Inverse Synthetic Aperture Radar Imaging for Micro-motion Target with Rotating Parts

This paper establishes imaging model for rigid body micro-motion target with rotating parts, and derives the formulas of micro-Doppler induced by target with rotation. To obtain well-focused inverse synthetic aperture radar image of rigid body micro-motion target with rotating parts, low frequency filter algorithm is presented to separate the echoes of the rigid body from that of the micro-motion parts. The results of measured data confirm the effectiveness of the proposed method.


Keywords:  Micro-Doppler,   low frequency filterinverse synthetic aperture radar image 


Micro-Doppler (MD) effect has received intensive interest for radar target identification in recent years, since it is regarded as a unique signature of the target and provides additional information that is complementary to the existing methods1. However, the existence of MD could also contaminate inverse synthetic aperture radar (ISAR) image due to the interference from the micro-motion parts, which represents interferential strip across Doppler direction2. Therefore, micro-motion signatures must be extracted and separated from the original returned signals to achieve well-focused ISAR image. Several micro-motion feature extraction and separation algorithms have been proposed3-6. High-resolution joint time-frequency algorithm incorporated with order statistics is developed for micro-motion feature extraction3. A method for separation of MD effect from the radar image based on chirplet transform is proposed4. The image processing algorithms such as Hough and extended Hough transform are introduced for separation of micro-motion features5,6. An algorithm utilizing the complex-value empirical mode decomposition to separate the echo of the unsymmetrical appendix parts from the main body is proposed7. However, these methods cannot overcome the intrinsic disadvantage of high computational load.


In this paper, we present a method for separating micro-motion parts caused signal from the signal caused by rigid body via low frequency filter algorithm. Based on the diversity of micro-motion parts and rigid parts on time-frequency plane, MD signatures can be extracted and wiped off from the original returned signals. Thus, well-focused ISAR image for rigid body by Range-Doppler (RD) algorithm is obtained, which avoids a high computational requirement.


The point scattering model is usually applied in simplifying the analysis while preserving MD signatures. Without loss of generality, the imaging geometry of radar and a micro-motion target with a rotating scatterer is depicted in Fig. 1, where translational motion has been compensated2. According to Fig. 1, XOY denotes the imaging plane, and scatterers P and Q are corresponding to the rotating scatterer and rigid scatterer, respectively. Scatterer P rotates around O' MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4taiaacEcaaaa@3764@ with a constant angular velocity ωP, rotation radii rP and initial phase θP while scatterer Q rotates around imaging center O with a constant angular velocity ω0, rotation radii RQ and initial phase θQ. The dashed lines denote the imaging geometry when the target rotates a small angle.



Figure 1 . I maging geometry of radar and a micro-motion target with a rotating scatterer


Suppose that radar transmits linear frequency modulated (LFM) signal, then the returned radar signal after stretch processing and fast-time-domain compression is expressed as:



s c ( r, t m )= i=1 K σ i T 1 sinc{ 2πB c [ r+ R Δi ( t m ) ] } exp[ j 4π c f 0 R Δi ( t m ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGJbaabeaakmaabmaabaGaamOCaiaacYcacaWG0bWaaSba aSqaaiaad2gaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaabCaeaacq aHdpWCdaWgaaWcbaGaamyAaaqabaGccaWGubWaaSbaaSqaaiaaigda aeqaaOGaci4CaiaacMgacaGGUbGaai4yamaacmaabaWaaSaaaeaaca aIYaGaeqiWdaNaamOqaaqaaiaadogaaaWaamWaaeaacaWGYbGaey4k aSIaamOuamaaBaaaleaacqqHuoarcaWGPbaabeaakmaabmaabaGaam iDamaaBaaaleaacaWGTbaabeaaaOGaayjkaiaawMcaaaGaay5waiaa w2faaaGaay5Eaiaaw2haaaWcbaGaamyAaiabg2da9iaaigdaaeaaca WGlbaaniabggHiLdGcciGGLbGaaiiEaiaacchadaWadaqaaiabgkHi TiaabQgadaWcaaqaaiaaisdacqaHapaCaeaacaWGJbaaaiaadAgada WgaaWcbaGaaGimaaqabaGccaWGsbWaaSbaaSqaaiabfs5aejaadMga aeqaaOWaaeWaaeaacaWG0bWaaSbaaSqaaiaad2gaaeqaaaGccaGLOa GaayzkaaaacaGLBbGaayzxaaaaaa@70BA@ (1)

