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Large-Amplitude Free Flexural Vibrations of Laminated Composite
Curved Panels Using Shear-Flexible Shell Element

M. Ganapathi
Institute of Armament Technology, Pune-411 025

ABSTRACT

Using C° continuous, QUAD-8 shear-flexible shell element, based on field consistency principle,
the nonlinear free flexural vibrations of anisotropic laminated curved panels are studied. The
formulation includes transverse shear deformation, in-plane and rotary inertia effects and geometrical
nonlinearity. The element is employed to study the large amplitude dynamic behaviour of cylindrical
and spherical shells. The frequency versus amplitude curves are obtained from the dynamic response
history. The nonlinear governing equations are solved using Wilson-6 numerical integration scheme
with @ = 1.4. For each time step, modified Newton-Raphson iterations are employed to achieve
equilibrium at the end of that time step. Detailed numerical results are presented, showing the effects
of thickness, lamination scheme, material properties and boundary conditions, on nonlinear behaviour.

1. INTRODUCTION

The nonlinear flexural vibration of isotropic
cylindrical panel was examined by Reissner' and was
followed by several investigators®*. Similar studies were
made for spherical shells by Hui’. The analytical
solution for the problem of large deflection dynamic
analysis of anisotropic laminated cylindrical panels and
spherical shells had been dealt with sparsely in the
literature®’. In these few studies®’ single mode
approach along with perturbation method is employed.
To the author’s knowledge, solutions based on finite
element method have not appeared in the literature for
the above investigations.

The geometrical nonlinearity based on Von-Karman
strain-displacement relations are considered here. The
finite element formulation includes incremental
matricess for the nonlinear representation.
Shear-flexible, field-consistent shell element’ QUAD-8
is used to analyse the large amplitude vibration of
laminated anisotropic cylindrical panels and doubly
curved spherical shells. The frequencies are obtained
from the dynamic response history using Wilson-6

method'®. The results are plotted, showing the effect
of material properties, lamination scheme,
side-to-thickness ratio and boundary conditions on
nonlinear behaviour.

2. FORMULATION

A doubly curved laminated composit. shell is
considered with the coordinates x, y along the in-plane
directions and z along the radial/thickness direction.
Using Mindlin formulation, the displacements u, v, w
at a point (x,y,z) from the median surface are expressed
as functions of mid-plane displacements u,, v, and w,
and independent rotations 6, and 6, of the normal in
xz and yz planes respectively, as

u(x,y,z,t) = uy(x,y,t) + 20,(x,y,t)

v(x,y,2,0) = vy(x,y,0) + 20,(x,y,0)

W(X,y,2,t) = W(x,y,1) (M
Von-Karman’s assumptions for moderately large

deformation analysis allow Green’s strains to be written

in terms of mid-plane deformation of Eqn (1) for a
shell, based on Novozhilov’s theory, as
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The mid-plane strains ¢ bendmg strain ¢,, and
shear strain ¢, in Eqn (3) are wntten as

Uo,x + (w/R)
syt (w/R)
+ Vo.x + (2W/ ) (33)
Ox,x
{sb) = - oy’y . 3b
(/R - (v, IR, )

0, - w, + (u/R,) + (WR,) }

(&) = {
6,~ W, + (W/R,) + (u/R,) (3c)

where R,, R‘v and R,y are the usual radii of curvature
The nonlinear components of in-plane strains are

(112) w;?
(172) w,?

w, W

{e} =

If {N} represents the membrane stress resultants
(Nix»N,,,N,,) and {M} the bending stress resultants
(M,x,Myy,M ), one can relate N and M to membrane
strains {¢,} i.e. {a'“} +{8NL} and bending strains {,}

through the constitutive relations, as

{N} = [A;] {g,} + [B;] {5} and {M} = [B;] {¢,}
+ [Dq] {e} 4)

y

where A;, D; and B; (i, j = 1,2,3) are extensional,
bending and bending-extensional stiffness coefficients
of the composite laminate. Similarly, the transverse
shear force {Q} representing the quantities {Q,,,Q,,}
are related to the transverse shear strains {¢} through

the constitutive relations as
{Q} = [E;] {¢;} 5)

where E;(i, j= 4,5) are the transverse shear stiffness
coeffnc:ents of the laminate.
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For a composite laminate of thickness h, consisting
of N layers with stacking angles ¢, = (i = 1, ...,N) and
layer thickness h; (i= 1, ...,N), the necessary expressions
to compute the stiffness coefficients, available in the
literature'', are used here. The potential energy
functional’ U is given by

U@) = J { &) T[r\uj {¢,)
2 A

+(e,) T IB,] (&) + (&) T[B;] {e,)

+ {6} TID;] (&) + {6} TIE;] (es) ] dA (6)
where 9 is the vectors of degrees of freedom.

