 0, the strain rate equals the critical
one i'cr' then ryx = icr ."s and a becomes the critical

length- acrl where fracture starts to propagate and -is

given by.

(5)aCt

4. INFLUENCE OF SUPPORTING STRUCTURES

The aim of such structures is to increase stability of
the snowpack or in other words to enlarge 8cr. As this
problem cannot be solved analytically in closed form,
the solution of. Bucher (Salm9) is superimposed to the
solutioQ without the supporting wall to get a rough
approximation. The additional compressive stresses
a~over do and shear stresses !~in the weak layer due to

the wall are :

n '70 Uoo ( nM x
)ax = ~ exp -U (6)

.'
[ nMx ]= l:.-exp (- -) T~

2d
Tyx

(7)

The above analytical relations have been checked
with the finite-element method for the true
2-dimensional movement. Generally, a good agreement

was confirmed8.

The smaller the critical size acr' the more Jikely the
fracture can start. The ciose examination of Eqn (5)

s,hows the following results:

(i) Generally critical crack lengths are of the order of
5 m -10 m.

(ii) The thinner the weak layer, the shorter is the acr-
If the thickness is reduced from 10 mm to I mm,
acr decreases by a factor of 3.

(iii) Low viscosity of the weak layer reduces acr-

(iv) With a decrease of the viscosity of the overburden
layer, acr will be reduced- Thus an increase in
temperature of this layer enhances the probability
of fracture without any changes in the weak layer -
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Figure 3. Increase of ~ within the pressure zone: influen<;e of do and N (IJI = 400).

ryxmax - [ au ] , [ 7tad ( I ) ] The second term in Eqn ( 10) is the increase of acr
---;::- -"d; + I -4Md; 1- "i .+ I due to the supporting wall.

nMx In Fig. 3 the influence of do and gliding of the
exp(- -) (9) snowpack on ground on acr is shown. Gliding is

.:d .represented by the glide factor N which varies from 1.2
The first term ongmates from th~ undIsturbed crack to 3.2 (Swiss Guidelineslo). It can be taken into account

and the seco,nd represents the, reduction due to the wall. by replacing d by a fictitious depth (Salm9). It has to be
For small x -:- the distanc~ between the. wall and the emphasised that the above calculations are rough
lower crack tIp- Eqn (9) IS no more valId. approximations, more of a qualitative nature. It is

If at the crack tip the strain rate equals the critical necessary to check them by the finite element method.
one tcr' the critical crack length becomes

acr = ~ [~ -I] + [~ (1- ~) + ~] 5. COMPARISON OF DISTANCE STRUCTURES
a roo 4M if a In the Swiss Guidelineslo, the distance between two

ex --~ ) rows of structures L was determi~ed according to.three
p( 2D (10) criteria: the structures have to withstand the maximum
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static and dynamic snow pressures. Further, these actin~
artificial roughnesses, have to reduce velocities of snow
sluffs. The reason is that the possibility of
fracture-especially of loose snow avalanches -can never
be excluded. However, a relation expressing the
mechanics of snow slab formation has not yet been
considered. It is therefore interesting to examine the
prescribed L I s in the light of the presented fracture

model.

The location of the super-weak zone is unknown.
Therefore all possible situations. have to be examined,
the worst case representing the minimum efficiency. In
the lower end of the super-weak zone, in a distahce x'
from the wall (Fig. 2), a shear fracture will never
propagate because it would enter into a zone with

,
decreasing shear stresses where the strain rate becomes

subcritical. In the upper end of this zone the contrary
is true, a slab of an assumed length of L -(x' + 2acr)
may fracture. If this length is small or negative the
efficiency is sufficient .

~bl,+ -'
x

~

In Fig. 4, L was calculated for III= 40° and fL = 5.8
in the relation L = fLH with H = d!cos III (Swiss

Guidelinesto). For the depicted worst cases the value
of x' Id for the-Iower end of the super-weak zone is
between I and 2.5. Figure 4 shows that with a relative
high glide factor N = 2.5, the efficiency is generally

satisfactory, whereas with no gliding and large d this is
not the cas~. The situation is always improved with
smaller do. The conclusion can be drawn, that for a low
glide factor L should be reduced by 20 to 40 per cent.

.It is, however, to be mentioned 1hat above
calculations are ve.ry pessimistic by assuming a vanishing
shear stress in the super-weak zone.
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Figure 4. Minimum efficiency of supporting structures for 'II = 40°

and (L = 5.8.
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