where i is the scatterer index, K is the scatterer number, σ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMgaaeqaaaaa@38B1@ , c, T1, B and f0  denote scattering coefficient, light speed, pulse width, signal bandwidth and frequency, respectively. The range variable between i th scatterer and imaging center is R Δi ( t m ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacqqHuoarcaWGPbaabeaakiaacIcacaWG0bWaaSbaaSqaaiaa d2gaaeqaaOGaaiykaaaa@3CAF@ , which is a function of slow time tm.


Since R 0 R Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaaIWaaabeaakiablUMi=iaadkfadaWgaaWcbaGaamyuaaqa baaaaa@3AD0@ , the variable  R ΔQ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacqqHuoarcaWGrbaabeaaaaa@3913@ of the rigid scatterer Q can be written as:



R ΔQ ( t m )= R Q sin( ω 0 t m + θ Q ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacqqHuoarcaWGrbaabeaakmaabmaabaGaamiDamaaBaaaleaa caWGTbaabeaaaOGaayjkaiaawMcaaiabg2da9iaadkfadaWgaaWcba GaamyuaaqabaGcciGGZbGaaiyAaiaac6gadaqadaqaaiabeM8a3naa BaaaleaacaaIWaaabeaakiaadshadaWgaaWcbaGaamyBaaqabaGccq GHRaWkcqaH4oqCdaWgaaWcbaGaamyuaaqabaaakiaawIcacaGLPaaa aaa@4C92@ (2)

Since the main body holds ω 0 t m 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaaicdaaeqaaOGaamiDamaaBaaaleaacaWGTbaabeaakiab lQMi9iaaigdaaaa@3CC7@ , we can conclude that  cos( ω 0 t m )1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaaiikaiabeM8a3naaBaaaleaacaaIWaaabeaakiaadsha daWgaaWcbaGaamyBaaqabaGccaGGPaGaeyisISRaaGymaaaa@414A@ and sin( ω 0 t m ) ω 0 t m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaaiikaiabeM8a3naaBaaaleaacaaIWaaabeaakiaadsha daWgaaWcbaGaamyBaaqabaGccaGGPaGaeyisISRaeqyYdC3aaSbaaS qaaiaaicdaaeqaaOGaamiDamaaBaaaleaacaWGTbaabeaaaaa@4568@ . Then R ΔQ ( t m ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacqqHuoarcaWGrbaabeaakiaacIcacaWG0bWaaSbaaSqaaiaa d2gaaeqaaOGaaiykaaaa@3C97@   can be written as:

R ΔQ ( t m )= R Q cos( θ Q )sin( ω 0 t m )+ R Q sin( θ Q )cos( ω 0 t m ) = x Q sin( ω 0 t m )+ y Q cos( ω 0 t m ) x Q ω 0 t m + y Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGceaabbeaacaWGsb WaaSbaaSqaaiabfs5aejaadgfaaeqaaOGaaiikaiaadshadaWgaaWc baGaamyBaaqabaGccaGGPaGaeyypa0JaamOuamaaBaaaleaacaWGrb aabeaakiGacogacaGGVbGaai4CaiaacIcacqaH4oqCdaWgaaWcbaGa amyuaaqabaGccaGGPaGaci4CaiaacMgacaGGUbGaaiikaiabeM8a3n aaBaaaleaacaaIWaaabeaakiaadshadaWgaaWcbaGaamyBaaqabaGc caGGPaGaey4kaSIaamOuamaaBaaaleaacaWGrbaabeaakiGacohaca GGPbGaaiOBaiaacIcacqaH4oqCdaWgaaWcbaGaamyuaaqabaGccaGG PaGaci4yaiaac+gacaGGZbGaaiikaiabeM8a3naaBaaaleaacaaIWa aabeaakiaadshadaWgaaWcbaGaamyBaaqabaGccaGGPaaabaGaeyyp a0JaamiEamaaBaaaleaacaWGrbaabeaakiGacohacaGGPbGaaiOBai aacIcacqaHjpWDdaWgaaWcbaGaaGimaaqabaGccaWG0bWaaSbaaSqa aiaad2gaaeqaaOGaaiykaiabgUcaRiaadMhadaWgaaWcbaGaamyuaa qabaGcciGGJbGaai4BaiaacohacaGGOaGaeqyYdC3aaSbaaSqaaiaa icdaaeqaaOGaamiDamaaBaaaleaacaWGTbaabeaakiaacMcaaeaacq GHijYUcaWG4bWaaSbaaSqaaiaadgfaaeqaaOGaeqyYdC3aaSbaaSqa aiaaicdaaeqaaOGaamiDamaaBaaaleaacaWGTbaabeaakiabgUcaRi aadMhadaWgaaWcbaGaamyuaaqabaaaaaa@85D8@ (3)