Following the incremental procedure® the strain
energy functional U is rewritten as

ue) = (8 T[ar) (K] + (6) [N1] + (1112) [N2)

+ ) (N3] (6) )
where [K] is linear stiffness matrix, and [I..; [N2] are
nonlinear stiffness matrices, and [N3] is the shear
stiffness matrix.

The kinetic energy of the shell is given by
T@)=12)f [pa*+v2+ W)+ 1@ +6D]da (®
A

h
where p = 1) hpdz, I= [ Zz’pdzand pis the mass density.
0

Substituting Eqns (7) and (8) in Lagrange’s equation
of motion, one obtains the governing equation for the
free flexural vibration of the shell as

[ 1K1+ r2) [N1].+ (13) [N2] + [N3]

{6y + [M] {8} = {0} (9)

where [M)] is the mass matrix.
Equation (9) is solved using the implicit method'.

In the implicit method, equilibrium conditions are
considered at the same time step for which solution is
sought. If the solution is known at time t and one wishes
to obtain the displacements etc., at time t+At, then
equilibrium equations considered at time t+At are
given as

| (NG)) (0} s + IMI(S }ise = (0} (10)

where [M] is the mass matrix, {6}, o, /{0 },4 5, are the
vectors of nodal displacements and accelerations at time
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t+ At respectively, [[N(8)] {0}],. A, is the internal
force vector at time t+ At, and is given as

[N (0} ]n = { 1K1+ () [N + (13) (N2 +
I“\B]] {’)‘}'}H{;r (11)

In developing equations for the implicit integration,
the internal forces [N(d)] {J} at time t+ At is written
in terms of internal forces at time t, using tangent
stiffness approach, as

[ [N(9)] ‘{5}](‘, = [ [N(6)] -{(‘)’}][
+ [K{()]{Ad} (12)

where [K; (8)) = [ [K] + [N1] + [N2] + [N3] | is the
tangential stiffness matrixand { Ad } = {6}, o, — {},-

Substituting Eqn (12) into Eqn (10), one obtains the
governing equations at t+ At as

(M] {O}H- ar t [K'r @)} {Ad} =
- [N(9)] {0}, (13)

To improve the solution accuracy and to avoid the
numerical instabilities, it is necessary to employ
iteration within each time step to achieve equilibrium.

The resulting nonlinear equations obtained by the
above procedure are solved by Wilson-8 numerical
integration method. Equilibrium is achieved for each
time step through modified Newton-Raphson iteration
until the convergence criteria'? (modified absolute
norm, modified Euclidean norm and maximum norm)
are satisfied within the specific tolerance limit of less
than 1 per cent.

3. ELEMENT DESCRIPTION

The laminated shell element employed here is a C°
continuous shear flexible element and needs five nodal
degrees of freedom u,v,w, 6, and 6, at eight nodes in
QUAD-8 element, shown in Fig. 1.

If the interpolation functions for QUAD-8 are used
directly to interpolate the five field variables u to 6, in
deriving the shear strains and membrane strains, the
element will lock and show oscillations in the shear and
membrane stresses. Field consistency requires that the

Y.V

/

Figure 1. Geometry of laminated shell element (QUAD-8).

transverse shear strains and membrane strains must be
interpolated in a consistent manner. Thus u,v,6, and 6,
terms in the expressions for {¢} given in Eqn (3c) have
to be consistent with field functions w, and w,yg.
Similarly, w term in the expressions of {¢,} given in
Eqn (3a) has to be consistent with field functions (u,,,
v,,) and (u, v,). This is achieved by using field
redistributed substitute shape functions to interpolate
those specific terms which must be consistent®.

4. RESULTS AND DISCUSSION

In the present study, the eight-noded isoparametric
field-consistent shell element is employed. Since the
element is derived from the field consistency approach,
€aact integration is performed to evaluate all the strain
energy terms. Based on progressive mesh refinement,
a 4 X 4 mesh is found to be adequate to model one
quadrant of the shell for analysis. The initial conditions
for the nonlinear free vibration study are zero values
for displacements/rotations and non-zero values for
velocities. The initial velocity vectors are proportional
to the normalised linear flexural mode vectors. The
response curves are obtained by varying the initial
velocity vectors. The frequency and the corresponding
amplitude are evaluated from the response curves. The
shear correction factor is taken as 5/6. The value of
in Wilson-6 method is assumed as 1.4 which corresponds
to unconditionally stable scheme in linear analysis.

Since no estimate of the time step for the nonlinear
analysis is available in the literature, the critical time
step of a conditionally stable finite-difference
scheme'>" is introduced as a guide and a convergence
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study is conducted to select a time step which yields a
stable and accurate solution. The critical time steps

given for thin and moderately thick plates'' are
\t < 0.25 (p WD)? Ax (14)
At = [{p(1-0Y)EY{2 + (1-v) ©* /12
a+ savm )]’ ax (15)

where Axis the minimum distance between the element
mode points and D, E are the flexural rigidity and
Young’s modulus respectively. vis the Poisson’s ratio.

Due to anisotropic nature of composite plates/shells,
even though the geometry and loading are symmetric
about the axes, one has to be careful in assuming biaxial
symmetry for the analysis. In the present study, after
verifying the results of quarter plate/shell idealisation
with those of full plate/shell idealisation, the following
boundary conditions are used:

Simply supported u=w =0, =0onx=-aa

w=60 =0ony=-bb

Clamped support u=v=w=6 =6, =0onx

=-a,aandy=-b, b
Line of symmetry :
Crossply:v=6,=0ony=0,u=6,=0onx=0
Angle-ply:u=6,=0ony=0,v=0,=00ny=0

To start with, the present formulation is validated
by considering the linear vibration of a simply supported
cross-ply doubly curved spherical shells and nonlinear
vibration of isotropic plates. The results obtained are
compared in Tables 1 & 2 with those available in
literature'>'S. The two are found to be in very good
agreement.

Numerical calculation is carried out for two types
of materials” whose elastic constants are as follows :

EJE, = 1.6, G,/E, = 0.4, G,JE, = G/E,

0.2,v,,=03
2 E|JE, = 2.0, G,,/E, = 0.4, Gyy/E, = G;/E,
=0.2
v, =03
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Table 1. Nondimensional frequencies @ = w a* (p/E,h)"? of simply
supported 0°/90°/90°/0° spherical shell

alh =100 a’h=10
R/a Present Ref.{15] Present Ref. [15]
study study

126.2850 126.330 16.153 16.172

Z 68.2790 68.294 13.419 13.477

4 37.0730 37.082 12.525 12.552
10 20.383 20.380 12.275 12.280
10¥ 15.1933 15.184 12.230 12.226

(EJE;=25,G;; = G;3 = 0.5E,, Gy =02 E, , v, = 0.25
p=10,ab=1,R, =R, =R)

Table 2. Frequency ratio (wy/w)* of nonlinear vibrations of
isotropic simply supported square plates

hla w/h Ref. 16 Present
study

0.2 1.02599 1.02504

0.4 1.10027 1.10020

0.001 0.6 1.21402 1.20803

0.8 1.35735 1.35074

1.0 1.52192 1.51347

vy, nontinear frequency; w, linear frequency

Here, E, and E, are Young’s moduli along the
longitudinal and transverse directions of the fibre
respectively. All the layers are of equal thickness.

The amplitude-frequency relations are shown in Figs
2 & 3 respectively for the simply supported and clamped
symmetrically layered cross-ply cylindrical panel
(0°/90°/0°/90°/0°, a/b = 1, a/h = 100, R/a = 10) along
with the existing analytical solutions. For low values of
amplitude, the nonlinear behaviour predicted by the
present model agrees well with that seen in
Ref. 7 whereas there is a discrepancy in the results at
higher amplitudes. It is worthwhile to mention here that
the formulation given in Ref. 7 is based on classical
shell theory and neglects the in-plane and rotary inertia
effects. The present study also confirms that
nonlinearity is of softening type (frequency ratio
decreases with increasing amplitude) for thin panels,
irrespective of support conditions and material
properties.
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Figure 2. Influence of large amplitude on frequency for simply
supported cross-ply cylindrical panel (0°/90°/0°/90°/0°).

The effects of two-layered simply supported
cross-ply as well as angle-ply laminates on nonlinear
bel...iour are presented in Figs 4 & 5 for cylindrical
panels and spherical shells respectively. The results
are presented for two values of thickness parameter
(aih = 10, 100; material Type 1). It is observed that
nonlinearity in the case of moderately thick shells is of
hardening type (frequency ratio increases with
amplitude), whether it is for cylindrical panels or
doubly curved spherical shells, whereas it is of softening
type for thin panels.

5. SUMMARY

The investigation on the nonlinear free flexural
vibrations of cylindrical and spherical shells has been
carried out here, for the first time, using a shear-flexible
shell element along with the dynamic response
approach. The nonlinear behaviour of thin and
moderately thick shells is brought out from the free
vibration response.
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Figure 3. Influence of large amplitude on frequency for clamped
cross-ply cylindrical panel (0°/90°/0°/90°/0°).
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Figure 4. Influence of large amplitude on frequency for simply
supported two-layered cylindrical panel.
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Influence of large amplitude on frequency for simply
supported two-layered doubly curved spherical shell.
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