where x Q = R Q cos( θ Q ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGrbaabeaakiabg2da9iaadkfadaWgaaWcbaGaamyuaaqa baGcciGGJbGaai4BaiaacohadaqadaqaaiabeI7aXnaaBaaaleaaca WGrbaabeaaaOGaayjkaiaawMcaaaaa@41E3@ y Q = R Q sin( θ Q ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGrbaabeaakiabg2da9iaadkfadaWgaaWcbaGaamyuaaqa baGcciGGZbGaaiyAaiaac6gadaqadaqaaiabeI7aXnaaBaaaleaaca WGrbaabeaaaOGaayjkaiaawMcaaaaa@41E9@ are coordinates of scatterer Q. For a small accumulation angle, the Doppler frequency of scatterer Q can be approximated as:



f dQ ( t m )= 2 λ d R ΔQ ( t m ) d t m = 2 x Q ω 0 λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGKbGaamyuaaqabaGcdaqadaqaaiaadshadaWgaaWcbaGa amyBaaqabaaakiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaikdaae aacqaH7oaBaaWaaSaaaeaacaWGKbGaamOuamaaBaaaleaacqqHuoar caWGrbaabeaakmaabmaabaGaamiDamaaBaaaleaacaWGTbaabeaaaO GaayjkaiaawMcaaaqaaiaadsgacaWG0bWaaSbaaSqaaiaad2gaaeqa aaaakiabg2da9maalaaabaGaaGOmaiaadIhadaWgaaWcbaGaamyuaa qabaGccqaHjpWDdaWgaaWcbaGaaGimaaqabaaakeaacqaH7oaBaaaa aa@5325@ (4)

Since R 0 R P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaaIWaaabeaakiablUMi=iaadkfadaWgaaWcbaGaamiuaaqa baaaaa@3ACF@   and , R 0 r P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaaIWaaabeaakiablUMi=iaadkhadaWgaaWcbaGaamiuaaqa baaaaa@3AEF@ the variable R ΔP ( t m ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacqqHuoarcaWGqbaabeaakiaacIcacaWG0bWaaSbaaSqaaiaa d2gaaeqaaOGaaiykaaaa@3C96@ of rotating scatterer is:

R ΔP ( t m )= R P sin( ω 0 t m + θ 0 )+ r P sin( ω P t m + θ P ) = R P cos( θ 0 )sin( ω 0 t m )+ R P sin( θ 0 )cos( ω 0 t m )+ r P sin( ω P t m + θ P ) = x O' sin( ω 0 t m )+ y O' cos( ω 0 t m )+ r p sin( ω P t m + θ P ) x O' ω 0 t m + y O' + r p sin( ω P t m + θ P ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGceaabbeaacaWGsb WaaSbaaSqaaiabfs5aejaadcfaaeqaaOGaaiikaiaadshadaWgaaWc baGaamyBaaqabaGccaGGPaGaeyypa0JaamOuamaaBaaaleaacaWGqb aabeaakiGacohacaGGPbGaaiOBaiaacIcacqaHjpWDdaWgaaWcbaGa aGimaaqabaGccaWG0bWaaSbaaSqaaiaad2gaaeqaaOGaey4kaSIaeq iUde3aaSbaaSqaaiaaicdaaeqaaOGaaiykaiabgUcaRiaadkhadaWg aaWcbaGaamiuaaqabaGcciGGZbGaaiyAaiaac6gacaGGOaGaeqyYdC 3aaSbaaSqaaiaadcfaaeqaaOGaamiDamaaBaaaleaacaWGTbaabeaa kiabgUcaRiabeI7aXnaaBaaaleaacaWGqbaabeaakiaacMcaaeaacq GH9aqpcaWGsbWaaSbaaSqaaiaadcfaaeqaaOGaci4yaiaac+gacaGG ZbGaaiikaiabeI7aXnaaBaaaleaacaaIWaaabeaakiaacMcaciGGZb GaaiyAaiaac6gacaGGOaGaeqyYdC3aaSbaaSqaaiaaicdaaeqaaOGa amiDamaaBaaaleaacaWGTbaabeaakiaacMcacqGHRaWkcaWGsbWaaS baaSqaaiaadcfaaeqaaOGaci4CaiaacMgacaGGUbGaaiikaiabeI7a XnaaBaaaleaacaaIWaaabeaakiaacMcaciGGJbGaai4Baiaacohaca GGOaGaeqyYdC3aaSbaaSqaaiaaicdaaeqaaOGaamiDamaaBaaaleaa caWGTbaabeaakiaacMcacqGHRaWkcaWGYbWaaSbaaSqaaiaadcfaae qaaOGaci4CaiaacMgacaGGUbGaaiikaiabeM8a3naaBaaaleaacaWG qbaabeaakiaadshadaWgaaWcbaGaamyBaaqabaGccqGHRaWkcqaH4o qCdaWgaaWcbaGaamiuaaqabaGccaGGPaaabaGaeyypa0JaamiEamaa BaaaleaacaWGpbGaai4jaaqabaGcciGGZbGaaiyAaiaac6gacaGGOa GaeqyYdC3aaSbaaSqaaiaaicdaaeqaaOGaamiDamaaBaaaleaacaWG TbaabeaakiaacMcacqGHRaWkcaWG5bWaaSbaaSqaaiaad+eacaGGNa aabeaakiGacogacaGGVbGaai4CaiaacIcacqaHjpWDdaWgaaWcbaGa aGimaaqabaGccaWG0bWaaSbaaSqaaiaad2gaaeqaaOGaaiykaiabgU caRiaadkhadaWgaaWcbaGaamiCaaqabaGcciGGZbGaaiyAaiaac6ga daqadaqaaiabeM8a3naaBaaaleaacaWGqbaabeaakiaadshadaWgaa WcbaGaamyBaaqabaGccqGHRaWkcqaH4oqCdaWgaaWcbaGaamiuaaqa baaakiaawIcacaGLPaaaaeaacqGHijYUcaWG4bWaaSbaaSqaaiaad+ eacaGGNaaabeaakiabeM8a3naaBaaaleaacaaIWaaabeaakiaadsha daWgaaWcbaGaamyBaaqabaGccqGHRaWkcaWG5bWaaSbaaSqaaiaad+ eacaGGNaaabeaakiabgUcaRiaadkhadaWgaaWcbaGaamiCaaqabaGc ciGGZbGaaiyAaiaac6gadaqadaqaaiabeM8a3naaBaaaleaacaWGqb aabeaakiaadshadaWgaaWcbaGaamyBaaqabaGccqGHRaWkcqaH4oqC daWgaaWcbaGaamiuaaqabaaakiaawIcacaGLPaaaaaaa@D72E@ (5)

where  x O' = R P cos( θ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGpbGaai4jaaqabaGccqGH9aqpcaWGsbWaaSbaaSqaaiaa dcfaaeqaaOGaci4yaiaac+gacaGGZbWaaeWaaeaacqaH4oqCdaWgaa WcbaGaaGimaaqabaaakiaawIcacaGLPaaaaaa@426F@ and y O' = R P sin( θ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGpbGaai4jaaqabaGccqGH9aqpcaWGsbWaaSbaaSqaaiaa dcfaaeqaaOGaci4CaiaacMgacaGGUbWaaeWaaeaacqaH4oqCdaWgaa WcbaGaaGimaaqabaaakiaawIcacaGLPaaaaaa@4275@   are coordinates of the rotating center .
The Doppler frequency of rotating scatterer P can be written as:



f dP ( t m )= 2 λ d R ΔP ( t m ) d t m = 2 x O' ω 0 λ + 2 ω P r p λ cos( ω P t m + θ P ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGKbGaamiuaaqabaGcdaqadaqaaiaadshadaWgaaWcbaGa amyBaaqabaaakiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaikdaae aacqaH7oaBaaWaaSaaaeaacaWGKbGaamOuamaaBaaaleaacqqHuoar caWGqbaabeaakmaabmaabaGaamiDamaaBaaaleaacaWGTbaabeaaaO GaayjkaiaawMcaaaqaaiaadsgacaWG0bWaaSbaaSqaaiaad2gaaeqa aaaakiabg2da9maalaaabaGaaGOmaiaadIhadaWgaaWcbaGaam4tai aacEcaaeqaaOGaeqyYdC3aaSbaaSqaaiaaicdaaeqaaaGcbaGaeq4U dWgaaiabgUcaRmaalaaabaGaaGOmaiabeM8a3naaBaaaleaacaWGqb aabeaakiaadkhadaWgaaWcbaGaamiCaaqabaaakeaacqaH7oaBaaGa ci4yaiaac+gacaGGZbWaaeWaaeaacqaHjpWDdaWgaaWcbaGaamiuaa qabaGccaWG0bWaaSbaaSqaaiaad2gaaeqaaOGaey4kaSIaeqiUde3a aSbaaSqaaiaadcfaaeqaaaGccaGLOaGaayzkaaaaaa@6920@ (6)

From the analysis above, the MD produced by the rotating scatterer P would appear as a sinusoid, while the Doppler produced by the rigid scatterer Q is a straight line.


From Eqns. (4) and (6), we can conclude that the time-frequency distribution of the rigid scatterer is a straight line with a very small frequency which is a fixed value, since ω0 is usually quite small; the time-frequency distribution of the rotating scatterer is a sinusoid, whose frequency distributes in the whole frequency axis. The accumulated peak value of the rotating scatterer is usually less than that of the rigid scatterer, because of the migration through range cell of the rotating scatterer, which makes the energy distributes on multi range cells. Thus, energy threshold can be applied for separation of returned radar signals from rotating scatterers and rigid scatterers. However, when the back-scattering coefficient of the rotating scatterer is far more than that of the rigid scatterer, the accumulated peak value of the rotating scatterer may be more than that of the rigid scatterer. So the illusive rigid echoes may appear with only energy threshold to separate MD. Since the frequency of the rotating scatterer distributes in the whole frequency axis, and its amplitudes gradually augment from low frequency to high frequency, which makes the frequency of illusive rigid echoes locates at high frequency region; while the frequency of the rigid scatterer locates at low frequency region, so the frequency threshold can be applied together with the energy threshold to separate radar returned signals from rotating scatterers and rigid scatterers. By disposing with the two thresholds, illusive rigid echoes can be restrained on one hand, on the other hand, frequency search extension minishes which reduces computational complexity. Thus, well-focused ISAR image can be obtained with separated rigid returned signals by applying RD algorithm. From the analysis above, the low frequency filter algorithm is described as follows:


(1)    Compute the spectrums of each range cell;
(2)    Search the maximum amplitude of the spectrums during the frequency extension [ f T , f T ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaamWaaeaacq GHsislcaWGMbWaaSbaaSqaaiaadsfaaeqaaOGaaiilaiaadAgadaWg aaWcbaGaamivaaqabaaakiaawUfacaGLDbaaaaa@3D56@ , the corresponding frequency is thus the frequency  f max1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaaciGGTbGaaiyyaiaacIhacaaIXaaabeaaaaa@3A79@ of the rigid scatterer;
(3)    Design a band-stop filter with central frequency f max1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipq0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaaciGGTbGaaiyyaiaacIhacaaIXaaabeaaaaa@3A79@ , and filter the estimated spectrum of the rigid scatterer from the original spectrum;
(4)    Repeat step 2 and step 3 until the estimated energy of the rigid scatterer falls below a threshold;
(5)    Transform the residual spectrum into time domain, which is the returned signal of micro-motion scatterers;
(6)    Subtract the MD signal from the original echoes and obtain the rigid echoes.
A conclusion can be drawn that the proposed algorithm minishes the frequency search extension, which has the property of requiring less computational burden.


The raw radar data in this paper is the ISAR measured data of An-26 airplane. Ground radar operates at 400 MHz and transmits a pulse waveform with a pulse repetition frequency 400 MHz. Figure 2(a) is the RD image after translational motion compensation, from which we can see the clear MD interferential strip induced by the rotating airscrews. The spectrums of separated rotating scatterers and rigid scatterers are shown in Fig. 2(b) and Fig. 2(c), respectively. After MD separation with low frequency filter algorithm, the RD image of the rigid body is shown in Fig. 2(d), which demonstrated that the MD interferential strip is wiped off.


This study establishes the turntable model of micro-motion rotating target, and derived mathematical formulas solving micro-Doppler modulations induced by rotation. Based on the differences in frequency, the low frequency filter algorithm is proposed to separate the rigid echoes and MD echoes, which is computational efficient. The validity of the proposed algorithm has been proved by experimental data.


This work was supported by a grant from School Project of Yuncheng University (No. YQ-2011034)



Figure 2. RD image of experimental data (a) RD image after translational motion compensation.



Figure 2. RD image of experimental data (b) The spectrum of separated rotating scatterers.



Figure 2. RD image of experimental data (c) The spectrum of separated rigid scatterers.



Figure 2. RD image of experimental data (d) RD image of the rigid body.


1.     Chen, V. C.; Li, F. & Ho, S. S. Micro-Doppler effect in radar: phenomenon, model, and simulation study. IEEE Trans. Aerosp. Electron. Syst., 2006, 42(1), 2-21. [Full text via CrossRef]

2.     Bai, X.R.; Xing, M.D. & Zhou, F. Micro-Doppler analysis and imaging of air-planes with rotating parts, In Proceedings of Asia-Pacific Conference on Synthetic Aperture Radar, Xi’an, China, 2009,  pp. 610-613. [Full text via CrossRef]

3.     Stankovic, L.; Djurovi, I.C. & Thayaparan, T. Separation of target rigid body and micro-Doppler effects in ISAR imaging. IEEE Trans. Aerosp. Electron. Syst., 2006, 42(4), 1496-1506. [Full text via CrossRef]

4.     Li, J. & Ling, H. Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts. IEEE Proc. Radar Sonar Navig., 2003, 150(4),  284–291. [Full text via CrossRef]

5.     Zhang, Q.; Yeo, T.S. & Tan, H.S. Imaging of a moving target with rotating parts based on the Hough transform. IEEE Trans. Geosci. Remote Sens., 2008, 46(1), 291-299. [Full text via CrossRef]

6.     Luo, Y.; Zhang, Q. & Qiu, C.W. Micro-Doppler effect analysis and feature extraction in ISAR imaging with stepped-frequency chirp signals. IEEE Trans. Geosci. Remote Sens., 2010, 48(4), 2087-2098. [Full text via CrossRef]

7.     Yuan B.; Xu S.Y. & Liu Y. Echo separation and imaging of spatial precession targets with unsymmetrical appendix parts based on CEMD. J. Electron. Inf. Technol., 2013, 35(1), 1-7. [Full text via CrossRef]

Dr Sun Huixia

Dr Sun Huixia obtained her BE and PhD from National Key Lab of Radar Signal Processing, Xidian University in 2005 and 2011, respectively. She is currently working as a Lecturer in the Department of Physics and Electronics Engineering, Yuncheng University. Her research interests include : Radar signal processing and pattern recognition.